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ABSTRACT

The dispersion of electron cyclotron waves in a relativistic Maxwellian plasma is inves-
tigated. It is shown that the apparently very complicated picture of the coupling of the
extraordinary (X) mode to Bernstein waves can be accounted for in a simple way by con-
sidering the refractive indices as Riemann-like surfaces in the Clemmow-Mullaly-Allis
(CMA) parameter space, (w,’/w? w./w), and by introducing a few topological concepts
from the analysis of complex functions. A detailed study is made of the surface repre-
senting the X mode for perpendicular propagation, with special attention given to the
connection between this mode and Gross—Bernstein modes. For perpendicular propaga-
tion non-transcendental approximations to the relativistic refractive indices for X and
O modes can be given. We show that these approximations are good up to ~ 25 keV
and that at frequencies up to the second harmonic of the electron cyclotron frequency
the X mode approximation also accounts correctly for the connection of the X mode
to Bernstein modes. The accuracy and the numerical efficiency of the approximations
make them well suited for routine calculations for millimetre wave applications in fusion
plasmas, including the analysis of X mode and O mode reflectometry.

1 INTRODUCTION

The dispersion of plasma electron cyclotron waves has been investigated by many au-
thors including BORNATICI et al. (1981) (1983), ROBINSON (1986a) (1987a,b) (1988),
LAzzZARO and RAMPONI (1981) and BATCHELOR et al. (1984). Significant relativistic
effects in both the real and the imaginary parts of the refractive index have been found
even when the mean thermal energy of the plasma electrons is small compared to the
rest mass energy of an electron.

It has been demonstrated that these relativistic modifications are of practical conse-
quence to a number of microwave experiments on magnetically confined fusion plasmas.
In particular it has been found that in millimeter wave Thomson scattering [BIND-
SLEV, 1991a] and in reflectometry [BINDSLEV, 1991b and 1992] it may be essential to
take relativistic effects into account when analyzing results. Also, diagnostics relying
on electron cyclotron emission can be affected by the relativistic increase in the cutoff
density [COSTLEY and BARTLETT, 1993].

The need to take relativistic dielectric effects into account in a range of applications,
including those mentioned above, adds to the desirability of having a detailed knowledge
of the dispersion of waves in a relativistic plasma under a wide range of parameters,
and to have accurate relativistic expressions which may be evaluated with a minimum
of computing time.

In this paper we show that the apparently very complicated picture of the connection
of the extraordinary (X) mode with Bernstein waves [LAZZARO and RAMPONI, 1981;



BORNATICI et al. 1981; ROBINSON, 1986a and 1988] can be accounted for in a simple
way by introducing a few topological concepts from the analysis of complex functions.
We consider each refractive index as a sheet in the Clemmow-Mullaly-Allis (CMA)
parameter space, (w2/w?,w./w), and find that these sheets are connected to form one
continuous Riemann-like surface.

One of the general difficulties in studying relativistic effects on the dispersion of waves
is that the dispersion function is a transcendental function of the refractive index, and
thus a root search is required for each evaluation of the index.

For the study of the X mode surface at frequencies lower than the second harmonic
a simplified dispersion function can be used [ROBINSON 1986a], which includes finite
Larmor radius effects only to first order in (k. p)?, where p is the mean electron Larmor
radius. This approximation is good for the X mode, and accounts accurately for the
coupling to Bernstein modes for frequencies up to the second harmonic of the electron
cyclotron frequency. The advantage of the approximation is that it permits the refractive
index to be given as an explicit function of the plasma parameters and thus provides
an efficient and accurate routine for use, for example, in density profile reconstruction
from X mode reflectometry.

The paper is organized as follows. In Section 2 we discuss the general characteristics
of electron cyclotron wave dispersion and the connection between the X mode and
Bernstein modes. It is shown that in the vicinity of degenerate roots the refractive
index considered as a surface in the CMA space generally has a structure similar to that
of a two-sheeted Riemann surface near a branch point. As an example we investigate
in Section 3 the sheet corresponding to the X mode near a point, where it coincides
with a sheet corresponding to a Bernstein wave. In Section 4 we analyse in detail the
dispersion along a specific trajectory through the CMA parameter space in order to
expose the main features of the dispersion of the X mode and the associated Bernstein
mode in the region of the R cutoff and the upper hybrid resonance for w, < w < 2w,.
In previous studies the refractive index was often plotted as a function of frequency,
with all other parameters constant. In Section 5 analyses of this kind are put into
four categories corresponding to the positions of the trajectories in the CMA diagram
relative to the positions of the branch points. Connections between Gross—Bernstein
modes and the extraordinary mode near the upper hybrid resonance are discussed in
Section 6. The temperature dependence of the refractive index is considered in Section
7. Relativistic effects on the dispersion of the O mode are discussed briefly in Section
8, and a non-transcendental approximation to the O mode refractive index is given.
Finally, in Section 9 the approximation for the X mode refractive index, introduced in
Section 3, is discussed in detail.
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2 GENERAL CHARACTERISTICS OF ELECTRON CYCLOTRON WAVE
DISPERSION

