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ABSTRACT

The Bounce Average Fokker-Plank equation describing fast particles in a
tokamak with toroidal magnetic field ripple has been solved numerically by a
Monte-Carlo approach. The essential element is that the ripple effect is treated as
a diffusion of banana trapped particles. The diffusion coefficient is pre-calculated
from a semi-analytical expression for a given plasma geometry. The kinetic
equation is solved for the processes of fast particle slowing down, pitch angle
scattering, ripple diffusion and acceleration by ion cyclotron resonance heating.
This approach was found particularly useful for the study of fast particle behavior
in non-stationary conditions, including sawtooth effects. A ripple loss code has
been developed on the basis of this principle. The code has been benchmarked
against a full Orbit Following Monte Carlo code. Applications of the code to
experimental results from the JET experiments with 16 vs 32 toroidal field coils
are shown.

1. INTRODUCTION

The analysis of high energy particle confinement in a tokamak with 3D
perturbations of the magnetic field is usually a difficult task because of the large
number of essential phase variables. A traditional problem for tokamak reactor
studies is the evaluation of fast particle losses (alpha-particles in reactors) caused
by toroidal field ripple. The toroidal field ripple arises from the discreteness of the
toroidal coils. The ripple loss of fusion alpha-particles, with the associated heat
loads on first wall and in-vessel components, is acknowledged to be the major
limitation on the permissible amplitude of the ripple in a tokamak reactor,
thereby setting a lower limit on the number of coils.

Traditionally, fast particle losses have been studied with the aid of Orbit
Following Monte-Carlo Codes (OFMC) [1,2,3]. These codes evaluate fast particle
losses by calculating slowing down histories of large number of individual
particles moving in 3D magnetic fields, following their guiding centers. This
approach is useful for modeling of high energy ions in a general magnetic field
structure, but has very limited application because extremely large computer run
times are required.

Simplified codes [4,5] have been developed to obtain a fast estimate of the ripple
loss in tokamaks. In particular, in the code RIPLOS [5] it is assumed that all



particles born within the 'stochastic diffusion region' are immediately lost from
the plasma while all other particles are confined. Although this approach
provides reasonable estimates of the total ripple loss fraction, detailed
information about fast particle distribution functions can not be obtained.

The JET experiments with reduced number of TF coils [6,7] highlighted the need
for an intermediate level of treatment of fast particle ripple losses. A significant
number of discharges needed to be analysed, time-dependently, for three classes
of fast particles: particles produced by Neutral Beam (NB) Injection, minority ions
accelerated by Jon Cyclotron Resonance Heating (ICRH) and tritons born in D-D
fusion reactions. It was clear that the use of an OFMC would be too time
consuming for this work.

The present treatment is based on the observation [8] that the effect of small
toroidal field ripple on the fast particle distribution function can be described by a
spatial diffusion. The diffusion rate can be evaluated as a function of local plasma
parameters, ripple value and particle parameters averaged over the particle
bounce period [6]. Therefore, a Bounce Average Fokker-Plank kinetic equation
(BAFP) with an additional ripple operator provides an adequate description of
the problem. In the present paper we apply a statistical - or Monte-Carlo - method
for the solution of the problem in this form.

The solution of the BAFP equation by a Monte-Carlo technique is found by
calculating the time histories of particle coordinates, which are invariants of the
unperturbed motion, for a large number of test particle random orbits. For
example, for banana particles, such coordinates are particle velocity, and radial
and vertical banana tip position. The Langevin equations which describe single
particle random motion in these coordinates can be straightforwardly derived
from the particular form of the BAFP equation. The time step for numerical
integration of the Langevin equations in the presence of ripple diffusion can be of
the order of At = Ax2 / D;ip, where Ax is a typical spatial integration stepsize set to

a small fraction of the minor radius, and Dy, is the ripple diffusion coefficient.

r1

Typical values for At are between 10-3 and 1(1)3'55. This should be compared with
OFMC codes, which must integrate with a time step of the order of a small
fraction of the bounce time, i.e. of the order of 10-7 to 10-8s. Thus, the use of the
Bounce Average procedure gives a large gain in computer run time in

comparison with OFMC's, for the same statistical accuracy.



