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Theoretical models of Thomson scattering in plasmas at frequencies which are not large
relative to the plasma frequency rely, among other things, on an accurate descrip-
tion of three wave mixing in plasmas. Thomson scattering experiments making use of
waves with frequencies in this range include fast ion diagnostics and various fluctuation
and magnetic field diagnostics, but generally exclude conventional electron temperature
diagnostics. The theory was originally developed using a traditional fluid approach
[AKHIEZER et al., 1962, 1967; SITENKO, 1967]. These results, which have been quoted
widely, are, however, at variance with low temperature results obtained by AAMODT
and RUSSELL (1992) using a kinetic approach.

In this paper the theory of three wave mixing and Thomson scattering in plasmas, is
reexamined in the low temperature limit with a kinetic model, giving a more complete
description of Thomson scattering in this limit. Errorsin the traditional fluid approach
to three wave mixing and scattering are identified and a new corrected fluid approach
is outlined. These corrections to the theory may have important consequences for the
analysis of collective Thomson scattering experiments, such as fast ion diagnostics, and
for the assessment of the feasibility of certain measurements.

In a collisionless plasma the dynamics of the electron momentum distribution, f(p,r,t),
are governed by the Vlasov equation,
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where v = p/(yme), v = /1 +p?*/(mec)?, p = |p|, and m, and ¢. are the electron

rest mass and charge respectively. Three wave mixing and scattering are due to the
non-linearity of the dielectric response of plasmas. In a collisionless plasma the non-
linearity is represented by the third term in the Vlasov equation. We now seek solutions,
[E, B, f], to the Maxwell-Vlasov set of equations as perturbation expansions around
the equilibrium values, [0, B, f{®]. The first order equations describe the familiar
linear wave propagation. The second order equations account for bilinear interactions
between linear waves, which includes three wave mixing and Thomson scattering in the
first Born approximation. The scattered wave [20] = [E(??), B(29), f(29)] is that part of
the second order perturbation which results from the interaction of two linear waves,
[la]= [E(®), B2 f(2)] and [1b]= [ECP), BOP), f(P)] Defining the linear operator
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the second order Vlasov equation governing f(**) may be written as
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where F = ¢.(E + v x B). The left hand side and the first term on the right hand side of

equation (1) are identical to the linearized Vlasov equation. The electromagnetic field



of the scattered wave may thus be found from the inhomogeneous wave equation’

A(k%,w?) - Bk, w%) = —j°(k%,w7) . (3)

The source current, j°(k?,w?), is given by
(w7 = . [vf (0, K", w")dp, (4)

where f?(p,k?,w?) is the Fourier-Laplace transform of f7(p,r,t), which satisfies the
relation:
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e(k,w) is the dielectric tensor.
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Given the source current j° the field E(??) of the scattered wave can be found from
equation (3) (see e.g. BINDSLEV (1991)). To find the source current we first ob-
tain f7(p,k’,w?) from equation (5) by integration along characteristics followed by
a Fourier-Laplace transform over space and time. The result is [BINDSLEV, 1993]
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where w, = —¢.B® /m, is the angular electron cyclotron frequency, a = 7(vykf—w)/we,

B = yv k] /w. and
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with k* + k> = k%, w* + w® = w?, k* — kP = k and w?® —w® = w. v and v, are
the parallel and perpendicular components of v relative to B(%), and similarly for other
vectors. ¢ is the azimuthal angle of p in the coordinate system where z = B(®/|B()
and k” = kX + kfz. Expression (4) for the source current with f7 given by (6) is fully
relativistic. We note that in a relativistic treatment of three wave mixing and scattering
the full details of the momentum distributions of the interacting waves, [1a] and [1b],
are required.

Tn this paper a spatial Fourier transform and a temporal Laplace transform are used:

A(r,t):/ AA(k,w)e*(k‘r‘w'>m§, A(k,w):/ /I{A(r,t)e"(k'r"‘")drdt. (2)
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The Fourier-Laplace transform is defined for values of w; large enough for the integral over ¢ to exist. This
defines the contours of other integrations when the analytic continuation to real values of w is required.