In the electron cyclotron frequency range the ion dynamics can be ignored and the
dispersion function, D = |e + N2(lAdA< —1I)|, is a function of T¢, B, n., w, § and N, where
T. is the electron temperature, B is the magnetic field, n. is the electron density, w
is the angular frequency, 8 is the angle between the magnetic field, B, and the wave-
vector, k, and N = kc/w is the refractive index. Here we consider D as a function of

the independent variable set (X, Y, T., 6, N), where X = (w,/w)? and ¥ = w./w are

the CMA parameters, while w, = y/n.q%/(m.¢o) is the electron plasma frequency, and
we = |q.|B/me is the electron cyclotron frequency.

For a given set of values of (X, Y, T., 6) the weakly relativistic dispersion relation,
D = 0, has an infinite number of solutions in N, each of which are in general continuous
functions of (X, Y, T., ). In the subsequent analysis we will generally keep T, and 6
fixed and consider the solutions for N as sheets in the CMA plane (X, Y).

Two roots in the dispersion relation may coincide at a point, (Xo, Yp). Under certain
conditions the sheets involved have the same topology in the neighbourhood of the
degenerate point, (Xo, ¥p), as a two—sheeted Riemann surface near a branch point. This
phenomenon will be referred to as connection between the sheets, and the associated
points will be referred to as branch points.

Assume that the dispersion relation has a double root, Ny, at the point bg = (X, Y),
and that D is analytic at this point. This implies that
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To obtain the structure of the solution-planes in the neighbourhood of the double root,
we expanded D around by:

2
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where (bg + 8) = (Xo + 6X, Yy + 6Y). Solving for 6N in the dispersion relation,
D(No+ 6N,bg + 6) = 0, gives
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From expression (2) and provided

dD(No,bo)\ ™ 8D(Nq, bo)
Im{( X 0) oY }*0 (3)

it follows that the refractive index surface near the degenerate point has the same
structure as a two-sheeted Riemann surface near a branch point.

3 BRANCH POINTS AND CONNECTION IN THE X MODE SURFACE

The contour plot in Figure 1 is obtained with the weakly relativistic model given by
SHKAROFSKY (1986) which is based on an expansion of the dielectric tensor, €, in powers
of A, = (ki p.)?, where p, = (Te/(wczme))% is the mean thermal Larmor radius of the
electrons. The plot shows the real part of N in the CMA plane for the X mode with
(T., §) = (15.0 keV, 90°). 6 = 90° implies that there is no Doppler broadening of
the resonances, but only broadening due to the relativistic increase of the mass of the
electrons. For comparison Figure 2 shows a contour plot of the X mode refractive index
predicted by cold theory.

In Figure 2 the R cutoff is the straight line from (1,0) to (0,1) corresponding to the
zero level. In Figure 1 the R cutoff is almost straight, but here it goes from (1.07,0)
to (0.07,1). Figures 1 and 2 also show small parts of the L cutoff, the same shift being
found here. These shifts in the cutoffs are due to relativistic effects and are discussed
in detail in BORNATICI and RUFFINA (1988) and BINDSLEV (1993). Note that for low
densities (here for X < 0.07) there is no true cutoff.

In the plot for the cold X mode the upper hybrid resonance is seen clearly as the
parabolic curve 1 = X + Y? along which the refractive index is infinite. In Figure 1 the
refractive index does not go to infinity at the upper hybrid frequency; instead we observe
a ridge along which N has a finite value. The location of the ridge almost coincides
with the location of the resonance curve predicted by the cold theory, but the ridge ends
above the second harmonic of the electron cyclotron frequency (1 > Y > 1/2).

Anomalous dispersion [SHKAROFSKY, 1966], which is absent in the cold theory, is clearly
visible in Figure 1 at the lower harmonics of w,.



The discontinuities in Figure 1 are not physically significant, but are simply a conse-
quence of the fact that the plot only shows one of the solutions to the dispersion relation.
This solution in fact joins continuously to other solution at the discontinuities shown
here. In this plot one discontinuity is placed between the two branch points, bz and
bs, while the other is placed between the branch point, by, and a point on the edge of
the CMA plane. Because of the similarity between these discontinuities and the branch
cuts in complex function theory, we will refer to the discontinuities as branch cuts.