The statistical or Monte-Carlo method is known to be particularly useful for the
solution of multi-dimensional problems. It allows a description which
corresponds to the actual plasma geometry and magnetic field structure and is
flexible to the inclusion of additional physical effects. It is furthermore
particularly useful for the study of particle behavior in non-stationary conditions.
A new code, RLX-1, was therefore developed, based on the method outilined
above, i.e. the Monte Carlo solution of the 3-dimensional, time-dependent BAFP
equation. Physics effects included in the code are slowing down, pitch angle
scattering, stochastic ripple diffusion, acceleration by ICRH fields, sawteeth, and
time-dependent background plasma parameters. The main approximations are
the use of the small larmor radius approximation, and the use of the analytical
expression given in [6] for the stochastic ripple diffusion coefficient. Neither of
these approximations are essential to the method. In particular, the semi-
analytical expression can be replaced by a diffusion coefficient 'map’' directly

obtained via numerical cloud-spreading experiments with an OFMC.

Section 2 of the paper is devoted to the formulation of the problem and a
description of the method. Benchmark comparisons of the newly developed code
RLX-1 with results of a full OFMC are presented in Section 3. In section 4, results
of simulations of the JET experiments with 16 versus 32 coils are presented.

2. FORMULATION OF THE PROBLEM

The evolution of the fast particle distribution function f(R,v,t), on time scales
larger than the particle bounce time, Tp, can be described by the BAFP kinetic
equation [9]. This equation can be written as follows:

of
M = S(f) + Lripp (f) + Lrg (©) + Lt (f) + <S> (1)

where S(f) is the Coulomb collisional term, L;;, (f) is the operator which describes

r1

the ripple diffusion, Lrg (f) is the term represpenting particle interaction with the
ICRH field, Lgr(f) is the operator describing particle mixing during sawtooth
crashes, and <S> is a particle source averaged over the bounce period. The
different terms are discussed in the following sections. In the evaluation of these
terms the zero banana-width approximation will be adopted (although that is not

a fundamental restriction of the method).



2.1 Coulomb collisions

The coordinates for the formulation of the Coulomb operator are v, a, A, where v
is particle velocity, a is the normalised minor radius in the low field side (LFS)
horizontal midplane (used as a flux surface label), and A is a pitch angle
parameter such that A = (v, / v)2, where v, ¢ is the parallel velocity at the LFS
midplane (6 = 0). This choice of coordinates is natural because to first order
collisional processes affect only v and A, while a is conserved. We shall keep only
the leading terms in the collision operator which correspond to the fast particle

slowing down on the background plasma and scattering on the plasma ions:
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in which G, , , is the jacobian for the v,a,A coordinates, Ug, is the slowing down
coefficient and Dy, is the pitch angle scattering diffusion coefficient:
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in which T4 is the slowing down time, and v* and v** are critical velocities for
slowing down and pitch angle scattering, respectively, and F is a geometrical
function:
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where subscripts «, B, e refer to mass and charge for the fast ion species, the
plasma ion species (incl. impurities) and electrons, respectively, A, and A; are
Coulomb logarithms for electrons and ions, T,, n, are electron temperature and
density, Ry is the LFS midplane major radius (6 = 0) of the flux surface, Ry is the

radius of the magnetic axis and <..> implies the bounce average:

1 P
<> = — J() dt
‘CB 0

The jacobian for the coordinate system v,a,A is:

1B v3 Rigp o0 ¥ 1 for transit particles
Gv,a,k =

4n Ry By J a 0.5 for banana particles

where W is the poloidal flux.
The difference in the factor two between transit and banana particles originates
from the definition of the bounce time:

n g
g = J dat fortransitand 115 = 2 J gt for banana particles. 4)
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where 85 is the poloidal bounce angle (midplane to bounce point).
2.2 Ripple diffusion

We consider here only plasmas that are vertically symmetric around the
midplane. Furthermore, transit particles are assumed not to be affected by the
ripple. They can only be lost through Coulomb scattering into banana particles.

The plasma cross-section can be divided in two different regions. The boundary
between the regions is given by v = 1, where the ripple parameter is given by
v=B N & / Br . Here 8§ = (Bmax -Bmin)/(Bmax +Bmin ) is the amplitude of the
ripple, N is the number of TF coils, B is the total magnetic field and BR is the
radial component of the poloidal magnetic field.

