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ABSTRACT

The theory of three wave mixing and Thomson scattering in plasmas, is reexamined in
the low temperature limit with a kinetic model, giving a more complete description of
Thomson scattering in this limit. Errors in the traditional fluid approach to three wave
mixing and scattering are identified and a new corrected fluid approach is given. These
corrections to the theory may have important consequences for the analysis of collective
Thomson scattering experiments, such as fast ion diagnostics, and for the assessment
of the feasibility of certain measurements.

1 INTRODUCTION

Theoretical models of Thomson scattering in plasmas at frequencies which are not large
relative to the plasma frequency rely, among other things, on an accurate description
of three wave mixing in plasmas. Thomson scattering experiments making use of waves
with frequencies in this range include fast ion diagnostics and various fluctuation and
magnetic field diagnostics, but generally exclude traditional electron temperature diag-
nostics.

In this paper the theory of three wave mixing and Thomson scattering in plasmas, both
unmagnetized and magnetized, is reexamined in the low temperature limit, giving a
more complete description of scattering in this limit and reconciling the results derived
from fluid and from kinetic descriptions of the plasma.

In many applications the dielectric response of plasmas is considered in the linear ap-
proximation. There is, however, a small non-linear part to the dielectric response,
which gives rise to interaction between linearly independent waves. To lowest order in
the non-linear terms this interaction results in three wave mixing which includes Thom-
son scattering. In Thomson scattering an incident wave interacts either with another
macroscopic wave or with microscopic (e.g. thermal) fluctuations in the plasma, and
thereby sets up an additional current, the source current, which drives a third wave, the
scattered wave.

Given the source current, expressions for the scattered field and for the power received
by a receiving antenna located outside the plasma have been obtained by a number
of authors including SIMONICH and YEH (1972), BRETZ (1987), HUGHES and SMITH
(1989) and BINDSLEV (1991). This part of the theory appears to be adequately devel-
oped for the Thomson scattering experiments envisaged at present.

Expressions for the source current were traditionally derived using a fluid description of
the plasma [AKHIEZER et al., 1962 and 1967, and SITENKO, 1967]. Recently AAMODT
and RUSSELL (1992) derived the leading terms and some of the secondary terms enter-
ing the expression for the source current in the low temperature limit using a kinetic



description of the plasma. Their expression, including the leading terms, is at variance
with the traditional fluid result. Here we present the complete expression for the source
current in the low temperature limit derived with a kinetic plasma model, confirming
the leading terms found by AAMODT and RUSSELL. Our kinetic result is thus also at
variance with the traditional fluid result. It is shown that the discrepancy is due to fun-
damental errors in the nonlinear terms of the traditional fluid description. It is further
demonstrated that when these errors are corrected the fluid approach yields the same
expression for the source current as the kinetic approach, confirming the correctness of
the new expression for the source current in the low temperature limit.

The changes to the theory of three wave mixing and Thomson scattering resulting from
the new expression for the source current can have important consequences for analyzing
results from scattering experiments and indeed for judging the feasibility of certain
measurements. As demonstrated elsewhere [BINDSLEV,1991] a modelling appropriate
for JET’s collective Thomson scattering diagnostic [COSTLEY et al.,, 1988] will often
require that relativistic effects be included. A tractable relativistic theory of three wave
mixing is, however, still under development.

In Section 2 of this paper we give a detailed kinetic treatment of three wave mixing
of macroscopic waves and derive the source current resulting from the interaction of
macroscopic waves. Qur approach is entirely different from that adopted by AAMODT
and RUSSELL (1992) and thus complements and extends their kinetic treatment. In
Sections 3 and 4 we establish where the traditional fluid approach breaks down and how
it may be remedied. In Section 5 the expression for the source current is generalized to
account for the interaction between a macroscopic wave and microscopic fluctuations.
The source current expressions are combined with previous work in Section 6 to give the
equation of transfer for a scattering system, together with the scattering cross section.
The findings of this paper are summed up in Section 7.

2 KINETIC MODEL

In this section we investigate three wave mixing of macroscopic waves in a collision-
less plasma using a kinetic model. Both unmagnetized and magnetized plasmas are
considered.