BORNATICI et al. (1981), LAZZARO and RAMPONI (1981) and ROBINSON (1986a) inves-
tigated the dispersion of the X mode between the first and second harmonic of w, for
perpendicular propagation by considering approximations to the refractive index of the
form:

N7 —B +B? —4AC (4)
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where A, B and C are functions of (X, Y, T,) but independent of N. When referring
to (4) we will have in mind the expression given by ROBINSON (1986a), since this is
the most general. It accounts accurately for the connection between the X mode and
Bernstein modes for frequencies up to the second harmonic of w.. For convenience we
include in the Appendix expressions for A, B and C.

From expression (4) we find that the cutoff conditions for both the R and L cutoffs are
given by C = 0, which is identical to the weakly relativistic cutoff condition [BINDSLEV,
1993]. Degenerate solutions are found where A = B* —4AC = 0. Figure 3 shows curves
in the CMA plane where C = 0, Re(A) = 0 and Im(A) = 0 respectively: we see that
there are three points, p1, p2 and ps, where the condition, A = 0, is satisfied. These
points are branch points in the approximation (4) and correspond to the three branch
points, by, bz and bz, obtained with the weakly relativistic dispersion relation. Note
that the branch point b; is found on the high density side of the high field limit of the
R cutoff, while both bs and bs are on the low density side of the cutoff.

The existence of the points bs and bg was first indicated by LAZZARO and RAMPONI
(1981) and BORNATICI et al. (1981), but the two-sheeted Riemann structure in the
vicinity of these points was not pointed out.

The plots in Figure 4 demonstrate this structure of the refractive index surface in the
neighbourhood of b3. Figure 4(a) shows a contour plot of a sheet which contains a
part of the R cutoff and which may be identified as the sheet corresponding to the X
mode. The contour plot in Figure 4(b) covers the same parameter space as the plot in
Figure 4(a) but here the sheet corresponds to a Gross—Bernstein wave. The branch cuts
in the two plots are placed identically and the plots may be connected along these cuts.
A dashed curve is drawn in each of the plots. These two curves join each other at the
points marked s; and s; and may be considered as a single closed curve which circulates
twice around the branch point. The refractive index can be followed continuously on



this curve. Starting at the point sy with the value Ny for the refractive index and
letting the CM A parameters follow the curve, one finds that after one circulation round
the branch point the refractive index is not equal to Ny even though we return to the
point so. However, after two circulations round the branch point the refractive index
does return to the original value Ny. This illustrates that the refractive index has the
structure of a two-sheeted Riemann surface.

For Y higher than a specific limit, ¥}, (¥; > 1/2) the resonance condition corresponding
to the second harmonic of w,. will only be satisfied in the very warm tail of the electron
distribution. In the interval ¥; < ¥ < 1 we thus find that Im(A) ~ 0. We will refer to
the two dashed curve sections in Figure 3 for which Re(A) =0 and Y, <Y <1 as d
and e, where d is the curve nearest to the R cutoff. From expression (4) we find that
on the curves d and e the two values of N? under consideration (Ni and NE) are very
close. The distance between them gets smaller as ¥ approaches unity, but N2 # N2
until Y = 1.00 where the branch point by is located.

The sign of the damping rate is always positive in an isotropic Maxwellian plasma
(Im(N) > 0), so when calculating N from N? a square root with the branch cut
just below the positive real axis must be used. It then turns out that the two sheets
associated with N, and N_ are almost touching each other on d (Ny ~ N_), while on e
we find that N, ~ —N_. The location of curve section e in Figure 3 coincides with the
location of the ridge in Figure 1 while the position of curve section d is identical with
the position of the upper edge of the shelf in Figure 1.

4 QUALITATIVE FEATURES OF THE X MODE DISPERSION

In order to expose the interaction between the X mode and the relevant Bernstein mode
for Y > 1/2, we now discuss the most important features of the dispersion curves found
by plotting the refractive indices as functions of ¥ with X/Y? = 0.8. The intersection
between the curves X/Y? = 0.8 and Re(A) = 0 is close to the second harmonic of w.
which makes the effect of the imaginary part in A more visible. We will refer to the
mode going to the R cutoff as N_ and the mode going to the L cutoff as N,.

The plots in Figure 5 show respectively the values of Re(Ny) and Im(Ny) obtained
with the relativistic dispersion relation [SHKAROFSKY, 1986] by following the trajectory
X/Y? =0.8 for 0.50 < Y < 0.90. The values of Y where C = 0, and Re(A) = 0 are
called Y, Y; and Y, respectively (corresponding to Figure 3), and are marked on the
plots. The main features of these dispersion curves may be listed as follows:

e On the low field side of the R cutoff (Y < Y.) it is found that Re(Ni) > 0
and Im(Ny) > 0. Here N, corresponds to a heavily damped mode, while N_
corresponds to the mode known as the X mode.

e At the cutoff (Y,) we find as expected, that N_ is zero, while the other mode is
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unaffected.

