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ABSTRACT

The response of a collisionless plasma to global electromagnetic perturbations of
an axisymmetric toroidal equilibrium is derived. By adopting a variational
formulation for guiding centre motion, the perturbed distribution function is
expressed in terms of the linearised guiding centre Lagrangian. Finite orbit
widths are retained. In particular, the high particle energy limit where mirror-
trapped banana orbits are distorted into "potato-shaped" orbits is considered. In
this limit, the time scales associated with the drift and bounce motions of a
mirror-trapped orbit become comparable, yielding important consequences on
plasma stability. Quadratic forms are constructed in the context of kinetic-
magnetohydrodynamic (MHD) models of plasmas composed of a thermal
component obeying fluid-like equations and a high energy component described
in terms of the collisionless drift-kinetic equation. Relevant applications include
improved modelling of energetic ion effects on toroidicity-induced Alfvén gap
modes and internal kinks.

1. INTRODUCTION

The influence of energetic particles on the stability of global plasma modes, such
as internal kinks and low-m° Toroidal Alfvén Eigenmodes (m° is the poloidal
mode number) in magnetically confined plasmas has been demonstrated both
theoretically and experimentally (see, e.g., Refs. 1 and 2 and other references
therein). High energy particles are produced by external heating methods (such
as neutral beam injection or radio frequency heating) or by thermonuclear
reactions. The theoretical description of magnetohydrodynamic (MHD)
perturbations in such plasmas with a significant non-thermal component is
based on hybrid kinetic-MHD models. According to these models, the thermal
plasma is assumed to obey macroscopic fluid equations, while the energetic
particles are described in terms of the collisionless drift-kinetic equation. Since
the energy of these particles can be rather large, i.e. E,, =0(1 MeV), it becomes
necessary to take into account the radial excursion of the fast ion guiding centre
trajectories across the magnetic surfaces. In Ref. 3, which considered internal
kink modes in the low frequency limit, i.e. ®/{wp)— 0, the following ordering
was assumed:

8b~ey2 Py ~T. (1)



Here, 8y, is the "banana width" of a mirror-trapped orbit, e=r /R, is the inverse
aspect ratio of a toroidal magnetic surface with average minor radius r and major
radius R,, py is the Larmor radius based on the poloidal magnetic field and
(wp) is the bounce-averaged magnetic drift frequency. When the ordering (1) is
satisfied, the standard banana orbit analysis fails. Trapped particle trajectories are
distorted into "potato-shaped” orbits [3] with a characteristic width

8, ~(2qv, / QR,)* R,, @

where q is the magnetic winding index and Q is the cyclotron frequency. For
instance, trapped ions produced near the magnetic axis with an energy
Ey =1 MeV in the Joint European Torus (JET) have a potato width 8p ~30 cm,
which is about one third of the plasma minor radius (subscript "h" indicates fast
particles, h = hot).

As is well known [1], fast particles must be sufficiently energetic in order to
decouple from the plasma bulk and exert a stabilising influence, the decoupling
condition being (wpy)>>w, with (wpy)«=Ey for the standard banana orbits.
However, when the finite radial orbit width of these particles is considered, one
finds an upper value of E; for internal kink stabilisation which occurs when
SP oc I‘Sh}6 becomes comparable to the radius, rs, of the ¢ = 1 magnetic surface.
Hence, it was concluded in Ref. 3 that, for fixed total fast ion energy content, fast
particle pressure peaked on the magnetic axis, and a monotonic q profile with on-
axis value q, <1, there exists an optimal value of the mean fast particle energy
for stabilisation. Above this optimal value, the fast particles have a weakened
stabilising influence, and they even become destabilising with yet larger 3,. It
was also pointed out in Ref.3 that the extrapolation of the zero-orbit-width
approximation would overestimate the stabilising influence if one allowed the
radial width of the fast particle distribution function to become narrower than
the average potato orbit width.

Fast particles can also destabilise other classes of modes, like the Toroidal Alfvén
Eigenmode (TAE). It can be expected that instabilities driven by energetic
particles are less easily excited when the orbit width becomes comparable with the
radial extent of the mode. In fact, it was shown in Ref. 4 that the orbit width has
the effect of reducing the power transfer between the fast particles and the
electromagnetic perturbation by a factor A, /Ay from that predicted by the
narrow orbit theory. Here, Ay is the radial excursion of a passing fast ion and



Apy ~ 12, /m°R,, is the radial width of a mode with poloidal mode number m°®
peaked around the surface of radius ry,. This result was obtained analytically in
the limit k51 >Ap>Ag and Ay >pp. In Ref. 5, it was also shown numerically
that the growth rate of toroidal Alfvén modes destabilised by fast ions is further
reduced when kgpp becomes larger than unity. This result was based on the
gyrokinetic approximation for the fast particle response.

In this paper, we present a general formalism applicable to the solution of the
linearised drift-kinetic equation for global, low-frequency perturbations of an
axisymmetric toroidal plasma when the orbit width becomes comparable with
the plasma equilibrium scale length, i.e. when the potato ordering (1) is satisfied.
We observe that the latter ordering implies

(] 8

5=Fh
I20
The applicability of the guiding centre description of particle orbits requires that &
be a small parameter. Hence, the potato ordering can be assumed provided the
local inverse aspect ratio is also considered to be small and higher order terms in
€ are consistently neglected. Concerning the radial mode structure, our analysis
is limited to poloidal mode numbers m° such that

kgpn =m°py /r<1. 4)

We point out that in many applications (including internal kinks and low-m°
toroidal Alfvén modes) the radial structure of the MHD mode is characterised by
an "outer" region, where k, ~ kg (k; is the effective radial wave number), and an
"inner” layer across which the mode amplitude varies rapidly, i.e. k; >>kg. In
these cases, asymptotic matching techniques can be used whereby fast ion effects
are considered in the outer region but may be neglected in the layer owing to the
relatively little time they spend there. Even though k,p;, may become large in
the layer, the effect of fast particles whose orbits cross the layer can still be
described in the outer region on the basis of the drift-kinetic approximation
provided Eq. (4) is satisfied and, in addition, the particle time of flight across the
15> (pp +Am)/ vpp, with
A, now representing the width of the layer and vpy, the magnitude of the drift

layer is short compared with the mode period, i.e. @™

velocity. This inequality corresponds to the condition for which the guiding
centre orbit as a whole is only slightly perturbed when crossing the layer of rapid
amplitude variation [6].



