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ABSTRACT

Monte-Carlo operators for the orbit-averaged Fokker-Planck equation describing
collisions and wave-particle interaction are constructed. Special emphasis is put
on jon-cyclotron-resonance heating of tokamaks, but the results are applicable to
general quasilinear processes in arbitrary magnetic configurations in which
particle motion is integrable. All effects of non-standard orbit topology, such as
large orbit widths are fully taken into account. The Monte-Carlo operators may be
used for simulating, e.g., neoclassical transport, radio-frequency heating, and
wave-driven spatial diffusion.

L. INTRODUCTION

Fast ions, i.e. ions with energies much above the thermal, play a prominent role
in the heating of fusion plasmas. In present-day tokamaks, minority ions
accelerated by ion-cyclotron-resonance heating (ICRH) frequently reach energies
in the MeV rangel.2, and deliver tens of megawatts of heating power to the bulk
plasma. In a future reactor, most of the heating will be provided by fusion-
generated alpha-particles. Apart from providing the heating power needed to
sustain the plasma, the presence of fast ions can, because of their high energy
content, also significantly affect the magnetohydrodynamic stability of the
plasma. For instance, fishbone oscillations34 and monster sawteeth® are believed
to be caused by fast ions. In these respects, ICRH accelerated ions play a role
similar to that of alpha-particles, and much insight into the behavior of alpha-
particles can be gained by studying ICRH.

From the above it is clear that it is important to have a proper modelling of fast
ions accelerated by ICRH. In particular, the modelling should be accurate enough
to enable a detailed comparison with experimental results. One of the
complications arising in the description of fast ions in tokamaks is that the radial
width of the orbits tends to be very large, so that the usual small-banana-width
approximation is invalid®7. In the first part of this paper, we derive an orbit-
averaged Fokker-Planck equation which describes the effects of collisions and
resonant wave-particle interaction, with special emphasis on ICRH. The equation
is valid in an arbitrary axisymmetric geometry and takes all effects associated with
the finite width of drift orbits into account. One way of (numerically) solving the
Fokker-Planck equation is to use Monte-Carlo techniques®. The required Monte-
Carlo operators are derived in the latter part of the paper. These operators can, of



course, also be used to study problems involving particle sources, such as neutral-
beam injection and production of fast ions in fusion reactions.

The distribution function in an orbit-averaged Fokker-Planck equation is a
function of the invariants describing single particle motion. In the zero-banana-
width approximation, the equation is two-dimensional in velocity space, with,
e.g., the velocity and the magnetic moment as invariants of the motion. A
number of codes solving this 2D equation have been developed®10.11. When the
radial width of the orbits is taken into account, the equation becomes three-
dimensional, and three invariants are required. In order to keep our results as
general and widely useful as possible, we do not restrict the discussion to any
particular set of invariants, but formulate the kinetic equation and Monte-Carlo
operators in terms of invariants of a fairly general form. The 3D character of the
equation reflects that diffusion and convection take place both in velocity space
and in real space. Neoclassical effects enter through the collision operator, and
the RF-operator introduces additional radial convection and diffusion.

Simplified versions of the orbit-averaged Fokker-Planck equation have been used
previously to study the slowing-down of alpha particles!2, but only collisional
drag was taken into account. Furthermore, the influence of RF-induced diffusion
has also been investigated13.1415, but without accounting for finite orbit width.
Recently, Zaitsev, O'Brien and Cox!¢ derived an orbit-averaged kinetic equation,
in a form similar to ours, describing collisions but not wave-particle interaction.

Monte-Carlo techniques are very powerful for solving multidimensional
diffusion problems, and orbit-following Monte-Carlo codes for studying fast ions
produced by neutral-beam injection or ICRH have been constructed
previously?.17. These codes follow drift orbits and apply Monte-Carlo operators a
number of times each turn around the orbit. This method is slightly inefficient,
since similar orbits have to be calculated over and over again. A faster way is to
solve the orbit-averaged Fokker-Planck equation directly with a Monte-Carlo
techniquel8. Such an approach has been used recently in a code developed to
study the influence of stochastic ripple diffusion!? (in the zero-banana-width
limit). In this paper, we also follow this approach. There are several advantages
with the Monte-Carlo technique: the central part of the computer program is not
very complicated, and there are no particular problems with boundary
conditions.