e On the high field side of the cutoff we find that Re(N_) < 0 and Im(N_) > 0.
Since N_ must be damped we conclude that the group velocity and the phase
velocity of this mode are in opposite directions. After the cutoff both modes are
heavily damped.

e As Y approaches Y, the difference between N, and N_ becomes very small, but
the imaginary part of A keeps the two curves apart. Im(A) in fact keeps the two
sheets associated with N, and N_ apart along d all the way up to the branch

point, p1.

e For Y < Y; we have Re(A) > 0, but for Y; < Y < Y. we find that Re(A) < 0.
Because of this, and the fact that |Re(A)| > [Im(A)|, the square root of A in (4)
suddenly adds a large imaginary part to N7 and N2. None of the other terms in

(4) seem to add a significant imaginary part, so for Y between Y; and Y, we find
that N+ ™~ —'N:

o At the point Y, the imaginary parts of both N, and N_ are small, and we see a
maximum in N;. The peak in N, is what is left of the upper hybrid resonance
after the relativistic broadening of the cyclotron resonances. Since Re(A) = 0
and Im(A) ~ 0 we have, from (4), that N2 ~ N2  which here corresponds to
N_~—N,.

e For Y > Y, we have Re(A) > 0 so the imaginary parts of Ny are again small.
We still find that Re(N_) < 0 and Im(N_) ~ 0, and consequently that N_ is a
negligibly damped mode for which the group velocity and the phase velocity are in
opposite directions. N, is the mode going to L cutoff, and is also lightly damped.

In the WKB approximation considered here coupling does not exist at points where
the sheets do not coincide mathematically. The only interaction between modes in this
model is the connection found as a consequence of branch points. However, on the
curves d and e, where we have that N7 ~ N2, a full wave solution may show that there
is coupling between the two modes. ROBINSON (1986a) appears to suggest that this
coupling should be similar to the connection corresponding to the two branch points bg
and bg at the second harmonic of the cyclotron resonance, but from the analysis given
here we find that these phenomena are not identical.

5 CATEGORISATION OF PREVIOUS STUDIES

The connection of the X mode to Bernstein modes at the first and second harmonic of the
cyclotron frequency is often investigated by plotting the refractive indices as functions of
the frequency, w, for constant temperature, T, and for a fixed ratio between the density
and the magnetic field, n./B. This corresponds to obtaining the refractive index as
functions of 1/Y for different values of 7, and X/Y*?. We repeat this here but choose
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to plot the dispersion curves as functions of Y o 1/w instead of 1/Y. The topologies of
these curves depend on the positions of the trajectories in the CMA diagram relative to
the positions of the branch points. The trajectories (X/Y? = constant) are put into the
following categories, in each of which the behaviour of the refractive index is different.

)

Curves passing on the low density side of all three branch points;
Curves passing through the R cutoff and between branch points 1. and 2;
Curves passing through the R cutoff and between branch points 2. and 3;

Curves passing through the R cutoff and on the high density side of all three
branch points.

Figure 6 shows trajectories in the CMA plane corresponding to the different categories.

1.

Category 1 can be sub—divided into two further categories:

(a) Curves passing on the low density side of the cutoff and all of three branch
points.

(b) Curves passing through the cutoff and on the low density side of all three
branch points.

Curves of this kind were analyzed by BORNATICI and RUFFINA (1988) and ROBIN-
SON (1986a, 1987b).

Figure 7 shows plots of Re(N) corresponding respectively to categories 1(a) and
1(b). In the area of the CMA plane where these plots are obtained A, > 1 for
the Bernstein wave, so the plots of this mode are only qualitative. The difference
between the two categories is simply due to the fact that in category 1(a) the
curves X/Y? = constant pass on the low density side of the R cutoff and therefore
Re(N?) > 0 everywhere, while this is not the case in category 1(b). Here an
interval appears where Re(N?) < 0, and at the first point where Re(NZ) = 0 we
find the cutoff. This does not give rise to any topological difference between the
two cases.

In category 2 the curves X/Y? = constant pass on the high density side of by.
This causes a topological change relative to category 1, as may be seen by com-
paring Figure 7 with Figure 8. For the solution in N which goes to the cutoff
we see that the real part now remains negative after the cutoff, and the solution
which previously represented the Bernstein mode now takes over the role of being
the X mode at the high field end. Dispersion in this category has been analyzed
by BORNATICI and RUFFINA (1988) and ROBINSON (1986a, 1987b). The case
analyzed above, where we followed the trajectory X/Y? = 0.8, is in this category.
By comparing Figure 8 with Figure 5(a) it can be seen how the relativistic broad-
ening of the cyclotron resonances smooths out the sharp edges in the refractive
index for increasing temperature.