The analysis of global plasma modes implies that, in general, the eikonal
representation for perturbed quantities (see, e.g. Ref. 7) cannot be adopted.
Solutions of the drift-kinetic equation for global plasma modes obtained without
using to the eikonal representation have appeared in the literature, under the
assumption of neglibible orbit widths [8] or in restricted frequency domains
(3,9, 10]. For instance, Antonsen and Lee [8] derived an energy principle for
perturbations that grow on the time scale associated with the drifting of particles
across field lines. Their elegant solution of the drift-kinetic equation considers a
Lagrangian frame of reference moving with the field lines and is based on the
adiabatic conservation of both the guiding centre magnetic moment and the
longitudinal invariant for particles with negligible orbit widths. The aim of the
present paper is to extend Antonsen and Lee's solution to the case where finite
orbit widths are important. To do this we will adopt an Eulerian rather than a
Lagrangian frame of reference as originally used by Antonsen and Lee. The final
solution for the perturbed distribution function will be conveniently expressed in
compact form in terms of Littlejohn's Lagrangian for guiding centre motion [11].
The advantages of adopting a Lagrangian formalism in the study of thermal
plasma/fast ion systems have also been discussed in a recent paper by
Edery et al [12].

This paper is organised as follows. In Section 2 we introduce the guiding centre
model for particle orbits. A solution of the linearised drift-kinetic equation for
global perturbations of an axisymmetric equilibrium is derived in Section 3. In
Section 4 we specialise to the case of perturbations obeying the ideal MHD
constraint. In Section 5, quadratic forms are obtained which are pertinent to the
analysis of fast particle effects on global modes. An application to internal kink
stabilisation is presented in Section 6, followed by our conclusions in Section 7.

2. GUIDING CENTRE MODEL

In this section, we outline the guiding centre equations of motion correct to
relevant order in the parameter 6. We are interested in perturbations which vary
slowly on the cyclotron time scale, specifically we order (the subscript "h" is
dropped in this section)

Q! 9/0t=0(3). (5)



In addition, we assume that the E x B drifts are of the same order of magnitude in
d as the VB and curvature drifts. This is accomplished by setting

E/B=0(8). ©6)

The discussion of the case where the ExB drift is 0(1) is obviously more
involved. However, the ordering we are presenting is consistent with the
assumption that perturbations are slowly varying over the gyroradius scale
length.

At this point, following Northrop [13], we can write at once the equations for the
guiding centre velocity and acceleration along field lines correct to first order in 8.
Let R denote the guiding centre position. The guiding centre velocity is

R= v.,B+—l-B X {uVB+mv||21"<—ZeE} =vb+Vp + VExp- )
m{

In this expression, the dot indicates time derivative, vy is the parallel velocity,
b=B/B is the unit vector along field lines, usmvzl/ZB is the magnetic
moment, K= (B - V) b is the curvature vector and Z is the particle charge number.
The parallel velocity is vyb=0(1), while, as a consequence of the ordering (6),
Vp ~VExg =0(8). Terms of 0(82) which have been neglected include the
polarisation drift and the drift (v;/Q) b x(BB / at). The parallel acceleration to
order d is

mvj =-pb-VB+Ze b-E+mvy K R. (8)

Equations (7) and (8) are consistent with Littlejohn's guiding centre Lagrangian
[11]

L=(2A+mv”5)~f{+£}—yd—%mvuz—y—Ze¢, 9
C

where y =pB has the meaning of "perpendicular energy" and a is the gyro-angle
in velocity space. The Lagrangian (9) is regarded as a function of the variables

L:L(R,V",y,a; ﬁ,‘"n,}",d} t), (10)



in which a,vy and y happen not to appear. Let Z;,i =1, ..., 6, represent the six
guiding centre variables (f{,v",y,a). It can be easily verified that the
Euler-Lagrange equations

d(dL |_ dL
i) w

correct to order d yield Egs. (8) and (9), and, in addition
=0, a=Q(R), (12)

conditions that also follow from Northrop's guiding centre theory. The first
of Egs. (12) shows that p is a (formal) constant of motion, at least to
relevant order of accuracy in 8. The real motion of a particle is
approximated in guiding centre theory by F(t)=R(t)+p(t), where
f)(t)=Q—1 ¥, (t)xb, ¥, =v, (& sin a+ &, cos o), with &, & orthogonal unit
vectors in the plane perpendicular to b and p =|p| the Larmor radius.

Next, we turn our attention to the relevant kinetic equation. The Vlasov
equation in the Cartesian coordinates Z =(X,V) can be written as

6
ﬁ+_221—aff= . (13)

Now, this equation is covariant with respect to arbitrary changes of coordinates,
and therefore is valid in any coordinate systems. In particular, it takes exactly the
same form if the guiding centre coordinates Z; are used instead of z;. Hence, we
are led to consider the Vlasov equation

Firvirn Ly Lia Ly, (14)

ot v dy
where f = f (R, VI, Y, 0; t). Note that this equation is exact provided ﬁ, v,y and &
are known to arbitrary order in the gyroradius. However, for our purposes, we
only need the equations of motion to order d, as given by Egs. (7), (8) and (12).
Then Eq. (14) can be simplified by neglecting corrections of order 8. First, we
recognise that the term proportional to of /da in this equation is the largest of
all. Expanding f in powers of 8, f=f,+f;+.., the leading term satisfies
a of,/da=0. The first order equation is averaged over a, so that
fda a of /do=0 because of periodicity (& can be taken out of the integral).
Since R,v; and y as given by Egs. (7), (8) and (12) do not depend on « to first



order in 9, the a-averaging of the first order Eq. (14) is trivial and we are led to
consider the collisionless drift-kinetic equation consistent with the orderings (5)
and (6)

of, 3 . of, .
= + o+ Vi o, +y (15)

We can drop the subscript "o" in the following.