In a collisionless plasma the dynamics of the electron momentum distribution, f(p,r,1),
are governed by the Vlasov equation:

of of of _
E'{"Va'*‘qe(E‘{"VXB)a—p'——O, (1)
where v = p/(ym.), v = /1 + p*/(m.c)?, p = |p|, and m. and ¢, are the electron

rest mass and charge respectively. The macroscopic electromagnetic fields, E(r,¢) and

(S}



B(r,t) are governed by Maxwell’s equations,

JB

VxE = —'E (2&)

OE 0P

B = e
V x Ho (50 5t + at) y (2b)

with the plasma current, 9P /0t, given by
JP

—ég—qefvfdp. (2¢)

We note that the expressions (2a), (2b) and (2c¢) are all linear. The non-linearity
of the dielectric response of a collisionless plasma is entirely due to the third term
in the Vlasov equation (1). The set of equations (1) to (2c) has a set of time and
space independent solutions, f®(p), E©® and B(®, corresponding to a stationary and
homogeneous plasma. For each of these solutions there is a frame of reference in which
E© = 0. In this frame we seek new solutions as small perturbations to the time and
space independent solutions:

fp.r,t) = fO®p) + fOp,r,t) + fO(p,r,t) +
E(r,t) = EMN(r,t) + EO(r,t) + ... (3)
B(r,t) = BO© + BW(rt) + B®@(r,t) +

Here the upper index indicates the order of the perturbation, so on introducing é as the
perturbation variable we have f() x §, f?) x 62, etc..

The fact that Maxwell’s equations, (2a) and (2b), and the expression for the plasma
current, (2¢), are linear and that they hold for any value of é implies that they hold for
each perturbation order, n, individually:

OB
VxE®W = — 5 (4a)
OEM™  gp™)
VxB®W = uo(“ ot ) (4b)
oP()
i qe/vf(”) dp . (4c¢)
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To zeroth order in é the Vlasov equation reads

of©
B© =
(pxBO)- 2 =0 (5)
which has solutions of the form
fO = O, py) (6)

corresponding to gyrotropic distributions. The first order equation is the familiar lin-
earized Vlasov equation, which describes linear wave propagation:

af©
m - _pm 97
cf s 7
Here we have introduced the linear operator, L,
_of | of o Of

and the shorthand notation, F(", for the force the fields E(™® and B{™ exert on an
electron moving with velocity v,

F™ =g, (E™ +v xB™) . (9)

Let the waves [f(12), EU2) BUa)] and [f('P) E(1?) B(P)] be two independent solutions
to Maxwell’s equations and the linearized Vlasov equation. For brevity we will refer to
these solutions as [la] and {1b], and similarly for other solutions. We note that the sum
is also a solution to this set of equations and that within this set there is no coupling
between the two solutions. Bilinear coupling between linear waves and thus scattering
in the first Born approximation is accounted for by the second order equation:

.af(O) FO aftn

(2 _ _p@ _pw 9
Lf Jp op

(10)

Assume that in the linear approximation the two waves [la] and [1b] coexist in the
plasma. Noting that equation (10) is linear in second order quantities we can con-
struct a second order solution as a sum of three elements, [2a] = [f(za), E(?) B(2“)],
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(28] = [f2), E®), B®)] and [20] = [f(?9), E(??), B(?%)], where each element satisfies
Maxwell’s equations, (4a) and (4b), with the associated plasma current given by (4c)
with n = 2a, 2b, 2c. Elements [2a] and [2b] satisfy the second order Vlasov equation
with no cross terms in the linear wave quantities:

09 _ puey 040

(20) _ (2a) |
Lf F p ap

a=a,b; (11)

while the equation for element [20] includes only cross terms in the linear wave quanti-
ties:

of af1b) afa)
Lf2) = _F2). 20 g, 2L pab) 12
Elements [2a] and [2b] are the second order modifications to the linear waves [1a] and
[1b] respectively while [20] is a new wave resulting from the bilinear interaction between

the linear waves [la] and [1b]. This is the first Born approximation to the scattered
wave.