In the low temperature limit, or more specifically when f7 is significant only for values of
v which satisfy the inequalities v/c < 1, vk /(W +swe) €1, s € Z and v k] Jw, < 1,
we can expand exp{:[(sin(¢ — 7) — sin@)}/(a — s) in powers of v. This permits the
integrations and summations in (4) and (6) to be carried out and we find [BINDSLEV,
1993]
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where n(® = [ f@) dp and Ega) = [v;f@dp are the electron density and flux fluctua-
tions associated with the momentum perturbation f{*). ¥ should not be confused with
a fluid velocity. x7; is the cold plasma susceptibility tensor evaluated with the frequency

w?, and
o wp tkic (o) _ @] L R ap)
X = (wa)z(@‘a‘slb + 61a656) [6G2Tib Tzab} 7 0l (9)
o 1 102
T,-‘} - TR T T & + Gij (10)
;7 = mnij—mﬁij+Cij , (11)
(2) 1265 + (1 — 292)6& 29251:1 — 102642 12611 + 6k2 A
T T—ar - T i o o (1)

Here Q = w./w? and n;; = 6;;—6i36;3, & = €ij3 and (;; = 6izb;3, where €, 1s the standard
Levi-Civita symbol (€;;xa;bs = {a x b};). The terms involving x? are in agreement with
the result found by AAMODT and RUSSELL (1992). By comparison the traditional fluid
approach [AKHIEZER et al. (1967); SITENKO (1967)] gives
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where u) = v /. Expression (13) can be brought to the form presented by AKHIEZER
et al. and SITEKO by use of the linearized fluid equations and Maxwell’s equations.

Comparing expressions (8) and (13) we find that in the first two terms, representing
scattering due to the interaction of electric fields with density perturbations (E(12)n(1b)



and E(P)n02)) the factor w’x” in the kinetic expression (8) is replaced in the first and
second terms of the traditional fluid expression (13) by w®*x® and w®x" respectively.
In the third and fourth terms, representing interaction between particle fluxes and
magnetic fields (¥(!?) x B(1?) and ¥(!*) x B(!?)), we find complete agreement between the
two results (the difference between v/n(®) and u is of higher order and not significant
at this point). In the fifth and sixth terms we find considerable differences between
the two expressions. While the differences are of minor practical importance to most
laser scattering experiments, they are not negligible for the millimetre wave scattering
experiments planned at JET [COSTLEY et al., 1988] and TFTR [WO0SKoOV et al., 1988],
and from a theoretical point of view these discrepancies are clearly not satisfactory. The
two expressions (8) and (13) for the source current result in different expressions for
the dielectric form factors and thus ultimately in different predictions for the scattered
power. As an example we note that the ratio of the dielectric form factors, Gpew/Gold
(or equivalently the ratio of scattering cross sections) associated with the interaction of
the incident field, E'®, with density fluctuations, n(!*)| is given by [BINDSLEV, 1993]
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where e is the unit electric field vector. To illustrate the significance of these differences
we have plotted in Figure 1 the ratio Ghew/Goa for X to X mode scattering as a function
of w’ for a) w./w® = 0.68, b) w./w* = 0.80 and ¢) w./w® = 0.90. The densities are in
all three cases chosen sufficiently low to ensure that both incident {la] and scattered
radiation [20] are well away from the cutoff. In the chosen parameter range the present
low temperature theory is a good approximation even at the temperatures found in
JET. The ratio is not sensitive to density in this parameter range.

The differences between the two results are due to errors in the traditional fluid result. In
any fluid approach the source current is derived from the second order fluid equations.
In the traditional fluid approach a perturbation expansion of the fluid equations is
obtained by assuming perturbation expansions of the density, n = n{® +n() 403 4
and the fluid velocity u = u® + u® + ..., Thus, in the second order fluid equations
terms such as n(Wu and n®uf® were retained while the term n®©u!) was assumed
to be of first order and hence excluded. However, returning to the kinetic definition of
the fluid velocity, u®) = v /n we see that n(®u(!) in fact contains terms of second and
higher order due to the division by n in the definition of u{). These second order terms
are lost in the traditional fluid approach. Further second order terms are lost because
of the neglect of the pressure term in the second order momentum equation. This is the
case even at low temperatures where the pressure term can safely be neglected in linear
problems.

The traditional fluid approach can be corrected by deriving the perturbation expansion
of the fluid equations using an expansion of the particle flux, v, instead of an expansion
of the fluid velocity, u, and by retaining the pressure term in the second order momentum
equation [BINDSLEV, 1993]. The latter requires the inclusion of the second order energy
equation in the set of fluid equations. With this new fluid approach the kinetic results
are recovered.
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Figure 1: The ratio of dielectric form factors Gpew/Golq associated with the interaction
of the incident field, E'®), with density fluctuations, n(**), as a function of the frequency
of the scattered radiation w?’.

Parameters: X to X mode scattering, Z(k?, k) = 30°, /(k?, B(®) = /(k" B(®) = 90°,
w*/2m = 140 GHz, a) B® = 3.4T (w./27 = 95 GHz), n(® = 3.0 x 10®>m~3, b) BO) =
4.0T (w./2r = 112 GHz), n® = 1.0 x 10"*m~3, ¢) B©® = 4.5T (w./27 = 126 GHz),
n(® = 0.5 x 10'9m 3.