We shall restrict ourselves to perturbations of axisymmetric equilibria, where the
toroidal angle ¢ is an ignorable coordinate. Thus, at equilibrium we set
d/0t=0/0¢=0 and f = F. The equilibrium distribution function is in general a
function of the three invariants Py Epn and of the index ¢ (defined below
Eq. (19)):

F=F(P,,Eu; o). (16)

The invariants are expressed in terms of the guiding centre variables Z. The
toroidal canonical momentum is

=—f=—e—\y+mRV||—1;p~, (17)

where vy is the poloidal magnetic flux function (equal to the covariant toroidal
component of the magnetic potential vector) and Rzlﬁl is the distance of the
guiding centre from the toroidal axis of symmetry. The particle energy is

_1 9 5
= -imV" + y + Ze¢(R), (18)
and the magnetic moment is
u=y/B(R). (19)

For various choices of (P@,E, p), one or two orbits may exist. If two orbits exist, F
may have two different values for the same (P(p,E,u). The additional
dependence on the index ¢ becomes necessary in order to distinguish between
the two orbits. For instance, we may set ¢ =sgn (1‘}) (we observe that the choice
o=sgn (vy) is no longer adequate for the non-standard orbits satisfying the
ordering (1); a detailed discussion of the possible orbit types can be found, e.g., in
Ref. 14).



The ratio of the two terms defining P, is

Zey r

which we consider to be of order unity. In the limit &, /r — 0, where we can
neglect the term proportional to vy in Eq. (17), F=F(y,E,}; o) is constant along
the magnetic field lines.

3. LINEAR PERTURBATION THEORY

The perturbations of interest lead to the violation of the conservation of
E and Py. Let us denote perturbed quantities by a superscript "(1)". Then, with
f=F + f(), the linearised drift-kinetic equation takes the form
d—f(l—)ui“)-VF+v,,“)a—F+y(”a—F=o. 1)
dt av) ay

Note that, in general, for a generic quantity X, (d/dt) X(D) = (dX/dt)1) — RD.vx.
In order to avoid confusion, we specify that in our notations XV =(dx/ dt)(l).
We observe that, having chosen R, v; and y as variables of our Eulerian
coordinate system, perturbed quantities such as ﬁ(l),v||(1) and y(l) will not
appear. With the help of Egs. (17)-(19), we can rewrite Eq. (21) as

at) | (x) (P ) F () 50 A1) 450 2F
T + [R . VP(p + Vji a_vn]a;; + (ZeR . V¢ +mvyv i/ + Yy )'a—E
¥ (1) -
B B ol

We now use the results of the previous section to calculate the quantities inside
the brackets. First, we observe that the Euler-Lagrange Eq. (11) corresponding to
Z;=R;,i=1,2,3, can be cast in the form

Ze(fi* +1Rx B*j = mvyb+uVB, (23)
C
where
=, -+« = B -
B =VxA =B+—§V||V><b, (24)
=% 1"*
E'=——A,-V¢, (25)
c



and
AT = A + —v B (26)
O .

is a "modified vector potential" [11]. We have introduced the notation
X =9X /ot. Dotting Eq. (23) with R we get

mvyvy = —(gcg At + mv“Bt +ZeVo + uVB) -R. (27)
From ji=0 and y=uB follows
y :(Bt +§-VB)u. (28)

From (27) and (28) we can construct the total time derivative of the particle
energy, E=mvv; +V+Zed. Itis easy to show that

C

Equation (29) shows that E is a constant of motion when the potentials A and ¢
are time independent. Clearly, L; =0 at equilibrium. Thus, the linearised
version of Eq. (29) yields

mv"\'/”(]) + y(l) + Zeﬁ(l) Vo = —Lt(l) -Ze d(b(]) / dt. (30)

The left-hand-side of Eq. (30) corresponds to the term proportional to JF /oE in
Eq. (22). The term proportional to dF /du can be easily obtained from the
linearised version of Eq. (28):

. M
%y(l) ~ LR .vB-= u_d_(B_J_ 31)

The Euler-Lagrange equation for the toroidal coordinate ¢ gives an expression for
the time derivative of Py:

C o0 c Jdo 0P [0)

Since JdL /dp =0 at equilibrium, the linearised version of (32) can be cast in the
form



R0.vp, 40 Te_ e LY _dp

ovy Zedo dt @ 33

The left-hand side of Eq. (33) corresponds to the term proportional to dF /P, in
Eq. (22). The perturbed distribution function can be written as

(0 _p (0 OF oo BUE )

¢ dP,, oE B ou ’ (34)

where h(1) corresponds to the "non-adiabatic part” of f(1). Then with the help of
Egs. (30), (31) and (33), we find that h(D) satisfies the equation

ﬁ(l)—ég%.(l)_i oF oLV 35)

dt dE ot ZedP, ¢
Equatlon (35) can be simplified further. If we consider the product
A’ A1) R=AD. R+(mc/Ze)v||b( ).R, it can be easily recognised that the last term
is 0(82), i.e. it has the same order of magnitude as terms in R that we have
neglected. Therefore, the term proportional to 5().R cannot be consistently
retained. This implies that in Eq. (35) we need only use the perturbed Lagrangian
to leading order in §,

