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ABSTRACT

Collisionless magnetic reconnection in regimes where the mode structure is
characterised by global convection cells is found to exhibit a quasi-explosive time
behaviour in the early nonlinear stage where the fluid displacement is smaller
than the equilibrium scale length. This process is accompanied by the formation
of a current density sub-layer narrower than the skin depth. This sublayer keeps
shrinking with time.

Magnetic reconnection in collisionless regimes, where electron inertia is
responsible for the decoupling of the plasma motion from that of the magnetic
field, is a well known process in Astrophysicsl. It is quite exciting that this process
can now be observed in laboratory plasmas produced by Tokamaks such as the
Joint European Torus (JET). Indeed, at the high plasma temperatures of these
experiments, internal plasma relaxation oscillations (the so-called? sawteeth) can
occur on a time scale shorter than the electron-ion collision time. Motivated by
these observations, the linear theory of m=1 kink-tearing modes, which trigger
the sawtooth relaxations, has recently been extended to experimentally relevant
regimes3-9, leading to the conclusion that these modes can remain virulent at
low collisionality with an initial growth rate which compares favourably with
that observed in the experiments. However, the nonlinear evolution has
remained unclear. While Wesson's” modification of the Sweet-Parker-
Kadomtsev8-10 scaling has given an estimate of the collisionless reconnection
time in good agreement with that observed experimentally, Drake & Kleva's
numerical simulation!! of the merging of two isolated flux bundles has led to the
suggestion that the collisionless reconnection rate is greatly reduced as the
nonlinear phase is entered, i.e. for magnetic island widths comparable with the
plasma skin depth.

With the aim of clarifying these issues, we present the numerical and analytic
solution of a collisionless, incompressible, 2-D slab model where Larmor radius
effects are neglected. The equations we solve are

ol +[o,U]=[],v], (1)

3:F +[9,F]=0, @)



where we use the notation d; =9d/dt and [A,B]=e,-VAx VB, with e, the unit
vector along the z direction. U=V 2¢ is the fluid vorticity, ¢ is the stream
function, v =e,x Vg is the fluid velocity, | = ~V2y is the current density along z,

y is the magnetic flux function and F E\y+d2] , with d the skin depth. Thus,
[@,F]=v: VF and the collisionless Ohm law (2) can be written as dF/dt =0, i.e. F is
conserved on a moving fluid element. The co-ordinate z is ignorable, d, =0. The
co-ordinates x and y vary in the intervals x €[-L,, L,] and ye [—Ly, Ly], with the
slab aspect ratio e =L, /L, <1. Periodic boundary conditions are imposed at the
edge of these intervals. The magnetic field is B=B,e,+Vyxe,, with B, a
constant value which we take to scale as B, ~e_1|V\y| in order to mimic the
magnetic field of a Tokamak. All quantities in Eqgs. (1,2) are dimensionless, with

L, and ‘CA=(41tpm)1/2

X

L, /B, determining the length and time scale

normalisation.

We consider an equilibrium specified by L, =#n, ¢,=U, =0, J,=y, =cosx, and
F,=(1+d*)y,. This equilibrium is tearing-unstable to linear perturbations of the
type (9,0y)= Real{[(pL(x),S\yL(x)]eYHiky}, with k =me and m an integer number,
and with ¢ (x) and &y (x) respectively odd and even functions around the two
equivalent reconnecting surfaces at x =0 and at x =%L,. In the limit d<<L,, the
solution of the linearized system can be obtained analytically using asymptotic
matching techniques. For 0< k? <1, the linearized mode structure in the outer
region is 8y = V.. cos[K(|x|—n/2)] and ¢ =(iy/ksinx)dy, with y,_ a constant

1/2
and K = (1—k2)/ . The logarithmic jump of dy, across the reconnecting layers is