The ripple well region, v > 1,exists at the low field side, and near the plasma
boundary If the turning point of a banana orbit is located in the ripple well region
the particle can be trapped in the magnetic well [10]. A ripple-well trapped particle
will drift vertically due to vertical drifts (grad B and curvature drift). Its further
destination is defined by the dependence of the well depth on the vertical
coordinate. In the upper part of the plasma cross section, i.e. above a certain



critical z value, dv/ 0z > 0, i.e. the well depth increase with the vertical
coordinate z. A particle being trapped there becomes more deeply trapped and is
lost to the first wall. For particle energies exceeding several tens of keV the
probability of trapping is very high and we consider the region v >1, dv/dz > 0
as an instant loss-cone. In the region v > 1, dv/dz < 0, the ripple well depth
decreases as the particle drifts vertically, and the particle will de-trap. Such
particles are not considered lost, but are in general subject to strong stochastic
diffusion.

In the remainder of the plasma cross section (where there are no ripple wells) the
TF ripple leads to spatial diffusion of banana particles [6]. Because the particle
magnetic moment remains constant the ripple diffusion corresponds to a
displacement of the banana turning points along lines with B = const or
approximately vertical lines with R = const. This effect is described by the second
term on the right hand side of equation 1. We formulate the ripple diffusion
(which affects only banana particles) in cylindrical coordinates of the banana
bounce point, Rg, zg. This choice is natural because under the ripple operator zg
is affected while Rg is conserved, so that a one dimensional diffusion results.
Then the operator is:

1 0 of
L.,(f) = — |G D, — 5
rlp( ) GR,Z aZB [ R,z rip aZB] (5)
where Gg, is the jacobian for the Rg,zp coordinates, and Dy, is the ripple
diffusion coefficient, which can be found in the review [6].
2
A
Dip = —2 Iy (6)
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where Azy, is the vertical step in the bounce point due to the ripple field, and Iy is

a function representing the de-correlation between steps in successive bounces.
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Iw consists of two terms, the first representing collisional de-correlation, the

second representing stochastic diffusion:
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where the toroidal precession angle ¢p, the Chirikov parameter v, and n are

given by:
2
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where 1;; is the ion-ion collision time, q is the safety factor, A, is the critical value
of A, i.e. the value at the trapped / transit boundary, and ¢g is the toroidal bounce
angle, i.e. the toroidal angle of the banana tip with respect to the angle of the
midplane point of the orbit.

The Jacobian for the Rp, zg coordinates is (note the velocity factor is not included
because it is not needed):
oy

B
G = 9
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2.3 Interaction with ICRH electro-magnetic field.

In order to make possible the modeling of the high energy minority ions
produced in the JET plasma by ICRH heating a simple ICRH operator LgrF (f) has
been added to the right hand side of equation 1. In its simplest form, neglecting
effects of a finite parallel wave number, Lrg(f) can be written as [11]:

1 0
GRr aVJ_,res

LRrg(f) (GRF Drr of ] (10)

aVJh,res

Here we use the coordinates v ;o5 and v,/ .o¢ , the perpendicular and parallel
velocity at the resonance location. The RF acceleration affects to first order only
v, while leaving v, , unaffected. The ICRH diffusion operator is then written as:

2
1
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(11)
where Kgrp is a multiplier for the ICRH power, Ji; is the Bessel function of order
H, H is the harmonic number, E. and E, are the left and right handed



polarisation components of the ICRH (fast wave) field, k is the perpendicular
wave-number and w; is the ion cyclotron angular frequency at the resonance.

The Jacobian for the coordinates is:

BO V//res V1 res
Bres V3

Grr = Gyaa (12)

where B, is the magnetic field at the resonance radius.

There is a particular difficulty in applying this type of operator in a Monte Carlo
code, because it is not a priori known how much power will be coupled to a
distribution of particles in a given time step. This depends, namely, on the details
of the random orbits. The problem is solved, both in general Fokker Planck
applications of ICRH operators and in this code, by using a feedback scheme for
the power multiplier Kgg, in which Ky is determined on the basis of the power

coupled in the previous time step.

A second consideration applies to the conservation of the minority density under
particle loss. In the Monte Carlo algorithm, this is ensured by seeding a new
particle, at low energy, for every particle that is lost. The seeding is such that a
minority density profile in normalised minor radius a is approximately
conserved, and is random in pitch angle parameter A.