1) = 28 A0 R - Zeo™ - B 4+ 0(5). (36)
C

Equation (35) can be integrated along unperturbed orbits using standard
techniques (see, e.g. Ref. 15). Let us introduce the coordinates R = (y,9,9), where
y labels the equilibrium magnetic surfaces and ¥ is a generalised poloidal angle.
The guiding centre equations of motion in these coordinates can be written as

¥=R-Vy; #=R.Vo; ¢=R Vo, (37)
with R given by Eq. (7). At equilibrium, the projection of the orbit on the
poloidal cross-section is a closed curve. For either mirror-trapped or passing
orbits, we define the bounce time

T, =fdt=§dy /y=¢do /D, (38)

as the time it takes to close an equilibrium orbit on the poloidal plane. We
assume that perturbations have the form

x(W = X(l)(w,ﬁ) exp (— iwt—in®g), (39)

10



where n° is the toroidal mode number. Equation (35) can be written as

(1)
% =— i(w-n° m*)g-I;L(l), (40)
where we have defined
_ ¢ 9F /P,
*~ Ze OF JOE (41)

Note that w, is a constant of the unperturbed particle motion. This definition of
o, is entirely determined by the equilibrium distribution function and is not
expressed through gradients operating on perturbed quantities, as it sometimes
appears in the literature.

The formal solution of Eq. (40) is
h =~ j(0-n°w,) 3—?]“ (t)ar, (42)
where L(])(t)=ﬁ(1)[\u(1),1‘}(1:)] exp [~ iwt—in°@(1)] and the 1 dependence is

through Eq. (37). We have used the causality prescription to set the lower limit of
integration. Let us separate ¢(t) into its secular and oscillating parts,

o(v)=(o)t+o(x), 43)
where the brackets indicate bounce averaging:

(X) = §xdr. (44)
35

The quantity W=

expanded in Fourier series,

)exp (— in°<p(~)) is a periodic function of T which can be

~ 1 oo .
il )(T)z _2 b Yp(e,u,P(p; c) exp (- ipwy1), (45)
where wy, =2n/1,. The Fourier coefficients are defined as

dt - .
YP(E'“'P¢'°)=§T_1: M exp (ipwyt)- (46)

11



Inserting (45) in (42) and carrying out the time integration, we find

o0 - i ° i t
h(1) =(w—n°m*)g_1;_§op Yp(E,u,Pmro)exp[ o+ n2(9) + poy) ] (47)

0 +n°(¢) + pwy,

An alternative expression for h(1) can be obtained by setting

h(D = i(lw—n° w*)g—gg(l)

and
g(t)=g!(0)+ _[; L(x)dr. (48)

Using the periodicity condition for the function g(l)(r)z g(l)(\p,f}) exp (— in(p(”)),
we can determine the constant of integration in (48) to be
Ty

0 1Mdr

exp [- i(@+n(g))tp|-1° 49

g(0)=

Both expressions (47) and (49) for h(l) exhibit the mode-particle resonance
condition

o +n°(¢)+ pwp =0, p=0, £1, £2, (50)

which applies to either mirror-trapped or passing orbits. In order to make contact
with standard results in the zero orbit width limit [15], let us write (¢) as

. 1 Tot+Th d 1 TotTh d
()= EJ’TO dt(ag) + e dr(a—?qﬁ), (51)
where B=¢-q0 and 1, corresponds to an arbitrary starting point along the
orbit. For &, /r—0, the first term on the right-hand side reduces to the
bounce-averaged magnetic precession frequency, wp = <I~{'VB>. The second term
vanishes for trapped particles. For passing particles, since their trajectory remains
on a y = const surface under the assumption 8, — 0, () can be taken out of the
integral and the second term reduces to qwy,. Thus, the resonance condition for
passing particles in the limit 8y, /r — 0 takes the standard form

w+n°wp +(n°q+p)o, =0, p=0,+1, +2. (52)

12



If we now consider finite values of 8, /r, the splitting of (¢) in two terms as in
Eq. (51) is no longer convenient. In fact, both terms on the right-hand side of
Eq. (51) will now depend on E,Pq,,u and o through the initial time 1, in a
complicated manner. In this case, we prefer to use the expression (50) for the
resonance condition. This expression also has the advantage of treating passing
and trapped particle resonances in a unified way.

Considering large orbit widths, 8, ~r, one of the main departures from the
standard orbit theory is the disappearance of an adiabatic invariant. In fact, in the
limit &y, /r<<1, one finds (wp)/wy~dy /1, so that the timescales associated
with the periodic bounce and drift motions are associated with two adiabatically
conserved action integrals [13]: the longitudinal invariant, J =m{v, 2dr, where at
equilibrium the loop integral corresponds to a closed orbit in the poloidal plane,
and the so-called "flux" or third adiabatic invariant, ®=4,ydB, where at
equilibrium the loop integral correspond to a toroidal revolution of the banana
centre. However, in the large orbit limit, (¢) ~ ®}, and the two timescales become
comparable [3]. Thus, it is no longer possible to speak in terms of two adiabatic
invariants (in addition to p) that are independently conserved when 6y, ~r.

4. IDEAL MHD PERTURBATIONS

In this section, we specialise to the case of ideal MHD perturbations, i.e.
perturbations which satisfy the constraint

B =vx(E, xB) (53)

By using Eq. (1), £ can be identified as the displacement of a field line. This
constraint excludes the possibility of modes that give rise to magnetic
reconnection. We point out, however, that magnetic reconnection can be
allowed in a narrow layer where non-ideal effects are taken into account but the
fast ion effects are assumed to be unimportant. Solutions for the perturbed
quantities in the reconnection layer can be matched asymptotically to the
eigenfunctions in the outer region, which is a way to obtain an approximation to
the global mode structure. Then, the analysis of this section can be applied to
determine the outer mode structure of a perturbation that gives rise to magnetic
reconnection.