A’ = 2xtan(kn/2). We consider the large-A’ regime, defined by
Nd 21, ®3)

which can be satisfied for low values of m and €* << 1 such that A’~(8/ nkz). In

this regime, the structure of the stream function is macroscopic, with
QL =P Signx, @, =(iy/k)y.., everywhere except in narrow layers near the

reconnecting surfaces. For A’d >> 1, the eigenfunctions in the vicinity of the layer
1/2

at x=0 take the form &/ =-\Vm(2/ﬂd2)/ exp(—x2/2d2) and @) =@, erf(x/Zl/zd),

which match onto the outer solution for |x|>d. Thus, the current channel in the

linear stage has a width §, ~d. The linear growth rate is y, = kd.



The system of Egs. (1,2) is solved numerically with a pseudospectral code12 which
advances in time the Fourier representation of the field variables, truncated to
1024x64 (x,y) components. We are interested in the early nonlinear phase,
defined by the condition d <w<2L,, where w is the magnetic island width. The
initial conditions are chosen to approximate closely the linear eigenfunctions,
and in particular to reproduce the spatial symmetries of the linear solution
around the X- and O-points and the reflection symmetry with respect to the four
points x=*L, /2, y=%L, /2. It can be easily verified by inspection of (1,2) that
these symmetries are preserved during the nonlinear evolution. An important
consequence is that the value of F at x=0 is frozen to its initial value, i.e.

F(x=0,y, t)=Fy(x=0)=1+d>.

For g<<1, the adopted equilibrium is linearly unstable to several mode-numbers,
m. On the other hand, in the numerical analysis of the full non-linear system
(1,2), it is convenient to follow the evolution of a single linearly unstable mode.
This requirement is dictated both by reasons of simplicity and by analogy with the
kink-tearing instability in a toroidal plasma. Therefore, we present numerical
runs with €=0.5 and d/(2L,)=0.04, which give dA’=2.03 for m=1, thus
satisfying the large-A” condition (3), while the other m-values are stable (A" <0 for
m22). Figure 1 shows sections of dy=y—-vy,, v, =—d¢/dy,J and F across the X-
point (y=0) at various times. The linear phase conventionally lasts until ¢~ 80,
when the magnetic island reaches a width of order d. The linear layer width ~4
is visible from these graphs. For >80, the width of the profile of v,
8¢ =(Vydy=t /2 /(9xVx), o as well as that of dy, remain of the order of the skin

depth (Figs. 1a,b). By contrast, the current density profile (Fig. 1c) develops a sub-
-1/2
layer whose width around the X-point, §; 5(8;2(8] / 5]) / <d, keeps shrinking

with time (see also Fig. 2d). Here, &/ = J~J . This sub-layer is also visible in the
profile of F across the X-point (Fig. 1d). The contraction of this sub-layer is
extremely rapid in time, as shown by the graph of 9%F 1 9x? versus y for x=0 and
several times in Fig. 2b. At r= 125, it has become so narrow that it can no longer
be resolved by our truncated Fourier expansion, and so the simulation is stopped.
Also shown in Fig. 2a and 2c are the profiles of dy and of vy = 0¢ /dx along the
reconnection line (x =0) at various times, from which it is clear that only a
limited number of Fourier harmonics along y are involved in the early non-
linear evolution. Contour plots of ¢, y, J and F are shown in Fig. 3. Note that
the convection cells retain approximately their linear shape well into the
nonlinear phase (Fig. 3a). Also note the development of a current sheet around



the reconnection line (Fig. 3c) and the preservation of the topology of the isolines
of F (Fig. 3d). Finally, Fig. 4 summarizes the time behaviour. It is remarkable that
the mode growth remains very rapid throughout the simulation. Indeed, the
growth of ¢, as well as that of dy and &/ at the X-points, accelerate in the early
nonlinear phase, which is symptomatic of an explosive behaviour. However, the
mode growth slows down when w approaches L , as we have observed in a
simulation with d/(2L,)=0.08 (not shown here).