3. In category 3 the two branch points by and by are passed on the high density
side. Category 3 is similar to category 1, because here it is once again the same
branch which represents the X mode at both the low and the high field ends.
However, the mode which at the low and high field ends represents a Bernstein
mode goes down to the R cutoff as seen in Figure 9, but this does not represent a
topological difference between category 3 and category 1. An earlier investigation
of dispersion in this category was made by BORNATICI (1981), and similar curves
were obtained by LAZZARO and RAMPONI (1981).

4. Categories 2 and 4 are similar to each other in the same way that categories 1
and 3 are. This is due to the fact that branch points by, by and bjs all connect
the same two sheets. The topology of the two curves that result from following a
two—sheeted Riemann-like surface along a certain trajectory depends only on the
parity of the number of branch points on either side of the trajectory. Trajectories
in categories 1 and 3 pass an even number of branch points on the high field side,
while trajectories in categories 2 and 4 pass an odd number. The only significant
difference between the plot given in Figure 10 and that in Figure 8 is that the
shelf just after the cutoff in Figure 8 has disappeared in Figure 10, this being due
to relativistic broadening of the cyclotron resonances.

6 CONNECTION BETWEEN THE X MODE AND GROSS-BERNSTEIN
MODES NEAR THE UPPER HYBRID RESONANCE

In Figure 1 a finite ridge, limited to the range 1/2 < Y < 1, is found near the location
of the cold upper hybrid resonance. On the low density side of this ridge the existence
of a strong absorption band was demonstrated in Figure 5. In a limited frequency range
just above 2w, this absorption band vanishes.

The plots in Figure 11 show Re(N) and Im(N) as functions of X with ¥ = 0.495 for
the two solutions to the weakly relativistic dispersion relation, which go to the R and to
the L cutoffs respectively. The imaginary part of the mode, which goes to the L cutoff,
is seen to be very small, and no sign of the upper hybrid resonance is seen in either
the real part or in the imaginary part. The latter mode which in the low density end
corresponds to a Gross—Bernstein mode diverges for X ~ 0.32 and cannot be followed by
the weakly relativistic dispersion function used here. In a Tokamak it may be possible
to obtain similar parameter variations as the one used in Figure 11 by launching a wave
straight down from the top of the plasma. The presence of absorption layers at the
electron cyclotron frequency and its harmonics makes it difficult to access the region
between the upper hybrid resonance and the L cutoff with X mode for w > w.. However,
mode conversion between the two modes shown in Figure 11 would make it possible to
reach this region without encountering significant absorption. This may be of interest
for Electron Cyclotron Resonance Heating.

Figure 12 shows a new contour plot of the refractive index. The difference between this
plot and that given in Figure 1 is that the branch cuts have been placed in different
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locations. By comparing Figure 2 and Figure 12 it can be seen that for Y > 1 the
cold theory is in good agreement with the weakly relativistic model, except for the
anomalous dispersion at the cyclotron resonances and the downshift in frequency due
to the relativistic increase of the electron mass. In considering the mode going to
the L cutoff, for Y < 1 we can still find some agreement between the cold and the
relativistic theory. The plot in Figure 12 shows that finite ridges, such as the one found
for 1/2 < Y < 1, exist between all the harmonics of w,., at least for frequencies up to
the 5th harmonic. In the analysis above we found that the curve section e in Figure 3
shows the location of the ridge for 1/2 < Y < 1, and it was found that here the two
solutions considered satisfied N_ ~ N,. For frequencies between other harmonics, up
to the 5th and probably higher, the case is similar. Here we again find solutions, N,
with the group velocities and phase velocities in opposite directions, and which at the

location of the ridges fulfill N ~ —N,;qq..

The areas in Figure 12 with dotted background show where Im(N) > 0.01. For fre-
quencies slightly above a harmonic of the electron cyclotron frequency, and densities
higher than a certain limit, the modes are almost undamped. Dispersion curves similar
to those shown in Figures 11(a) and 11(b) can consequently be obtained for frequencies
slightly higher than each harmonic at least up to the 5th harmonic.

For frequencies higher than the 5th harmonic we find that A, > 1, which means that
the convergence of the dispersion function [SHKAROFSKY, 1986] used for calculation of
the plot is not guaranteed. Certain reservations must therefore be made for the region
in Figure 12 where 0 < Y < 0.2.

For frequencies between the sth and (s 4+ 1)th harmonic the sheets corresponding to
the sth and (s + 1)th lightly damped classical Gross-Bernstein modes are connected
[ROBINSON, 1988]. We have found that these connections also are associated with
branch points and two-sheeted Riemann structures. These branch points are located
on the low density side of the upper hybrid resonance for Y < 1/2. On the high density
side of the branch points the Gross—Bernstein modes form one continuous mode which
goes to the L cutoff. Cuts corresponding to the branch points are present in Figure 12,
but they are masked by the high density of contour lines. They extend horizontally from
the branch points to the branch cut between the edge of the CMA plane and b3. Note
that a surface corresponding to the sth classical Gross-Bernstein mode is not limited
to frequencies near the sth harmonic of the electron cyclotron frequency, but in general
we find that the mode is heavily damped for other frequencies.