The paper is organized as follows: The averaging of the Fokker-Planck equation is
carried out in Sec. II . For this, we find it very convenient to employ the
Hamiltonian action-angle variables introduced by Kaufman?0, although we do
not restrict the subsequent results to the use of these variables. In Sec. III, the
averaged collisional and quasilinear operators are presented. Sec. IV contains the
derivation of 3D Monte-Carlo operators from the kinetic equation, and, finally,
our conclusions are summarized in Sec. V.

II. THE ORBIT-AVERAGED KINETIC EQUATION

In general, the kinetic equation describing the distribution function of a particle
species interacting with a (weak) wave field has the form

of _jof

—+2' = =C(H)+Q(f )
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where C(f) is the collision operator, Q(f) is the quasilinear wave-particle
interaction operator, and z! are arbitrary phase-space coordinates. For instance, we
may choose zi=(v,q), where q denotes the usual Cartesian coordinates and q=v
Summation over repeated indices is understood throughout this paper.

In hot tokamak plasmas, the characteristic time-scales on which C(f) and Q(f)
operate are generally large in comparison with the time it takes for a particle to
complete an orbit (hereafter called the bounce time, 1). Instead of dealing with
the equation (1) directly, it is then advantageous to take the orbit average of it.
The most elegant way of doing this is to use action-angle variables. Since the
motion of a single particle in an axisymmetric torus is integrable, it is possible to
show?20.21 that there exist action-angle variables (J,0), such that the (unperturbed)
Hamiltonian Hy depends only on the action variables, Hp=H(J), and the angles
evolve linearly in time:

aH,
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Here, Q1 is the orbit-averaged cyclotron frequency, Q2=2n/1,=wy is the bounce
frequency, and Q% =< ¢ > is the orbit-averaged time derivative of ¢, the toroidal
angle20. Roughly speaking, the first angle 81 describes the position of the particle



in the Larmor rotation, 82 the position along the guiding-center orbit, and 03 the
toroidal position of the banana center. The action variables J! and J3 are

' =mu / Ze =m?v2 / 2ZeB )
13 =Py = mb‘pRV” + Ze\yp /2n

where m is the mass, Ze is the charge, R is the major radius coordinate, B is the
magnetic field strength, bq) =RV¢-B/B, and Vp is the poloidal magnetic flux.
(The poloidal magnetic field is taken to be Bp = V\yp x V¢ /2n..) The expression
for the (canonical) toroidal angular momentum, p,, given here pertains to the
guiding center. It is equal to that of the particle to all orders in a gyroradius
expansion?2. For brevity, we have not given the explicit expression for J2; in fact
we shall not need it. For a more detailed exposition of the action-angle variables,
we refer the reader to Ref. [20].

The orbit average is defined simply as the integral over 0-space:
<wo>=(2m) > [[[(+)d6,d8,d6, (4)

Because of axisymmetry and the fact that the gyroradius is usually small, the
integrations over 61 and 03 are trivial, and (4) simply amount to

<= (20)7 (- )de, 5)

The action-angle variables are convenient for averaging the kinetic equation (1)
over orbits, but because the expression for J2 is complicated (It involves an
integral over the orbit.), we do not wish to write the resulting equation in these
variables, but in some other, arbitrary, set of invariants I=I(J). In addition, we
want to keep the formalism as flexible as possible. In the coordinates x! = (1,0), the
kinetic equation (1) reads

of + O
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and after averaging, we have
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where fy = <f>. We now turn to the right-hand side of this equation, where we
have approximated f by fo. The collision operator conserves particles in each
point of coordinate space, and can, consequently, be written as a divergence,
C(f)=0Cl/0vi=
dCi/9zi. Transforming to the variables x! = (I,8), we have
=g )
ox’ 8)

where I are the contravariantly transformed components of C!, I''=Cidx!/dzJ, and
g!/2 is the Jacobian g!/2= 19z/0x|. The latter is independent of the angles 6, since

3(v.q)
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and the averaging of the collision operator is therefore very simple:

_ 172 0 (12 _ i
<C(f)>=g™" (87 <T">) (10)
The quasilinear operator Q(f) has been derived by Kaufman20, and has the
following simple form when expressed in action variables

0 (sij of
f = — Dll'—. (11
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Note that this operator does not depend on the angles, and need therefore not be
averaged in (7). Transforming to the variables I, we obtain

_1/2 0 i of
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where the derivatives dIi/dJk can easily be calculated by using Eqs (2) and (3). (For
a specific example of this, see Sec. IV B.) The formal derivation of the orbit
averaged kinetic equation is now complete; the result is expressed in Eqs (7), (9),
(10) and (12). In the next section, we shall give more explicit expressions for the
collisional and quasilinear operators.