2.4 Statistical approach to the solution of the FP equation.

In Monte Carlo methods the solution of a partial differential equation is replaced
by the numerical calculation of random motion of a large number of test
particles. In this section, following [12], we show the derivation of the Langevin
equations for the advancement of particle coordinates in time. We consider here
only the case of one-dimensional operators, taking advantage of the fact that each
of the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponding multi-dimensional case is discussed in [13].

Equation 1 can be rewritten in the following general form:
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where x is a generalised coordinate, G is a jacobian, ® is a generalised flux, of

which U is a convective term and D is a diffusion coefficient, and S is a source.

We introduce the first and second moments of the distribution function, defined
as the average position < x> = jx G f dx, and the distribution width
c = <(x—<x>)2> = J(x—<x>)2 G f dx.

To derive the Langevin equation, we consider the time evolution of these
moments for an initial distribution of test particles which at t = 0 all have the
same value of the coordinate x = xg, i.e. f (t =0) = (1 / G) 8(x - xq). Calculating the
moments after a time At, with f(At) = f(0)+ At (af/at), and substiting the
initial distribution, yields at t = At:

<X>p = Xg o+ (U + —é— ai (G U)J At (14)
X
opr = 2 D At (15)

We see that the average velocity of the test particles has two components, the first
of which originates from the convective velocity U of equation 13 and the second
of which represents a compensation of the gradient of the diffusive operator G D.
The distribution at At is a Gaussian:

1 - (x - <x>)2 16)
2D a P74 D At

The simplest way to generate this probability distribution for a test particle at time

f(At) =

t + At, given the test particle coordinate at time t, is to use finite difference

equation for the particle coordinate x as follows:

x(t+At) = x(H)+ VAt + 2 D
1 9
V = U — — (G D
* G o0x ( )

(17)

where * stands for a random choice of sign.

Now returning to the actual application we can write the equations for the
advancement in time of the particle coordinates in the processes of slowing

down, pitch angle scattering, ripple diffusion and ICRH acceleration as follows:



tn+1 = tn + At

Vatl = Vn — Uslo At
1 0
Ao = Ay + G W (Gvan Dpas) At % |2 Dpag At
1 0
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These operations are applied in sequence, with the necessary coordinate

transformations carried out in between.
2.5 Implementation in the RLX-1 code.

The approach described above has been implemented in the numerical code
RLX -1. The code has a pre-processing part which provides the necessary
averaging over the particle orbits for a given plasma equilibrium and generates
1D and 2D maps of all coefficients in the FP equation (zg, F, Az, Jacobians, etc.).
These maps are used in the main part of the code, which calculate the evolution
of a large number of particle random orbits. The structure of the code makes it
possible to model time-dependent scenarios of plasma parameters and particle
sources. The code treats the processes of slowing down, pitch angle scattering,
collisional and stochastic ripple diffusion, ICRH acceleration, first orbit loss for
trapped particles, loss due to ripple well trapping, and loss due to ripple diffusion.
Initial distributions, or source distributions can be specified. Optionally, a full
neutral beam source can be included using an interface with a neutral beam
deposition code. The code also incorporates a model for particle re-distribution

during a sawtooth crash.

In the framework of the statistical treatment the sawtooth redistribution is
straightforward. At the time of the sawtooth crash, all test particles which lie
inside a given minor radius, the sawtooth mixing radius, have their minor radii
changed randomly within a distribution given by the relevant jacobian, under
conservation of the particle energy and magnetic moment. This procedure
provides uniform density profile inside the mixing radius after the sawtooth.
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3. BENCHMARKING WITH A FULL ORBIT FOLLOWING MONTE-CARLO
CODE

The code RLX-1 has been benchmarked by a comparison with the full OFMC
DRIFT, developed at the 1.V.Kurchatov Institute for analysis of alpha-particle
ripple loss in ITER CDA [3]. The benchmark calculations have been made for
plasma profiles and magnetic field configuration corresponding to JET pulse
#27076, with 16 toroidal field coils. The plasma is in an an up-down symmetric
inner-wall configuration with a plasma current of I = 25MA and a toroidal
magnetic field in the plasma centre (Ry =3 m) of B = 1.4T. The map of the ripple
amplitude & is shown in Fig.1.