13



Equation (53) suggests a gauge where the perturbed vector potential is
r\nrv‘r\r\f‘ 111 "\" [ 7Y &"\n nrnn]nv\v-n‘m m')n—nal-;r- C;f\]A FaY
ycx}lcuunuuxal U Liic C\,iulllullulll lllﬂsllcllL 111\, 1.C.

A =E «B. (54)

With the vector potential in this form, the perturbed Lagrangian is

L = —mv2E l-fc—-(B(l) +E, - VB)u-(q;(” +E, - V¢)Ze+0(8). (55)
Note that the perturbed longitudinal invariant at fixed energy in a frame moving
with the field lines is proportional to the bounce averaged perturbed Lagrangian
to leading order in 9,

J(l) = §L(l)d'c, (56)

as in Eq. (41) of Ref. 8. If we now assume that ¢ =0 at equilibrium, it follows
from Eq. (54) and Ej{Y =0 that also ¢{!) =0 and that

£ = (i / c)E, xB. (57)
In this case, the perturbed Lagrangian reduces to
LY = ~(mv)® ~uB) €-R+uBV €, (58)
where B() = B"(]) has been eliminated through Eq. (53).
The equilibrium field can be represented by
B=Vyx Vo +I(y)Ve. (59)
The toroidal component of the perturbed canonical momentum is
Pyl = RzA M|+ mv;R%V - Ve = ——ZCEE L -V +0(3). (60)
Using Egs. (34), (42), and (60), the perturbed distribution function can be written as
() __Zeg oF B, (VaF

=_££ TR ) M. 61
S Yor, "B mnmj D

14



This equation agrees with the result by Antonsen and Lee [8] in the limit
Sy /j — 0, where Py =y and the adiabatic term (Ze / C)(EL -V\y)aF / dP, reduces
to £, -VF. In addition to this change in the adiabatic part of f(1), the main
difference with Ref. 8 is in the evaluation of the time integral when the finite
size of the unperturbed orbits becomes important, as discussed in the previous
section.

5. QUADRATIC FORMS

Let us consider the plasma momentum balance equation (sum over all plasma
species). For motions that develop on the slow timescale associated with the
particle drift velocity, inertial terms may be neglected and the linearised
momentum balance equation reduces to

0=-vp ) -v.p, (1 +%(j X E)(l) . (63)

In (63), the subscript "c" refers to the core plasma, whose pressure is assumed to
be isotropic, and J includes the contributions of both the core plasma and the
high energy particles. We can construct a quadratic form by taking the scalar
product of Eq. (63) with the adjoint displacement, EI

AW = 3Wppp + SWhor (64)
where
BWMHD———J.d"’ [ ]xB) ~gtvp 1 )] (65)
and
Wt = %Jd3x e ov.p, (. (66)

In (64), 8Wppyp is formally identical to the MHD energy functional for an
isotropic plasma. However, it is important to observe that the self-adjoint
property of the conventional dW )y yp is spoiled by the inclusion of the fast
particle current density in Eq. (65), or, to put it differently, by the exclusion of the
adiabatic part of the fast particle pressure response in (65). The latter response,
which is included in our expression for dWy,, is modified by the finite orbit
width theory, as was pointed out below Eq. (61). The non-adiabatic fast pressure

15



response is frequency dependent and, for predominantly real values of w, it
includes the contribution of mode-particle resonances leading to an imaginary
part of dWy,;.

Thus, in general, AW is a complex, non-variational form. This lack of self-
adjointness implies that necessary and sufficient criteria for stability cannot be
obtained solely on the basis of the sign of the real part of AW, so that a normal
mode analysis is required. In practice, AW becomes a useful form if it can be
established that it consists of large and small terms, with the hot particles
contributing to the small terms. Further, the large terms can be shown to
constitute a self-ad]omt form. By mmlmlsmg the self-adjoint part, a leading
order eigenfunction &, is determined, with £f =&}. In this way, only the leading
order eigenfunction enters our expression for dWy;. In the next section, the use
of d8Wy, in the theory of internal kink stabilisation will be considered as a
specific example. 6Wy,, also represents the predominant fast particle
contribution to the dispersion relation of Toroidal Alfvén Eigenmodes, whose
detailed analysis can be found, e.g., in Ref. 16 for fast particles with negligible orbit
width.

In the remainder of this section, we provide the relevant analysis for the
reduction of dWy, Eq. (66), where we set 2;:2:2';:,. Following Ref. 8, the
perturbed stress tensor can be written as

p(l) :pl(l)f+(Pll( )-p, W) ) +(Pi— PJ_)(BB(]) +B(1)5)+Bu(1) 58513, (67)

where p; and p; are the components of the equilibrium pressure tensor,
P=p,I+(pj—p.)bb, T isthe identity tensor and

Jd v[ J 1)- (68)
p|| mv“

We have neglected in Eq. (67) contributions relating to the parallel diamagnetic
flow which, at equilibrium, arise from taking F to be a function of P(p. In fact, it
can be shown that these contributions are at most of order 8, /R,. Now, after
straightforward manipulations, considering perturbations that vanish at the
plasma edge, dWy,,; can be written as

~ 2 2
4n C

SWhot = %Jd‘?’x
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3 3, 3o (F ()
2Jd xd? vV (69)

where 6-1=4n(p, —py),, /B?, 1-1=(4n/B)dp,}, /9B and L is the complex
conjugate linearised Lagrangian (58). The last integral in Eq. (69) can be split in

two parts:
—%Jd?’xd% L) = 5w, + W, (w), (70)
where
1J'd3xd3v g [E,l \v Zc‘igal%w-@%l—) SEJ (71)
and
dW, =—;—J'd3xd3v(w-—n°m*)g£ (- J:tw (g, (72)

OW; represents the generalisation of the fluid-like pressure response for finite
orbit widths. In fact, for 8y, /r — 0, W, reduces to

Wy ~ —J‘d3x[(5¢ ' ﬁPu)(gi ‘ r<) + Bnl(Bu(l)* +E] - VB)(EJ_ -Vp, ) + (Bn(]) / B)(El ' WM)]I
(73)

where V = V —(VB)d /0B, which corresponds to the conventional result (see, e.g.,
Eq. (49) of Ref. 8). dW, depends on the frequency and has an intrinsically kinetic
origin. The fluid approximation can be recovered when both limits 8, /r—0
and ® — oo are taken, where W, (w) vanishes. For modes that grow on the
Alfvén time scale of the plasma bulk, w tends to be comparable with or below the
time scales associated with the fast particle orbits and the fluid approximation
becomes inadequate.