For lower densities additional branch points occur in the Gross—Bernstein sheets (these
sheets are not shown in this region in Figure 12). Because of the strong damping in this

region we will not investigate the dispersion for these branches in any further detail.

The main features of the dispersion for the Gross-Bernstein modes near the upper
hybrid resonance can be summarized as follows:

e Finite ridges similar that found between the first and second harmonics of the
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electron cyclotron frequency also exist between higher harmonics.

o At each of the ridges another solution, NV, exists which satisfies N ~ — N4, and
for which the group and phase velocity are in opposite directions.

e For frequencies just above a harmonic and up to the frequency found at the rele-
vant ridges the two above mentioned modes, N and N,.44., are almost undamped.

e For densities below the cold upper hybrid resonance branch points occur. Here
the sheets corresponding to the classical Gross—Bernstein modes are connected
and form the lightly damped mode which goes to the L cutoff.

e As the density approaches zero the Gross-Bernstein modes diverge. This can be
explained by the fact that they do not exist in vacuum.

The above results indicate a pattern in which the dispersion described near the location

of the cold upper hybrid for w, < w < 2w, is repeated for frequencies between higher
harmonics.

7 THE TEMPERATURE DEPENDENCE OF THE X MODE REFRAC-
TIVE INDEX

The contour plots in the text above were all obtained with T, = 15 keV. The main
features in these plots do not, however, change qualitatively with temperature.

By using the asymptotic expressions for the Dnestrovskii functions, F,, it may be shown
that as the temperature goes to zero the distance between the curve sections d and e in
Figure 3 vanishes as well, and in the cold limit the two curve sections coincide and form

the upper hybrid resonance (1 = X + Y?) for frequencies below the second harmonic
(1/2<Y <1).

The downshift in the cutoff frequencies, due to the relativistic increase of the electron
mass, vanishes as the temperature approaches zero.

The absorption bands in the CMA diagram gather just above each harmonic of the
electron cyclotron frequency as the temperature decreases. The positions of the branch
points also change with temperature. Approximations for the locations of the three
branch points by, bz and bg may be given as follows.

11



2

Xp, ~ 5.608-10-2 (&) —8.02-10-° (k{{,) :
Yy ~ 1.000 ,

~o -4 Te -5 T 2
Xpp =~ 0.2837+4.00-10 (1@%) +3.42-10 (Ezg,) ,

2 (5)

Yoz ~ 0.5000 + 3.20- 1073 (1\7—;{}) —1.73-10-5 (kl;g,) ,

~ -3 Te -5 T 2
Xps ~ 0.4960 — 3.20 - 10 (1@%) +5.11-10 (Egg,) ,

s T 5 T. 2

Yis ~ 0.5000+ 8.00- 10 (ﬁ) _6.84- 10 (k—g{’,)

If by and bj were to coincide they would neutralize each other so it is interesting to
see that the distance between bz and bg in the CMA diagram is almost constant, even
down to the cold limit.

The surface for the refractive index predicted by the cold theory for perpendicular
propagation may be obtained from the weakly relativistic dispersion relation by placing
branch cuts as straight lines, between bz and bg and from b; down to the edge of
the CMA plane via the location of the upper hybrid resonance, and then letting the
temperature approach zero. However, the topologies of the surfaces obtained with
the weakly relativistic dispersion relation and the cold theory respectively will not be
identical, because of the connection to Bernstein waves, for instance between bz and
b3, which persists in the low temperature limit.

The representations given here for the refractive index may be generalized by obtaining
the positions of the branch points and absorption layers for other angles of propagation
relative to B. Note that the position of the cutoff does not depend on the angle. In
LAzzZARO and RAMPONI (1981) the movement of bz as a function of N) is considered.
It was found that Xy2 has a strong dependence on N, which causes bz to move out
to the R cutoff for propagation at oblique angles. LAZZARO and RAMPONI (1981) also
gave an approximation for Y2 which was a linear function of T,. Their approximation
has the wrong sign for the dependence of T, but is otherwise in agreement with the
first order form of the expression for Yy, given above.

8 THE DISPERSION OF THE O MODE

The dispersion of the O mode for propagation perpendicular to the magnetic field is
quite simple compared with the dispersion of the X mode. For the ordinary mode no
connections to the Bernstein modes are found on the low density side of the O mode
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cutoff, so relativistic effects on ordinary Bernstein waves [ROBINSON 1987a] will not be
considered in the present work.

The main correction to the refractive index for the O mode resulting from inclusion of
relativistic effects is the increase of the cutoff density, and the anomalous dispersion
found for frequencies just below harmonics of the electron cyclotron frequency.