In section 3.1 some general observations are made on the drift surfaces, as
examined with the DRIFT code. In section 3.2 the validity of the analytical
expression describing transport in this drift surface structure is discussed, on the
basis of a comparison of particle cloud spreading between the RLX-1 and DRIFT
codes. In section 3.3 local loss fractions for high energy particles, as obtained with
the two codes, are compared. In section 3.4 the ICRH operator results are
compared with an analytical prediction, i.e. the "Stix tail".

3.1 Structure of drift surfaces in the presence of TF ripple

Stochastic diffusion in a rippled toroidal field originates from the distortion of
the drift surfaces. The structure of banana particle drift surfaces in the case of 16
TF coils has been studied with the DRIFT code.

The conservation of particle energy and magnetic moment constrain the banana
tip motion to surfaces with B = const, which are close to surfaces with R = const.
Therefore the drift surfaces can be represented in the (zg,¢g) planeZy,, ¢}, , where
zg is the vertical co-ordinate and ¢g is the toroidal co-ordinate of the banana tip
position (v|| = 0). Because of the toroidal drift and ripple displacements, the
banana tip jumps to another point in theZy, ¢, plane after each bounce period.

The sequence of the tip positions constitute a Poincare map for a drift surface.

Fig.2a shows the drift surfaces of protons with energy E = 0.28 MeV started from
Rg =3.0m, ¢g = 0 and different vertical positions of the banana tip. These
protons have the same orbits as 0.14MeV deuterium ions produced by neutral
beam injection in JET . The Poincare maps were calculated by the DRIFT code

11



with Coulomb collisions switched off, and consist of 200 bounces for each particle.
It can be seen that the region with "good" drift surfaces (0.4 < zg < 0.9), which are
only slightly distorted by the ripple, is surrounded at both sides by island
structures located near resonance surfaces. Above zg = 1.2 m the drift surfaces are
mainly destroyed - only small islands of stability still exists. Above zg =1.4 m it
takes only few bounce periods for particle to be trapped in the ripple well and lost.
There is always another stochastic region near equatorial plane (below zg = 0.2 m
at Fig.2a).

An increase of particle energy does not change drastically the structure of the drift
surfaces. As shown in figure 2b and 2c, the position of resonant surfaces does not
move significantly when the particle energy increases up to 1 MeV. The main
effect is the further destruction of drift surfaces near the islands.

3.2 Numerical experiments with clouds of test particles

The analytical expression for the diffusion rate, as given in equations 4 and 5, was
checked for JET parameters by comparison with the diffusion rate derived from
the results of the DRIFT code. In the latter case the numerical diffusion rate was
found from spatial spreading of a cloud of particles started from the same initial
conditions. Because of the large consumption of the computer run time we could
compare only a limited number of points in the plasma cross section. The clouds,

which consisted of 500 particle, were advanced in time about 2 10-3s.

Figure 3 shows as an example of the time evolution of the second moment of a
1 MeV proton cloud starting initially from the point Rg = 3m, zg = 0.7m
(coordinates of banana tip positions) which is located in the region with well
conserved drift surfaces (see Fig.2). It can be seen that an initial ballistic spreading
of the cloud is followed by a spreading of a diffusive type at t = 10-4s. The ripple
diffusion in this point is very small, of order D = 0.04 m2/s. Figure 4 shows the
distribution of the banana tip positions over the vertical coordinate after
t =2 10 -3s. The two curves in figure 4 have been obtained for the same cloud by
the RLX-1 and DRIFT codes. It can be seen that this particular point the

distributions are very similar.
Figure 5 shows the diffusion rate as function of the vertical coordinate of the

banana tips for 1 MeV protons at Rg = 3.0m. The solid lines represent analytic
formulas, Eq.4 and Eq.5, crosses with error-bars are the data obtained from

12



numerical experiments with the DRIFT code. The horizontal error bars on the
DRIFT results arise from the finite width of the cloud. Large vertical error bars at
large and small zg are associated with banana particle loss (at low zg banana
particles transfer to transit particles). Closer to the ripple well boundary, particle
spreading cannot be described in terms of diffusion because a large fraction of the
particles is lost during the ballistic regime. However the large diffusion rate given
by equations 4 and 5 near the ripple well boundary also result in very short
confinement times, in comparison with the particle slowing down time, and one
can expect a reasonably good description of the total loss fraction on the basis of
equations 4 and 5.