Noting that the left hand side and the first term on the right hand side of equation (12)
are identical to the linearized Vlasov equation, the electromagnetic field of the scattered
wave may be found from the inhomogeneous wave equation’

A(k?,w%) - EC)(k? w%) = (K%, w%) . (14)
w€g
The source current, j°(k?,w?), is given by
(k% w%) = qe/Vf"(p,k",w")dp , (15)

and f°(p,k’,w’) is the Fourier-Laplace transform of f°(p,r,t), which satisfies the
relation:

'In this paper a spatial Fourier transform and a temporal Laplace transform are used:

A(r,t) = L Ak, w)e'KT=4 dkdy (13a)
o B (27I')4 —oo4iv JR3 e ’
Ak,w) = / LA(r,t)e“(k'r‘“')drdt. (13b)
4) 3

The Fourier-Laplace transform, A(k,w), is defined for complex w with a sufficiently large imaginary
part, wpy, that the integral over ¢ in (13b) exists. This defines the contours to be taken in any other
integrations in the definition of the transform when the analytic continuation of A(k,w) to the rest of
the domain of w 1s required.
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Lf o F ap (16)

A(k,w) is the wave tensor,

Aij(k,w) = eij(k,w) + N {kik; — 6} , (17)

where N = |k|c/w is the refractive index, k = k/|k| is the unit wave vector and e(k,w)
is the dielectric tensor.

Given the source current, j°, the field E(??) of the scattered wave can be found from
equation (14) (see e.g. BINDSLEV (1991)). To find the source current we first ob-
tain f°(p,k%,w?) from equation (16). This can, for instance, be done by integrating
equation (16) along characteristics (see e.g. CARRIER and PEARSON, 1976 for a general
discussion of this method) followed by a Fourier-Laplace transform over space and time.
Alternatively, the Fourier-Laplace transformation may be carried out first and followed
by an integration over the azimuthal angle of p. Details of this approach as applied to
the present problem may be found in BINDSLEV (1992) starting at equation (7.25) on
page 112. The result is

—ifsin¢ 00
o 4 o € —taT iBsin(¢—7 4 (4
F(p. k%, w”) = / e { PPN pL b — T k% w%) ) A, (18)
we/y Jo
where w, = —q.B% /m, is the angular electron cyclotron frequency,

v”kﬁ—w"
a = —I_— (19)
we/7
ULki
= , 20
= o (20)

and

a1 (p, kb, wb)
op

Qo pes 6,k ,w) = — | (F““)(p,ka,wa)- (21)

(1a) a  .a
+ F(lb)(p, kb,wb) . 6f (pvk s W )) dk dw

Jp (2m)t



with

K+kP=k° |, w4+uwP=w, (22)

k*—kP =k Ww—wh=w.

pj and p, are the parallel and perpendicular components of p relative to B and

similarly for other vectors. ¢ is the azimuthal angle of p in the coordinate system where
z =BO/|BO)| and k% = k{X + k{Z.

In the unmagnetized case f7 is given by

f7 (P, kW) = 2 Q(p, K, w") - (23)

w’ —v-k7

For both the magnetized and the unmagnetized case the definition of the Fourier-
Laplace transform, (13a) and (13b), ensures that the integration over p in expression
(15) follows a contour corresponding to the causal solution.

Expression (15) for the source current with f? given by (18) or (23) is fully relativis-
tic. We note that in a relativistic treatment of three wave mixing and scattering the
full details of the momentum distributions of the interacting waves, [1a] and [1b], are
required.

In the subsequent analysis in this paper we will assume certain limitations on the mo-
mentum distribution f(?) which allow the source current, j°, to be expressed solely
in terms of the zeroth and first order moments of f(!* and f('®), These assumptions
effectively amount to limiting the scope of the theory to a low temperature plasma.

We include a separate derivation for unmagnetized plasmas because of the insight this
affords without the extensive algebra required for the magnetized case.

2.1 Unmagnetized Plasma

In this subsection the plasma is assumed to be unmagnetized, i.e. B = 0. We
further assume that f7 is significant only for values of v and v = |v| which satisfy the
inequalities

<1, (24)



-<1. (25)

Although these limitations are only directly imposed on f?, they will in most cases only
be satisfied if similar conditions are imposed on f(13) f(t?) and £ implying a cold
plasma. With (24) and (25) satisfied we can make use of the following expansions:

.k Lo\ ?
_E—l——a = i0(1_*",0 >+0{(V}f)}’ (26)
w?—v-k w w w

v =;§+oﬂwqﬂ. (27)

€

Retaining only terms which after partial integration are of zeroth and first order in v,
the source current integral (15) contains the following terms:

L OfW @
2 Q) . _ _ 9 gli,0) 9
qe/vE op dp meE n' | (28a)
K. Bfl) 6Lk RO . ke
qgfv"k 0. Y7 = —ﬁi<EMl~——-+ﬂ”E ) ., (28b)
w? Jp Me we w’
. af(j) Qe 0 ,
2 () . — _ 110 (9
qe/v(va ) op dp = me']] x Bt | (28¢)
where
= [fap, (29)
i = a [vfOdp, (30)

and (z,7) = (la,1b), (1b,1a).