The techniques outlined at the end of Sec. 3 help to reduce further the kinetic
integral 8W,. Using the expansion of L(1) in harmonics of the orbit periodicity,
as given by Eq. (45), and carrying out the time integration in Eq. (72), we obtain

—lpO.)bT

Y
SW =——J'd3 dv( . YieltopT P (74
2 X 0) n° w aEz [ me+n ((p)+p(ob ( )
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It is convenient to introduce new phase-space variables through the

d3xd3v = (c / Zemz)z dP,dEdudtdedo. (75)
(¢}
Carrying out the integrations over 1,¢ and «, 8W; reduces to
2
2n’c JF = Yp’

W = — J'dP dEduty (0 - n°w, 76
2 Zeng [0} K b( ) (76)

a_E_X;pm+n°(¢)+pmb'
As was pointed out at the end of Sec. 3, the ratio (¢)/ w}, becomes of order unity
for large trapped orbit widths. Thus, with the potato ordering (1), several terms
of the series in Eq. (76) must be retained to obtain convergence. In this case, the
alternative form of f(I) as given by Egs. (34), (48) and (49) may be more practical.
Using this alternative form, 8W, can be expressed as

2nlc | oF |Y(Tb)

dP,dEd ~n°Wy )—
2 1§ J ? b (@-ne )BE exp [—i(w+n°(¢>)tb]—l

|2
8W2 =

+W(Tb) ,
Zem 79
where, for any given choice of (P(p,E,u,c) and ®, Y(1,) and W(ty) can be found
by integrating numerically the system of equations:

y=R-Vy,
Yy =1,

H=R.Vo, (78)
w =10y,

$=R-Ve,

The integration is to be carried out from an initial arbitrary point
(Wo,90,9,) and Y, =0 at t=0 to the time t=1, at which y(t,)=Vy, and
9(1p) =10, Likewise, W, can be written as

2
Wy = 22C % J.dP(pdEduZ(rb), (79)
Zem” "
where
z=|(¢ -V\V)E—aF—wﬂ(l@:- 10 (80)
= c dP B du
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6. INTERNAL KINK STABILISATION

As a specific application of the theory presented in this paper, we shall discuss the
problem of internal kink stabilisation in the presence of high energy ions with
non-negligible orbit widths [3]. This problem in the limit of zero fast particle
orbit widths has been studied by several authors, and we refer to Ref. 1 for a short
review of the subject and the essential bibliography.

A derivation of the relevant dispersion relation can be obtained following the
normal mode analysis approach outlined, e.g., in Ref. 17. Here, we follow a
different approach based on the use of the quadratic form AW. As pointed out in
the previous section, although AW is not in general a self-adjoint form, it can be
used if a perturbative procedure can be established with the leading order terms
constituting a self-adjoint form. For this purpose, we introduce the inverse
aspect ratio e=r/R as the relevant expansion parameter. We also consider a
standard low-B (= kinetic/magnetic pressure) ordering, B~e%, where the
equilibrium nested flux surfaces have cross-sections which depart from circles by
shaping terms at most 0(e). The q profile is taken to be a monotomic function of
r with an on-axis value q, <1 and finite magnetic shear in the q ~ 1 region.
Finally, we consider a collection of high energy ions with mirror-trapped orbits
and normalised pressure By ~B.. We point out that, with this ordering for By,
the fast ions will carry a diamagnetic current along the equilibrium field lines,
associated with the trapped orbits and the P, dependence of the distribution
function. This current density is of order € compared with the total parallel
current density, i.e.

Jin ~ €y (81)
The poloidal modulation of Jy is in general of order unity.

After standard manipulations, the MHD functional 8Wy yp can be written in the

form
‘2

2
BWMHD=%Jd3X lBlﬁ:l + lBZ(])

1. = = — - - -
#<0ib-EL B |+ 25T, <8

- - =2
* (&L'VPC)V'&I‘*FPC'V‘El }/ (82)
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where we have used the equation of state pC =—£, - Vp. - I‘pC(V-E) for the
isotropic core plasma pressure, with I'=5/3 the ratio of specific heats. We have
also assumed that perturbations vanish at the plasma edge. The parallel
displacement &; enters only the positive-definite term involving IV 2';'

2
Formally, the largest of all terms in (82) is the one involving ‘B"(])‘ . In order to
minimise this term we set

V-E, +28, -k =0(et, /R), (83)

from which it 2follows that IB" /B' —O 2QZ/RZ) [cf. Eq. (53)]. The term
involving IV &I can be minimised separately with an appropriate choice of §;.
After these initial positions, AW up to terms of order e3> becomes:

AW = AW, + AW +0(e?), (84)
where
1 ‘BL(”IZ 1T )z 5+ o5
szz-z—J'd3x i +E(%)B-&IXB @ =0(£2), (85)

1 1 T & 5t .5
Ao [B) (] 00 ),

and an overbar indicates flux surface averaging.
It can be easily shown that AW, is a self-adjoint form for perturbations which
vanish at the plasma edge. The corresponding Euler-Lagrange equation for the
radial displacement is