3.3 Comparison of local loss fractions.

A comparison of ripple loss fractions, between RLX-1 and DRIFT, was performed
for fast tritons produced by D-D fusion reactions. Such tritons have a birth energy
of IMeV and the width of the banana orbits is therefore large. Owing to this, the
comparison provides a test of the applicability of the RLX-1 code, in which zero
banana width is assumed.

In order to carry out this comparison, RLX-1 was modified to include first orbit
loss for trapped particles, as this is a significant loss channel for tritons. With both
codes, local loss fractions were calculated for a number of flux surfaces. The
slowing down history of tritons launched from an isotropic source located on a
flux surface was followed until either the particle was lost or it had slowed down
to below a cut-off energy.

In the calculations with RLX-1, a thousand particles were.launched on each of ten
uniformly spaced flux surfaces. The cut-off energy was chosen as 20keV. All loss
channels described above were included. In the DRIFT calculations, one hundred
particles were launched per flux surface, and the cut-off energy was set to 100keV.
In DRIFT, particles are considered lost if they come closer to the wall then a

toroidal larmor radius.

Figure 6 shows a comparison of the local loss fractions. As can be seen, the results
are fairly close to each other, with DRIFT predicting slightly larger losses. Thus,
equations 4 and 5 give a satisfactory description of ripple-induced losses in the
JET 16 coil geometry, even when the fast ions have large banana width. This

conclusion is consistent with the findings in [15], where the influence of finite
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orbit width on the Chirikov parameter y was studied. It was found in [15] that,
although 7y can be significantly affected by finite orbit width effects, the number of
stochastically moving particles is only marginally affected. The main reason for
this are the steep ripple diffusion coefficient gradients in the JET experiment, i.e.
the region over which the transition from y << 1toy > 1 takes place is small.
Furthermore, for particles in regions with y > 1, the loss occurs on a time scale
which is much faster then a slowing down time. Consequently, the details of the
ripple diffusion coefficient are not very important for the determination of the
loss fraction (this observation is also the basis for the treatment in the RIPLOS [5]

code, see introduction).
3.4 Test of the ICRF operator

In order to check if the Monte-Carlo ICRH operator gives reasonable results, the
following test case has been used. A calculation was performed for fundamental
minority heating of protons, with P 15/ N = 3.106eV, where P is the ICRH power,
15 the slowing down time and N the number of Monte-Carlo particles absorbing
the power (N = 5000). There is no radial convection or diffusion, i.e. all the
protons are located on a single flux surface at r/a = 0.3.

Under these circumstances the averaged energy of the protons in the tail of the
velocity distribution should correspond to a Stix "temperature" [16] of 1 MeV.
Figure 7 shows the comparison of the velocity distribution calculated by the RLX -
1 code and a 1 MeV tail distribution. As can be seen the agreement is good,
demonstrating the validity of the ICRH Monte-Carlo operator.

4. NUMERICAL SIMULATION OF THE RIPPLE LOSS OF FAST PARTICLES IN
JET.

The newly developed code has been used for modelling of fast particle losses in
the JET experiment with 16 versus 32 TF coils [6,7]. Here we present some results
of the modelling of NBI particles and ICRH minority ions in the discharges with
enlarged TF ripple.

4.1 Ripple loss of neutral beam ions.

The NB injection provides fast deuterium ions with a maximum energy of
140 keV. In the modelling the full magnetic geometry is considered and full a
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NBI source was used, including injection geometry and fractional energy
components. Temperature and density profiles and time evolution of plasma
parameters correspond to those measured experimentally in shot #27076, with a
toroidal field of 1.4T, plasma current 2.5MA, and inner-wall configuration.

Calculated particle and energy losses and losses of electron and ion heating
powers are shown in Table 1 for different loss channels. The losses have been
calculated by slowing down of 4790 test particles which corresponds to 100% in
Table 1.

Energy and|No loss | Loss cone. Loss cone. Loss cone.
particle cone. No ripple | Collisional | Collisional
fractions No ripple | diffusion diffusion plus
diffusion stochastic
diffusion
to electrons | 55% 50% 49% 48%
to ions 45% 40% 39% 39%
lost 0% 10% 12% 13%
particles lost | 0% 26% 31% 31%

Table 1. Energy and particle loss fraction for NBI.