Inserting (28a) to (28c¢) in the expression for the source current we find:



ja — 1qe /{qg (E(la)n(lb) +E(1b)n(la)) (31)

m.w?

+ E(la)j(lb) k7 +j(1b)E(la) k7 + E(1b)j(la) - k? .(13)E(1b) . k¢

wa’ wa wd wcr

+318) » BU2) 4 j0a) B(lb)}

If one of the interacting waves, e.g. [la], is monochromatic then the convolution inte-
gral in the expression (31) for the source current can be eliminated. Assume that all
quantities relating to wave [1a} have the form:

A1) = Al exp {i (k-1 = wt)} + coc.. (32)

The expression for the source current then takes the form j° = j°~ + j°* where

i o= 1qe q (E(la')n(lb) + E(lb)n(la')) (33)
mew? ©
L3(Ab) ke . E(la) . ke s(1a’) , k° 1 E(lb) ke
T8 (UL L S L ST o[t S S (L et
w w w w

+5(18) 5 BOR) 4 5020 B(lb)} ,

and the quantities associated with wave [1b] are evaluated at the wavevector kP = k° —k®
and frequency w® = w’ —w?. j°" is similar in form to j°, the main difference being that
the quantities associated with [1b] are evaluated at the sum wave vector k> = k? + k?*
and sum frequency w® = w’ + w* Terms of the type j°* are usually neglected when

analysing scattering. Whether this is permissible clearly depends on the spectrum of
the wave [1b).

2.2 Magnetized Plasma

We now allow the plasma to be magnetized, i.e. B(®) # 0. Here we assume that f is
significant only for values of v which satisfy the inequalities

ole

< 1, (34)



v”kﬁ

_ 1; Z 3

w? + sw, < b s€ L, (35)
kO’

R oo, (36)
we

s takes on all integer values (Z is the set of all integers, positive and negative). Although
these limitations are only directly imposed on f7, they will in most cases only be satisfied
if similar conditions are imposed on f(!*) f(1® and f© implying a cold plasma. We
will refer to the terms on the left hand sides of equations (34), (35) and (36) as the
small terms.

These assumptions are similar to those made by AAMODT and RUSSELL (1992) in their
derivation of the expression for the source current. The approach adopted here is, how-
ever, entirely different to that taken by AAMODT and RUSSELL, and thus complements
their derivation. Care is taken to make explicit all important steps in the derivation and
expose the points in the derivation where the assumptions (34) to (36) are required.

With the assumptions made above, the expression for the source current, j7, can be
expanded in velocity. As in the unmagnetized case we retain only terms of zeroth and
first orders in velocity in the final result.

To expand the expression for j in v we begin by expanding equation (18) in powers of
velocity. To this end it is convenient to cast (18) in a slightly different form. We note
that the part enclosed in braces in equation (18) is periodic in 7 over 27. This part can
therefore be expanded in a Fourier series

P e . P2 , .
el,@sln(¢-T)Q(¢ _ 7_) — Z etsT%A ezﬁsln(¢—f )Q(¢ _ Tl)e—zsr dr' . (37)

=00

To reduce the length of equations we have omitted showing explicitly that @ depends
on pj|, p1, k% and w’. Inserting (37) in (18), integrating over 7 and replacing 7’ with ,
gives

e—iﬁsinq& oS3 1 1

fa — Z - AZﬂ eiﬁSin(d’—T)Q(gﬁ - T)e—is‘r dr . (38)

we/v = a—s)2n

Here we have made use of the fact that ap, < 0, from which it follows that

0o —t(a=s)r 1
/ e~ Ha=T gr = ———-—6, = - ! .
0 —i(a—s)], ta—3)
When conditions (34) and (35) are satisfied we may expand —¢/(a — s) in v,
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1 We v ki
~ (1+—”L+...>, (39)