ITI. THE COLLISIONAL AND QUASILINEAR OPERATORS

The collision operator is, of course, very well known. When averaged over
Larmor rotation and written in the velocity coordinates (v,y) where y=v, /v, it
has the form?23.24

1 0/ 2 of of d of of
f)=—— AVE+TYW —+ TV — —| AXf + T — 4+ TX — 1
C(f) = av[v ( T o+ 3X):|+ax( TV 4T ax) (13)

where the components of A and T are given in the Appendix.

We now turn to the quasilinear operator. In the presence of a wave field, the
Hamiltonian of the system is perturbed, H=Hy+H,, where
iZe

H =-ZeA-v+ Ze¢={E=ZEme“i°’t}=— 2 v.E, (14)
[6)

o @

Here A and @ are the magnetic and electrostatic potentials of the wave field E.
Kaufman's expression for the diffusion tensor DYin Eq.(12) is?

Di=nY|H, (J,n,m)'zﬁ(w—n-Q)ninj (15)
n,w
where n=(n1,n2,n3) is a vector of integers, and H;(J,n,w) is the Fourier transform
of H; with respect to the angles 8 and the time t :

H(J,6,t)= Y Hy(J,n,0) &™) (16)

The integer n3 is always equal to the toroidal wave number N, and in the case of
ICRH at the n:th harmonic of the cyclotron frequency, nl=n. Standard
manipulations of (14) and (16) then give?>26

iZe Ty i
Hy(J,n,N,0) = - Vi [EJnoa(kp)+EJna(kop)] e o
Ty 0 (17)

d¢/dt=no.-o+k-vg

where E, and E. are the left- and right-hand polarized components of E,
respectively, k, is the component of the local wave vector k perpendicular to the
background magnetic field, p is the Larmor radius, and vy refers to the velocity of
the guiding center. Usually, the integral in (17) can be evaluated by means of the
stationary-phase method. It should be noted that n2 does not appear in (17); it has



been eliminated by using the resonance condition (i.e. the delta function
S(w—n-Q)) in (15).

IV. MONTE-CARLO OPERATORS
A. General considerations

In the Monte-Carlo approach, the Fokker-Planck equation is replaced by an
equivalent Langevin equation, and a Monte-Carlo operator is formed which
gives the particles random kicks with appropriate magnitudes and directions. As
mentioned in the introduction, it is advantageous to do this for the orbit-
averaged kinetic equation directly, rather than applying a local operator at a
number of times each turn around the orbit, as was done in earlier Monte-Carlo
studies’/!7. This is true even if the operator for the averaged equation involves
orbit-averages and thus requires an orbit integral to be calculated. The main
reason is that the orbit integrals may be evaluated and tabulated on a grid in
invariant-space at the beginning of the simulation. Subsequently, the value of
these integrals for an arbitrary set of invariants can be obtained by interpolation?®.
Furthermore, the Monte-Carlo operators for the orbit-averaged equation needs to
be applied fewer times than the local operators.

The purpose of this subsection is to derive general expressions for the mean
values and covariances of the time variations which the invariants are subject to.
In subsection B, we restrict the choice of invariants somewhat, and in the last
subsection, we perform the actual construction of the Monte-Carlo operators.

As shown in Sec.II and III, the averaged kinetic equation has the form

oy 12 0 1/2( i i afo)
df _ < £, +di 20 18
a6 & ol AT (18)

where aland di are orbit-averaged quantities. In order to construct Monte-Carlo
operators for this equation, one has to determine how a volume element in I-
space evolves in time. In other words, one must calculate the time behavior of a
distribution function of the form fo(I,tp) = g"1/28(I-Ip). Defining the ensemble
average <<-->> by

<<= [ ()fo(Lt)g 2’ (19)



we introduce the expectation values p! and covariances 6'i for the invariants as
pi =<<I'>>
ol =<< (Ii - ui)(Ij -~ uj) >>
As follows from Eq.(18), the time derivative taken at t=tp of an arbitrary function
of invariants, F(I), is

; OF ~1/2 0 ( 1/2 4ii aF)
L, =—al—+ - dYV — 21
T T T @D

(20)
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In particular, we have
i ae i o-1/2 9 (172 i
du' /dt=-a'+g ap.(g d)
do’ /dt=d" +d" =2d"
These equations describe the convection and spreading of a volume element in

(22)

the space of constants of motion. Suitable interpreted, Eq.(22) contains exactly the
same information as does the kinetic equation (18).