In column 2 we consider the 'no loss' case, in which both ripple well trapping
losses and ripple diffusion operator are switched off. In columns 3,4,5, the ripple
well losses are switched on. The ripple diffusion operator is switched off in
column 3, represents only collisional ripple diffusion in column 4, and
represents collisional plus stochastic diffusion in column 5.

It can be seen that the main loss mechanism for the NB ions is via the ripple well
trapping. This includes NBI directly into the loss cone plus pitch angle scattering.
Collisional ripple diffusion adds about 2% to ripple loss, while stochastic
diffusion adds about 1%.

Because of a relatively low magnetic field in the experiments with TF ripple,
B =1.4 T, the sawtooth inversion radius is large, r = 0.75m, and the time traces of
the central plasma parameters including the neutron rate display significant
sawtooth oscillations. This indicate a possible redistribution of beam particles
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during sawtooth crashes. The next series of calculations has been done to analyse
possible effect of sawteeth on the ripple loss of NBI particles. In the numerical
modelling of the sawtooth effect a source of NBI particles has been switched on
for 1.5s. Ripple well loss and ripple diffusion operators are switched on. Sawteeth
were introduced at t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3 s and all particles inside the a
mixing radius Vmix are redistributed as described above. Table 2 shows the data
for particle and power losses at t = 1.5 s when steady state was established, for
various values of the mixing radius. The first column corresponds to the case
without sawteeth (slightly different plasma conditions give a slightly higher loss
and slightly different electron/ion heating distribution than the corresponding
case in table 1 (14.6 versus 13%).

Power fraction No sawteeth | Mixing Mixing radius
radius I'mix / @ =09
I'mix / @ =0.75

To electrons 43 43 43

To ions 42 41 39

Lost 14.6 16.2 18.4

Table 2. Effect of sawteeth on the power loss of NBI particles.

It can be seen that sawtooth effects does not significantly change the ripple losses ,
even at very large inversion radii. This result has the following interpretation.
Because of the conservation of the particle magnetic moment and energy, the
particle banana tip stays on the same major radius during the particle
redistribution in a sawtooth crash and thus the distance between banana tip
position and ripple well boundary remains approximately the same. As a result
the confinement time of the particle, defined mainly by particle scattering to the
ripple well loss cone, does not change significantly. In addition, the original NBI
deposition profile is rather flat, so that the redistribution does not make a big

difference to it.

In comparing the results of the simulation with the experimentally observed loss
of plasma stored energy in the 16 coil discharges, account should be taken of two
effects: first, the loss os NBI particles and power due to ripple and second, the
effect of ripple on the thermal energy confinement. Taking into account these
two processes, we find that the calculated loss is smaler than the experimental

loss [17]. Based on the observation of lower ion temperatures in the ohmic phases
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of the 16 coil discharges, it is postulated in [17] that primarily an additional effect
of the ripple on the thermal energy confinement is resonsible for the discrepancy.

4.2 ICRH accelerated fast ions.

In order to explore losses of particles with higher energies than NBI, ICRH fast
wave minority heating was used to produce high energy protons.. The
concentration of protons was kept low in order to obtain a minority tail with
energy up to the MeV range. As a consequence of the low toridal field, the second
harmonic of the ion cyclotron frequency was used. As far as studying ripple losses
is concerned, ICRH accelerated ions have the advantage that first, most energetic
ions are banana-trapped and second, that their turning point major radii Ry tend
to be located close to the resonance. By moving the cyclotron resonance, an
insight into the dependence of the ripple transport on the major radius of the
turning point can be gained. The effect of the ripple on the fast protons was
therefore explored experimentally by scanning the resonance location from the
high to the low field side.

The relative ICRH heating efficiency for 16 versus 32 coils is defined as
N =AWyia / Picria)1e / (AW qia 7 Picrip)ze. with Wy;, the diamagnetic plasma
energy This quantity is shown in figure 8 as a function of ICRH resonance
location (solid triangles). Clearly, the relative heating efficiency is strongly
reduced as the resonance is moved towards the LFS of the machine, where we
note that the resonance at 3.34m is not, and the resonance at 3.76m is, in the

ripple well region.

This loss of heating efficiency has been modelled with the RLX-1 code and
compared with experimental results. The result of the comparison are also
shown in figure 8 (solid circles). An additional loss of 25% due to thermal effects
has been added to the calculated loss, consistent with the findings in the NBI case
[17]. For reference, the NBI case relative heating efficiency is also indicated.