In BINDSLEV (1992) a simple approximation to the real part of the refractive index for
the O mode was given. The expression was obtained for perpendicular propagation by
using the cold model modified by a temperature dependent increase in the electron mass,
calculated such that the cutoff coincides with the relativistic cutoff. This approximation
holds good for temperatures up to ~ 25 keV and for all frequencies away from the first
few harmonics of the electron cyclotron frequency.

Another approximation for the index, which accounts accurately for the anomalous dis-
persion at the first and second harmonics, may be derived for propagation perpendicular
to the magnetic field. By solving the reduced weakly relativistic dispersion relation for

the O mode, 0 = I's3 — N?, we find

1- P /(P —1)2—4P,P, )
- 2P, ' (6)

NG

Here I's3, Py, P and P, are given in the Appendix. Note that the solution, (=), corre-
sponds to the cold O mode, when the branch cut of the square root is placed along the
negative real axis (and assuming /1 = 1),

Contributions to the real part of the refractive index corresponding to anomalous dis-
persion at higher harmonics than the second are negligible, and thus the approximation
(6) is in general accurate to three or more significant digits.

9 VALIDITY OF THE APPROXIMATION FOR THE X MODE RE-
FRACTIVE INDEX

To give an impression of the quality of the approximation (4), a contour plot of the
precision in per cent, i.e. |(Re(N,)— Re(N,,))/Re(N.)| x 100%, is shown in Figure 13.
Here N, is the solution to the weakly relativistic dispersion relation for the extraordinary
mode, while N,, is the value of the approximation (4) corresponding to N,. The branch
cuts in Figure 13 are placed identically to the branch cuts in Figure 1, so Figure 1
shows Re(N,) used for the calculation of Figure 13. In Figure 13 it is seen that the
approximation is accurate for most of the CMA plane. At the third harmonic of the
cyclotron frequency the maximum error is 2-3%. This deviation is due to the anomalous
dispersion, which as previously mentioned is not included in the approximation for the
the third or higher harmonics of w.. Near the two branch points bz and b the largest
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deviation between Re(N,) and Re(N,,) is found to be 10%. Deviations of this kind are
only seen in a limited area near the second harmonic. It is found that the indication
given here for the precision of the approximation is typical for any temperature in
the interval 0 < 7. <25 keV, which is the temperature interval in which the weakly
relativistic approximation is good.

When using the approximation (4) it is important to make a careful choice of the
branch cut for the square root, since this defines the locations of branch cuts for the
approximation in the CMA plane. Figure 14 shows a contour plot of Arg(A). A specific
curve in Figure 14 corresponding to a level, A, shows the location of the branch cuts for
the approximation when the branch cut for the square root is placed at the angle A in
the complex plane. Figure 14 shows that if the branch cut for the square root is placed
along the positive imaginary axis (90°) then one branch cut in the approximation will
go through the L cutoff passing on the high field side of the electron cyclotron resonance
from by, while the other branch cut connects b and bg along an almost straight line.

10 CONCLUSION

We have investigated the dispersion of electron cyclotron waves in a weakly relativis-
tic Maxwellian plasma. By considering the refractive indices as surfaces in the CMA
parameter space we have shown that in the vicinity of a degenerate root the sheets
involved are in general connected and in such a region the structure of the surface is
similar to that of a two-sheeted Riemann surface near a branch point. The dispersion
of X mode and associated Bernstein modes is discussed in detail for perpendicular prop-
agation. The main features of the dispersion are illustrated with contour plots of the
principal sheets of the corresponding refractive index surface. Furthermore we find that
the topology of dispersion curves evaluated along various trajectories in the CMA plane
is determined by the locations of the trajectories relative to the locations of the branch
points. Approximations for the locations of the three branch points, b1, bz and bg, are
given as functions of temperature. For perpendicular propagation non-transcendental
approximations can be derived for the O and X mode refractive indices by accounting
for finite Larmor radius effects only to first order in A\.. We have shown that these
expressions hold good for the O and X modes and thus provide efficient and accurate
routines for use e.g. in reflectometry.
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APPENDIX: THE REDUCED WEAKLY RELATIVISTIC DISPERSION
RELATION

T';; is the dielectric tensor that results when only terms to first order in A, are included
for perpendicular propagation,

So+ S1N? —i(D0+D1N2) 0
F,‘j - Z(D0+D1N2) T0+T1N2 0 . (A].)
0 0 Py + PN? + P,N*
Here K
{4
So =1~ (F3(d:) + Fy(6-0)

$1 = 2 (Fy(,) + Fy(o) - Fy(6) — Fy(62)