B. Choice of invariants

Up to this point, no restrictions have been placed on the invariants I; they could
be any constants of motion. In the following, we shall restrict the discussion to
invariants of the form

I' =1'(v)
? =1%(x,q) (23)
P =1(v,xq)

Thus, I! is assumed to depend solely on the energy, I2 on the pitch angle and the
guiding-centre position, and I3 may depend on all phase-space coordinates. These
assumptions lead to considerable simplifications of the explicit expressions for
(21)-(22).given below; yet they are sufficiently general to cover virtually all
choices of invariants appearing the literature. For example, a frequently
employed choice of invariants2’.28 js I=(v,A,p,), where A=uBy/(mv2/2) and By is
the magnetic field strength at the magnetic axis. Then dv/dJi = Qi/mv, dA /9] =
(000i1-AQ1)/H, and dpg/d] = 813, where w9 = ZeBy/m, and 8 is the Kronecker



symbol. The Jacobian (9) becomes g!/2 = v3/(2ZeBywy), and the components of the
quasilinear diffusion tensor given by (12) and (15) are

2
Mg (i) [H;[*8(w—n- Q) (24a)
2y
R_gy 0 ©gn’ ~ AW H,[8(w-n-Q (24b)
oV H
_nS‘ |H1| 3(w-n-Q) (24¢)
nZ( CO“ ]|H1| 8(w-n-Q) (24d)
23 (oconl - Aw 2
D¥ =n) —<————H["8(w-n-Q) (24e)
n,o H
=13 (0%) Hy 80 -n-Q) (24f)
n,

Again, in the case of ICRH at the n:th harmonic of the cyclotron frequency and a
single toroidal wave number N, all terms in the sums in (24) vanish except the
ones with n'=n and n3=N. In reality, the delta functions appearing in (24) are not
sharp; they are broadened by collisions and nonliear effects20.25.26 In fact, they
must overlap in order for the diffusion actually to take place. The summation
over n? is then easily accomplished. The sum is merely replaced by an integral,
which upon evaluation gives, simply, 1/Q2. Thus, in (24), we may perform the
replacement

n-Q)— 1 24
gz)ﬁ ®-n-Q) o n%ﬂ) (24g)
The expressions (24) serve as an example of how to calculate DY for a specific
choice of invariants. However, in order to keep the following discussion as
general as possible, we shall keep the choice of invariants general, only imposing
the restrictions (23).



C. Explicit operators

Armed with the results (13) and (21)-(22), and assuming (23), we can now
explicitly calculate the time derivatives of the expectation values p! and the
covariances ¢ due to collisions and quasilinear RF-interaction. They are

oI’ v, 19 a0l ) oIl 9T 2172 9 (1721
du /dt—<—a—-A zav(v sv—'r +WW>+g ﬁ(g D ) (25&)

o12 9 { o1 oI> 1 9 ( T
dp? / dt=<-—A¥ + T |4+ ————| v
H H/dt=< berd ax(ax )+ oy v? Bv[ ov g

; (25b)
12 9 ([ 1/22j
+8 or (g D )
) o1 19 o13 o1
dud /dt=<-Z-AV LT A% 4 ™ + LT
w/ < ov ax +v2 av[ [av ax
5 , (25¢)
o (a1 ol V) ~
9 pvx O pxx 172 9 _(,1/2p3
i ax( ov ay J 78 ol (g )
do'! /dt=2(ar' / 8v)2 <T™ > +2D" (25d)
do? /dt=2< (312 / ax)zrxx > +2D?? (25€)
o1 o1 a1 o13
do® /dt=2 ™ +2Z & TV 4 T > 42D 25§
/ <(av] N (ax T 250
1 2
do'2 /dt=do? / dt=29L < I v 5 1op12 (258)
av oy
1 3 3
do!® /dt=do3! /dt= 2 O g I vy 13 (25h)
v v e
2 3 3
d6B /dt=do® /dt=2< 2 [ pve . O e |5 4op® (251)
x| ov oY