We conclude from the figure that there is a reasonable agreement between the
simulations and the experimental results. The loss of heating efficiency
calculated by the RLX-1 code tend to be somewhat less than the experimental one,
but is within about a factor 2. There can be number of reasons for this. One
problem in the simulations is that no reliable measurements of the hydrogen

concentration are available. In the calculations presented here a concentration of
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5% has been assumed. A lower concentration would lead to more energetic tail
ions and therefore to more losses due to stochastic diffusion. Other effects, such
as RF-induced spatial diffusion and additional convection and diffusion due to
neo-classical effects might play a role . It is difficult to assess the influence of such
effects at present.

It is important to find out how much stochastic diffusion contributes to the losses
in the simulations. In order to do this the code has been run with the stochastic
diffusion switched off but with ripple well trapping kept. For the case with the
resonance at 3.34m (and for all smaller R,.s) no significant loss of heating
efficiency is seen without stochastic diffusion. This identifies stochastic diffusion
as the primary loss channel for the ICRH minority ions.

5. CONCLUSIONS

The new RLX-1 code, based on a Monte-Carlo solution of the bounce average FP
equation, is a powerful tool for modelling of ripple losses of fast particles. The
code has been benchmarked against a full orbit following Monte-Carlo code. A
good agreement between the two codes was found, indicating that the analytic
expression for the ripple diffusion given in reference [6] give an adequate
description of ripple losses of fast particles for the JET configuration and ripple
profiles.

The analysis of JET NBI discharges with enhanced TF ripple showed that the
main loss mechanism for 140keV NBI particles is pitch-angle scattering into the
ripple well region. Other loss mechanisms such as stochastic diffusion and first
orbit losses only play a minor role. On the other hand, stochastic diffusion was
found to be the primary loss mechanism for MeV range minority ions accelerated
by ICRH. This is particularly clear when the cyclotron resonance is located off axis
in regions with significant ripple, but still outside the ripple well region.

The comparison of the results from the numerical modelling with the
experimental ripple losses show that in general the experimental losses are
somewhat larger than the predicted ones. The postulate is made in [17] that
primarily enhanced ripple losses of the bulk thermal plasma are responsible for
this discrepancy. Under this postulate, the experimental results on fast particle
losses can be explained within the framework of the existing theory.
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Figure 1: Contours of ripple value 8 = (Bmax -Bmin)/ (Bmax +Bmin) and plasma
boundary, for JET discharge 27076 with 16 TF coils.and I = 2.5 MA. By = 1.4T.
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Figure 2: Poincaire map for drift surfaces of banana-trapped protons with
different energies.

a E = 0.28 MeV (equivalent to NBI ions of 140 KeV in JET).

b E =1 MeV (typical energy for ICRH minority).

c E = 3 MeV (equivalent to DD tritons).
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Figure 3: Second moments as function of time for a proton cloud starting from
Rg = 3.0 m, zg = 0.7 m. Energy is 1 MeV.
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Figure 4: Distribution of particles in the cloud after 2ms. Starting point is Rg =
3.0m, zg = 0.7m. Energy is IMeV. Dashed line, OFMC DRIFT; Solid line, the RLX-
1 code.
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Figure 5: Diffusion rate versus vertical coordinate of banana tip, for protons with
energy of 1 MeV and Rg = 3.0m. Solid line, from equations.12 to 14; Dots with
error bars, diffusion rate found from particle cloud spreading calculated by
DRIFT.
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Figure 6: Local particle loss fraction of tritons with an initial energy of E = 1 MeV,
as function of the normalised minor radius. Solid line as calculated by the RLX-1

code, open squares as calculated by DRIFT.
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Figure 7: Energy distribution of minority ions heated by ICRH, as calculated by
RLX-1. For reference, the Stix tail temperature is shown.



100
80

EEEEC

N

— A NBI
& R o
[
40—
&
20—
S
oS
0 | ! ! ! ! a8
2.8 3.0 3.2 3.4 3.6 3.8
Ries(M)

Figure 8: Ratio of heating efficiency for 16 and 32 coils as a function of resonace
location for discharges with ICRH. Shaded area; postulated loss due to thermal
plasma loss. Triangles, experimental results; circles, numerical modelling,
including a 25% thermal loss contribution.