- =\2
—d-r3(k-B) -dizo(e), (87)
where k-B=(By /r)(1-q). Note that the flux surface average of the fast particle

current is included in AW, and gives a contribution 0(e) to the equilibrium g
profile. Thus, AW> is minimised by the cylindrical displacement

E o &0[( +i8g )H(rg — 1) - ird(r - rs)éﬁ] exp [i(x‘} - (p)], (88)
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with &, =constant, H(x) is the unit step function, and &}, =E*,. When &, is
inserted in AW,, corrections 0(e) vanish upon poloidal integration and AW,
drops to 0(84). Also, the first integral in Eq. (86) vanishes to leading order when
€, =&, is used. Thus, we are left with the leading order result

Aw~—fd3xz; o (V p, (1 )) 0(83), (89)
where Ph(l) is computed to Ieadmg order in € using the cylindrical displacement
(88). Hence, we conclude that, when By, ~B~e , the minimum values of AW is
O(e3) and stability (apart from dissipative effects) is entirely determined by the
sign of 8Wy. If we wish to consider standard internal kink modes, which

correspond to AW = 0(84), we need to depress the ordering of By, to 0(83). Then,

Whot = 0(84) competes with the usual MHD result. For instance, one can

adopt Bussac's model for the MHD functional
A 2 2 _
SWMHD = SWMHD /[(ﬁo/Ro) VSBz]z—cossz[sz—(BpMHD) jl, where ¢, is a

numerical factor of order unity that depends on the q profile, Vg =2n2R0r52,
€s=rs /Ry, Pp is the plasma bulk poloidal beta properly defined [18] within the

q = 1 volume, and BPMHDsO.3 depends on q and on plasma shaping. By
comparison, 8Wiq =Wy /[(&O / R)ZVSBZ]:clesBph in the thin banana limit,

with By, the fast ion poloidal beta. Thus, 8Wppp ~3Whot when By ~ ESsz.

We point out that the fast ion parallel current density plays a role, through its
flux surface average value, by contributing to the field line bending energy term,
AW, but it does not contribute explicitly to 8Wy,; to relevant leading order in e.
Thus, we disagree with a statement in Ref. 12, where the part of AW, involving
Jin is used to nearly cancel 8Wy,;. As a result, it is argued in Ref. 12 that the
trapped fast particle contributions to AW scale as (1- q)2 EsBph- Instead, we have
shown that the part of AW, involving ], is annihilated, together with the other
terms in AW,, by the cylindrical displacement (88). As a result, we find that
OWh, scales as a single power of (1 - q). This result remains valid when finite
particle orbit widths are taken into account [3].

A dispersion relation can be obtained by including the kinetic energy
contribution,

-2
61=—%Jd3x ﬂ)((D—(l)*i)mini’é , (90)
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which is important in an inertial layer of width A /rg ~ Iw(a)— 0, ) |% / ®p around
the q = 1 surface, with o.; =n°(c/Z;eBgRn;) (dp; /dr) the thermal
diamagnetic frequency, wp =v, /(38R,) the relevant Alfvén frequency and
§=r,q(rs) The Euler-Lagrange equation for &  within the layer is
(d/dx) [co((o —04) - mzsz] dg, / dx} =0, where x=(r-rg)/rs. This equation
can be solved readily and matched to the solution of the outer Eq. (87). It is th ?n
straightforward to show that 8i= 8I/[(éo /R ) \% B2] ~— 1[0)((1) Oy /a)A]

Combining 81+ AW =0 yields the dispersion relation
[0(0 - 0. )]% =-iwp (SWMHD + Swhot)r 91

where all terms are formally of the same order when [ ~éeB. ~ e3.  For
Bn ~ e2, SWpuD / 8Whot ~ € and the MHD integral drops out of Eq. (91)

The evaluation of 8W oy for finite orbit widths in the limit @ /($)— 0 has been
reported in Ref. 3. For the sake of completeness, we summarise here the main
results. For "potato” orbits, (vy/ vi)2 ~8,/R~¢, and using Eq. (83) the
perturbed Lagrangian reduces to

LY = —uB(E -&)+ 0(e). (92)

Also, Eq. (83) implies that B"(l) /B l(l) ~€. Thus, the term involving B"(l) can be
neglected in Eq. (71) for 8W;. Furthermore, 6-1= 0(62) and 1-1=0(¢), so that
also the first integral in Eq. (69) can be neglected. Taking the limit ® /(¢)— 0,
straightforward algebra leads to the leading order result

Wi ot =~ 2n2§5m—3de¢dEdmb a—F—’;;’i (A-9), (93)
9Py R°Q($)
where A=uB, /E,
RzQ( ) §_r g cos O (04)
mEA \|§, q

2

(@) |RoYop|
S= Z (95)

P< +wa|iou3 |

are dimensionless quantities, and Y, is defined in Eq. (46).
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Analytical progress is possible with the following choice for the trapped particle
distribution function:

F(Py,E,A)=CH(P,) H(Py. - Py ) 8(E- Ep) 8(A - 1), (96)

where Py, and Ey are constant values and C is a normalization constant. With
this choice, all fast ions have an energy E;, and are mirror-trapped with their
orbit tips distributed along a vertical layer up to a distance r, from the magnetic
axis, corresponding to Py, =(Ze/c)y(r.) (>0). This choice mocks up the case
where the fast ions are produced by ion cyclotron radio frequency heating
absorbed along a vertical resonant layer passing through the magnetic axis and
focused within a distance r, from this axis. High-energy ions populate the low-
field side of the Tokamak up to a distance r<r,+8&,, from the axis, where
8pn =(2qvy / QRO)%R0 and mv{ /2=E,. When r, <8ph, most fast ions have
potato-shaped orbits and our new analysis is required. Let us define the orbit tip
radius, rp, such that P(pz(Ze/c)\y(rh). In the limit ry <<3pp, small shear
(é <<1 for r<dyy ), and for A =1 the bounce frequency is

b ~ 4 2nd5”(3pn / Ro )2 = Ey/3, (97)
where o, =3v/nI(2/3)/4I(1/6) and Qy, = ZpeB / myc. The precession frequency
is

() = 125" (3pn / Ro)2 = Ep/3, (98)
where o =+/rI(2/3)/2I(1/6). The ratio of the two frequencies,

(¢)/ 0y =29, /3, (99)

is of order unity, as anticipated at the end of Sec. 3.