In the case of test-particle interaction with a Maxwellian background, these
expressions are further simplified by the use of (A2)-(A4).
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Monte-Carlo operators, representing a random walk in I-space with a time-step
At, are now given by changing the values of the invariants Ii at the n:th step to
those at the next step according to

I, =L +Al (26)

where the quantities Al' are stochastic variables whose expectation values and
covariances are given by

E[Ar'] = (au' / dt)at

o y (27)

c[ar,Ar] = (do" / dt)at
In order to construct Ali, we utilize the fact that the covariance matrix C[All All] is
symmetric and positive definite?®. Therefore, it can be diagonalized, i.e. there
exists a unitary matrix M such that

C[Ali,AIi] = MikAKMI (28)

where AKXl = diag(A!,A2,A3) is the diagonal matrix of the eigenvalues. Since the
latter are positive, we may introduce the matrix Lk = diag[(A1)1/2,(A2)1/2,(A3)1/2],
and write the covariance matrix as

C[AIi ,Ali] = Mikpkmpimpgil (29)

From this relation, it follows that the conditions (27) are satisfied if Allis chosen
as

Al = (dui /dt)At + MM (30)

where ! are arbitrary, uncorrelated, stochastic variables with vanishing
expectation values and unit variances. For instance, we may choose g'=#+1 with
equal probabilities. This completes the construction of the Monte-Carlo operators.
The final results are displayed in Eqgs (25),(26) and (30). The diagonalization
procedure used to form All may be intuitively pictured as a rotation in I-space to
some fundamental direction in which the random kicks given to the invariants
are orthogonal and independent. Recently, an alternative construction of Al
from the covariance matrix has been given by Putvinskij et al.1%.
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V. CONCLUSIONS

In this paper, we have derived 3D Monte-Carlo operators for the orbit-averaged
Fokker-Planck equation describing general collisional and quasilinear processes.
All effects of orbit topology, such as large banana-width and non-standard orbit
shape are taken into account. Although, we primarily focus on ICRH in
tokamaks, the discussion has been kept as general as possible. We believe that the
resulting operators should be widely useful since they have been derived under
very general assumptions, but yet are given in a quite explicit form. For example,
no appeal has been made to the specific geometry of a tokamak, except for the
existence of action-angle variables. However, the detailed geometry must, of
course, be taken into account once the orbit-averages appearing in the Monte-
Carlo operators are performed. Since the Monte-Carlo operators are derived
under such general assumptions, they may be used to simulate a broad range of
phenomena, such as neoclassical transport, radio-frequency heating and wave-
driven spatial diffusion in arbitrary axisymmetric magnetic configurations.
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APPENDIX: THE COLLISION OPERATOR

The components of the vector A and the tensor T appearing in the collision
operator (13) have the general form23

0P

AV=) K s Al

g * ov (Ala)

¢

IXEDY (Alb)
o X
ZK “’S (Alc)

TXXIZK 1—X2 1_X2 aZWs__X_a\V la\Vs (Ald)
~° v? vZ o2 v axy v oov

VX _Txv =—2K l—Xz aZWs _laWs (Ale)

= % y2 |ovoy v oy

Here, K, = (41tZZSe2 / mz), In A is the Coulomb logariathm, the sums should be
taken over all particle species s, and the potentials ¢ and y, introduced by
Trubnikov?4, are given by

£v) 4

471: \ v| (A2)

=——_“v v (v))dy'
Frequently, all species s included in the sums are Maxwellian, except for the hot

minority species, among which self-collisions may be neglected. Then the
expressions for the components of A and T simplify to2>

AV =~o + —l———(sz) (A3a)

TV =p/2 (A3b)

13



TV = y(l - xz) / 4v? (A3c)

AX=0,TV =0 (A3d)
where

ofq,v)=-X[C,12(1+m/m,)G(1,v)+¥(q,v)/ 2] (Ada)

B(q,v)=D CG(1,v)/ v (Adb)

Y(q,v)= Y, C[@(1,v)-G(1,v)] /v (Adc)

Here Cs(q):87tnSZ§Zze4, I, = (m/2kT,)1/2, ® is the error function, and G(x) =
[D(x) - D'(x)]/2x2.
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