TO = SO )
T, = _1‘321"2 (F3(2) + Fy(6-2) ~ 3Fy(6,) — 3Fy(¢-.) + 4F3(0))
K,
Do=——- (~F3(¢)) + Fy(6-0))
K| K.
Dy = — =222 (<Fy(6) + Fy(é0) + 2F3(6)) = 2F3(62)
Py=1-KiFy(¢) ,
K
P = \12K2 (F;(¢l) + Fy (1) — 2F;(¢o)) ,
K,K?
Py = =222 (Fy(6,) + Fy(goa) — 4P3(90) — 4F3(6.) + 6F3(90))
) ) 1
I\] = IJeX 3 I‘Z = u Y2

Fy(ém) = ~i /0 T(1 -ty Yexp [~ight]dt , ¢Z = —pe(1—mY)
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The dispersion relations for the O and X modes for perpendicular propagation are given
respectively by

0=e3— Né’j ) (A.2)

0= 611(622 - N;) — €121 . (A3)

By using T';; rather than ¢;; the dispersion relations become biquadratic equations in

N:

0=PNi+ (P - 1N+ P (A.4)

0=AN% + BN} +C (A.5)
where
A = Sl(Tl - 1) —_ D? ) B = S]To + So(Tl - 1) et 2DOD1 3 C = S()To - D(2)

From (A.4) and (A.5) we thus obtain the explicit expressions, (4) and (6), for N2.
Evaluation of the Dnestrovskii functions, F, is readily carried out by using its series

expansion or its continued fraction representation [ROBINSON, 1986b; see also correction
given in BINDSLEV, 1993].
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Figure 1: Contour plots of the real part of the refractive index, Re(N), in the CMA
parameter space. The plots are obtained with the weakly relativistic model [SHKAROF-
SKY, 1986 for propagation perpendicular to the magnetic field for T.=15 keV. The steps
between the contour levels are 0.1 for —1 < Re(N) < 1 and 0.2 for 1 < Re(N). For
Re(N) < 0 the contour lines are broken. In plot (a) regions with significant damping,
Im(N) > 0.01, are marked by a dotted background. Because of the Riemann structure
in the surface two branch cuts have been laid into the plots. Plot (b) shows the region
around branch points bz and bg in greater detail.
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Figure 2: Contour plot of the refractive index obtained with the cold model. The
distance between the contour levels is 0.1. An imaginary part in the refractive index
only appears when Re(N) = 0 and is here marked by a dotted background.
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Figure 3: Zero curves for C, Re(A) and Im(A) in the CMA diagram with T,=15 keV.
The following signatures are used for the curves C = 0 (- - - -), Re(A) = 0 (— —),
Re(A) = 0 and Im(A) ~ 0 (— - — -), Im(A) = 0 (——). The three points where
A = 0 correspond to the three branch points p;, p2 and p3 in the approximation.
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Figure 4: Contour plots of the real part of the refractive index, Re(N), for a part of
the double sheeted surface around a branch point. The sheet shown in (a) contains a
part of the R cutoff, and may be connected along the branch cut to the sheet shown in
(b). The plots are obtained by the weakly relativistic model with (8 = 90°, T,=15 keV).
The step between the contour levels is 0.1. For Re(N) < 0 the contour lines are broken.
The refractive index varies continuously along the dashed line, returning to its original
value only after two circulations of the branch point.
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Figure 5: The refractive index along X%/Y = 0.8 as a function of Y with T, = 20 keV.
The plots show: (a) Re(N) and (b) Im(N).
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Figure 6: Trajectories in the CMA plane corresponding to the four different categories.
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Figure 7: Dispersion curves along a category 1 trajectory as functions of Y with
T. =15 keV and (a) X/Y?=10.03, (b) X/Y? = 0.05.
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Figure 8: Dispersions curves along a category 2 trajectory as functions of Y with

T, =15 keV and X/Y?% = 0.8.
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Figure 9: Dispersions curves along a category 3 trajectory as functions of ¥ with

T. =15keV and X/Y? =1.1.
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Figure 10: Dispersions curves along a category 4 trajectory as functions of Y with
T, =15 keV and X/Y? = 1.3.
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Figure 11: Dispersion of the mode going to the R cutoff (full line) and the mode going
to L cutoff (broken line) as functions of X for Y = 0.495, T.=15 keV.
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Figure 12: This plot is similar to that in Figure 1, but the branch cuts are placed in
different locations.
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Figure 13: Contour plot of the deviation in per cent between Re(N.) and Re(N,,).
Here Re(N.) is the real part of the weakly relativistic refractive index shown in Figure 1
and N,, is the corresponding solution found with the approximation (4). The plot is
obtained with T, = 15 keV and 6 = 90°.
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Figure 14: Contour plot of Arg(A) in the CMA plane. The steps between the contour
levels are 45°. A specific curve for a level, A, shows the location of the branch cut for
the approximation (4) when using a square root with the branch cut placed at the angle

A.