According to these numerical results, the spatial structure of the stream function
does not vary significantly with time throughout the linear and early nonlinear
phases. This suggests that we can write

o(x,y.t) = vo(t)g(x)h(y) +u(x, y.t) (4)

where h(y)~ k™' sin(ky), g(x)~¢;(x)/¢. contains the linear scale length 4 and
u(x,y,t) develops the rapid scale length &(t)~3; observed in the numerical
simulation. We assume u<<v, and du~v,d,g, which is consistent with the near
constancy in time of the width of v, across the reconnecting layer (Fig. 2d), as well
as that of the ratio vy(O,Ly/2,t)/vx(—Lx/2,0,t) (Fig. 4). These assumptions allow

an analytic treatment of the system of Egs. (1,2).

The collisionless Ohm's law (2) can be integrated exactly to yield F=F,(x,),
where x,(x, y, t)=x-§(x, y, t) is the initial position of a fluid element situated at
(x,y) at time ¢ and £ is the displacement along the x direction defined by the

equation df/dt=v,, E(t = —e)=0. The latter equation can be integrated using the
methods of the characteristics. At y =0, where v, vanishes, using the ansatz (4)

where u(x, v, t) can be neglected, we find
X t
- jdx’/g(x’) = jvo(t')dt’ =At). (5)
X, —o0

The function A(t)>0 represents the amplitude of ¢ outside the reconnection
layer, where g(x)=1. In the linear phase, —y_=A<d. When A1>d, the magnetic
island width w ~2A, so that the early nonlinear phase can also be characterised by
the inequality d<A<L, or alternatively 1, <t<t,, with A(ty)~d and ¢, the

characteristic turnover time of the macroscopic eddies in Fig. 3a.



Equation (5) can be inverted to obtain x, =x,(x, t). In the limit d<A<L,, the
time-dependent scale length is found,

8(t) = dexp[-A(t)/d], (6)

such that x, has the following behaviour around y=0: x, ~(x/8)a for |x|<§;
x0~[7»+c§ln(|x|/a)]sign(x) for d>[x|>8; and x, ~Asign(x)+x for |x|>d, where

d= (dg/ dx);io ~d. Thus we see that near the X-point along the x direction, F(x,)

(and hence ]) varies over a distance 3(t) which becomes exponentially small in
the ratio A/d. Conversely, around y=%*L, A—-A in Eq. (5). Then, x,<d for

|¥| <A and F flattens over a distance |x]~A from the O-point. We stress that the
formation of a sub-layer is the combined result of the conservation of F on each
fluid element and the flow pattern around the X-point, which acts to increase the
local curvature of the F profile (Fig. 1d).

Next, we obtain an expression for y by integrating the equation y+d>J=F,
where we can approximate J = —-d%y. Using as asymptotic boundary condition the
matching of 6y to the linear solution for A<|x|<L,, we obtain

W(X,y,t)z% _oowe_'i_i,’l-"(f’,y,t)di', where X=x/d, which shows that y has an

integral structure such that any fine scale variation of F is smoothed out over a
distance ~d. Asymptotic evaluation of y at the X- and O-points in the early
nonlinear phase gives

wx =y(0,0,t) ~ 1——;—7»2(t), Vo EW(O,iLy,t) ~ 1+O(d2). (7)

Let us set F = F,(x) +6F. Then, Sy+d*& =6F, and at x =0, where 8F =0, we find
8] =8y /d%. Thus we have demonstrated that an asymmetry develops in the
values of dy and of | between the X- and O-points. The spike of the current

density at the X-point has an amplitude 8]y ~0. S(X/d)z.