For a parabolic q profile, the integration of 8W ot leads formally to the result [3]

o dph

Wit = =28 =, q, |, 100

hot = g(rs T qo) (100)
where the function g is determined numerically. In the limit r,, 8pp <<ry, shear
effects are negligible and the function g — g(r* / Bph,qo), An example of the

behaviour of § versus r, /8, for q,=0.7 is shown in Fig. 1. The thin banana
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approximation is recovered for r,.,/8ph >1. For r*/Bph <1, the finite orbit
theory leads to a value of SWhot which is smaller than that obtained by
extrapolation of the thin banana theory, corresponding to the dashed curve in
Fig. 1.

From these results it may be concluded that the thin banana approximation
yields roughly the correct numerical value of 8Wy,y, provided one does not
allow the radial width of the fast ion distribution function to become smaller
than the average orbit width. The situation, however, becomes more complex if
the q profile varies significantly along the particle orbit, for instance if Sph
approaches rg. In this case, the full dependence of the function g in Eq. (100) must
be investigated. Results are summarised in Fig. 2 where a parabolic q profile has
been assumed. We can conclude from this figure that fast particle stabilisation is
hindered as W}, changes sign when dpn (or r,, whichever is larger)
approaches rs. Thus, it is important to keep the fast ions well contained within
the q = 1 surface in order to exploit their stabilising potential.

Considering parameters of high-power (Prgp 210 MW), ICRF heated experiments
in the Joint European Torus (JET), we find that rg ~30 - 50 cm, 8p ~ 20 - 30 cm,
while the width of the power deposition profile can be as narrow as r, ~ 15 - 20
cm. During sawtooth-free periods, the value of q on axis is believed to drop
significantly below unity. In this case, because of q variation, finite orbit effects
can alter significantly the stabilisation properties as compared to the prediction of
the thin banana orbit theory. JET experimental parameters lie in the range 8, /rs
~04 > 1,and r./rg ~ 0.3 - 0.7. It follows that there is indeed a significant
quantative difference between the prediction of the thin banana theory and that
of the full orbit theory, the latter being more pessimistic. One interesting
consequence that may be checked experimentally is the existence of an optimum
ICRF heating power to produce maximum stabilisation. Exceedingly large values
of Prp may result in orbits whose size is too large to produce effective
stabilisation.

7. CONCLUSIONS
In this paper, we have studied the response of a collisionless guiding centre

plasma component to global perturbations of an axisymmetric toroidal magnetic
configuration. The solution of the linearised drift-kinetic equation has been
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expressed in compact form in terms of the guiding centre Lagrangian, as given,
e.g., in Ref. [11].

In the limit where the radial excursion of particle orbits across magnetic surfaces
is negligible, the perturbed distribution function reduces to the one obtained by
Antonsen and Lee [8], which applies to arbitrary poloidal mode numbers. Thus
our work generalises that of Ref. 8 by taking into account finite orbit widths. In
particular, the present analysis is capable of handling the "potato-orbit" limit [3]
where 3, ~r, with &y, "'8%pﬁ the width of a "banana" orbit and e=r/R, the
inverse aspect ratio of the toroidal plasma. Since the guiding centre
approximation relies on the ratio between the Larmor radius and the magnetic
curvature radius, 8=p/R,, as being small, the potato ordering requires for
consistency that € is also a small expansion parameter. Indeed, 8, ~r implies
that € ~87% in a Tokamak. In this respect, we note that the analysis of Ref. 8
assumed 8 —» 0 and € ~1 Also, we observe that the time scales associated with
the drift and bounce motions of a mirror-trapped particle become comparable in
the potato limit. This may have important consequences, as the constraints on
the particle dynamics imposed by the conservation of the longitudinal and flux
invariants [13] are simultaneously satisfied or violated when 8y, ~r, depending
on the relevant space and time scales of variation of the electromagnetic field.

Quadratic forms have been constructed by taking the scalar product of the
momentum balance equation with the adjoint displacement for the case of
perturbations satisfying the MHD constraint, B(1) = VX(E 1 xﬁ). Because of the
presence of the high energy particles whose dynamics is intrinsically kinetic,
these quadratic forms are in general non-Hermitian, therefore necessary and
sufficient criteria for stability cannot be obtained solely on the basis of their sign.
However, these quadratic forms become useful in those cases where the mode
structure to leading order is determined by the bulk plasma while the kinetic fast
particle response can be treated perturbatively. Examples are internal kink modes
[1, 3] and the Toroidicity-induced Alfvén Eigenmodes [4-6, 9, 16], which can be
either stabilised or driven unstable by the high energy ions.

As a specific application of the present theory, we have discussed the problem of
internal kink stabilisation [1, 3]. We have shown that the stabilising influence of
the high energy ions is weakened when the potato width becomes important, and
they may even become destabilizing as &, approaches the radius of the q =1
surface.
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Fig.1 Graphs of (R/ry) (Sph / rs) 8W}ot as a function of r, / Spn for a flat q
profile in the region 0<r<r, and q,=0.7. Solid curve: full orbit theory.
Dashed curve: thin banana approximation. The dashed curve is the hyperbola
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Fig.2 Graphs of (R /1) 8Wy, as a function r, /rg and of (8ph / rs), as indicated
near each curve, for a parabolic q profile with q, =0.7.