Let us now integrate the vorticity equation (1) over the quadrant
S:[OSxSLx,OSySLy], such that _[S[(p,U}ixdyzo. Using Stokes theorem, we

obtain

| (Udxdy = §C Jdy . (8)



where C is the boundary of S. With the ansatz (4), and neglecting corrections
O(kzdz) contributed by &¢, we find

3, (0% @Xxdy ~ ~{4coc1/ K2d)a/dr?, )

where ¢y=d/d=0(1) and c1(t)=1+(d/cov,)(054), is a factor of order unity,

which depends weakly on time (e.g. 1< ¢ <1.4 in Fig. 2d). Exploiting the reflection
symmetry with respect to x=L, /2, y =L, /2, the second integral in Eq. (8) can be

written as

§osdv ==2[Ydy(10,9) 2] *dx]@dyx 2],

xX=

The first integral at the right hand side can be evaluated exactly:

[ av(13yw) _ =dwx-dwo-(svk -dv) 24> a0

X=

The second integral gives a contribution of order &#*4, which is negligible when

A'd ~8d/ k? > 1, and which is significant only in the linear phase when A’d ~ 1.

Using an interpolation formula between the linear and early nonlinear limits of
the r.h.s. of (10), and inserting this and (9) into (8), we obtain an equation for the
evolution of A(f)=A(t)/d:

A% 1 df2 = A+ it (11

where t=y,t and ¢,=1/16¢c, can be taken constant. The solution is

(7 i\ i 2 |12
X(t)=[(1—a)/(l——ae )] e', where a=B—(B —1) ,B=1+5/cy, and we have
chosen the time origin so that ?:(0) =1. Thus, once the early nonlinear regime is

entered, A(t) accelerates and reaches a macroscopic size over a fraction ~ ln(a_l/ 3)

of the linear growth time. As we remarked earlier, we can expect this quasi-
explosive growth to cease as A approaches L,.

In conclusion, collisionless reconnection in regimes where the instability
parameter A’ is large and global convection cells develop does not follow the



standard Sweet-Parker scenario®. In these regimes, the reconnection rate
accelerates nonlinearly. Physically, the flow rotation accelerates following the
intensification of the electromagnetic torque §C]xB~d1=§C]d\|; in the early

nonlinear regime. This torque is mainly contributed by the average J,B, force
between the X- and O-points within a magnetic island, corresponding to the
integral of Eq. (10). The current density profile develops a sub-layer narrower than
the skin depth. The formation of a narrow scale length less than the skin depth
was also noted by Wesson? and by Drake & Klevall. However, these authors'
analyses do not take properly into account the multiple scale structure of the
current density and flow profiles. In particular, we find that the conclusion in
Ref. 11 that the reconnection rate slows down nonlinearly is not justified when
the magnetic island has a width larger than the skin depth but smaller than the
size of the convection cells.

As an extremely narrow current spike develops during the reconnection process,
the electron distribution function tends to become highly distorted and one can
think of instabilities which would limit this tendency, introducing an effective
("anomalous") current diffusion. Clearly, a refined model is needed to describe
this for realistic experimental parameters, with effects such as the finite ion
Larmor radius, density and pressure gradients, 3-D, etc. likely to play an
important role. Nevertheless, we believe that the present analysis opens the
possibility to understand the rapidity of relaxation processes observed in low
collisionality plasmas.

The authors would like to thank John Wesson for stimulating discussions.
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Fig. 1. Cross sections of a) 8y / (8W), | ;D) vy /(vy),_ | ,5;0)J;d) F versus x at

y=0. The X-point is at x =0; the O-point of the second island chain is at x =*L_.

Times are indicated by the arrows.



0.04 a) 80
0
—0.04] 0
-0.08f 125
—0.12} 110
—0.16f 9?
0 0.5 1.0
y/Ly
c)
0.8¢
120
0.6}
0.4 S0
0.2}
0 .
0 0.5 1.0
y/Ly

Fig. 2. Cross sections of a) éy; b) 92F / ax? ; C) vy / (vy)

island's X- and O-points are at y=0 and y=L,, respectively. Also, d) time
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Fig. 4. Time dependence of §y and &/ at the X- and O-points, of v,(-L, /2, 0) and
of vy(0, Ly /2).