- ~
la—38) w7+ sw, W’ + sw,

and when conditions (34) and (36) are satisfied we have

wy kg

eBsin(é-7) oo + sin(¢ - 7') +.... (40)

[

Inserting (39) and (40) in expression (38) for f?, retaining only first order terms in v,
and inserting the result in expression (15) we find that to first order in the small terms
the source current is given by

. Ge 2 2r
g = - d
j > /dp v (41)

o <
s=—oo W + SWe

(1 L T L [sin(¢ — 7) — sin ¢]> Q¢ — 7)e " .

w? + sw, We

Here it was assumed that Z = B(9/|B()| and k? = kX + k(3.

Since the integrand in (41) is periodic in ¢ over 27, the interval over which the ¢-
integration runs, it follows that ¢ may be replaced by ¢ + 7. Expression (41) then takes
the form

o0

. qe Z 2T
o — 2 - dr R(7) -
J 27 Z W7 + Ssw, / dp 0 TR(r)-v (42)

§=—00

k"v 2"0 1 . . -t
(1 + 1l + kiv [31n(¢) —Sln(¢+7')]) Q(qﬁ)e T

w? + Ssw, We

where

cost —sint 0
R(r)=< sint cost 0 ;. (43)
0 0 1

For convenience we introduce the following set of pseudo tensors:

Ni; = 6ij — 6i3bjz, &ij = €ij3,  Cij = di3bjs (44)
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which are given explicitly by

100 0 10 000
n=¢0103, £E=¢-100;, (=400 0 ;. (45)
0 00 0 0O 0 01

This permits R(7) to be written as R(7) = costn —sin7€ + . € is the standard
Levi-Civita symbol (€;jra;br = {a x b},).

On integrating (42) over 7 we find

1

Po= Y o [ Q) (46)

g
§=—00 w

w? + sw, We

ko 1.0 1.0

where
R(l) _ 1 /21r R(T) —isrd
T 21 Jo € T
_ 615 + 6—13 613 - 6—13
et —5— n-— —_22— e + 605 C
and
1 form :
R® = — ["R(r)sin(¢ + 7)™ dr
27 Jo

Sos8in ¢  pse'® — b_g,e”™®
= + . n
2 41

¢.

—8os bas RN R —id o1, 6 _ 5 ,e'i‘b
n OCOS¢+ 2s€° + 0_g4€ £+ 1s€ '1
2 4 22

Summing over s in (46) and writing the result in component form with implicit sum-
mation over repeated indices we find

12



[

ec kg e ki Uz kg
i =2= [ap Q(¢)([1+%’y] T Tl - 11333) (47)

where
> 1
(la) (1)
Tl] szz’oo 1 + SQRU
1 Q2
= T T T bt G (48)
i 1
T8 _ - __rM
P P P
1+ Q2 1252
S Acon T A €ij + Cij 5 (49)
o 1
(2) — 2
Tijkvj = vy s;;oo mR( ) )
1oy + (1 - 292)6“ 2026, — 12642 ZQ(Skl + 6k2
111(]213 1 — 402 Mij + 1 — 402 ¥ -1 02 Cl] ) (50)
and Q = w./w’, v, = vy cos¢, v, = v;sin¢g and v, = v;. Equation (47) contains

integrals of the form

_ Of
I—/gﬂgadp

Integrating by parts with respect to p; and noting that 0F;/dp; = 0 we find

dg

I=-[5 Ffdp.

These integrals contain terms of the form
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apl 1] v; me. il
0 T(e) 6 (1) (1a)
op vl VT o ( 12T v; + v, Ty )
0 18 (18 18
a—p—{v T( )vj = R ((513T )’U] + va'i(I ))
e ! (@)
ik ViV = - (TuJ + T ) v;

Here, making use of condition (34), we have neglected terms of second and higher order
in v/c. Partial integration of equation (47) thus gives

zqe dkdw (13) (1b) (1b) £(1a)
| w /(2)4 fO8 + B 1) (51)

o3 .k‘a ¢4 22
(T(1 ) { L (6T + 60T

c

c

ka k‘
Il (18) (18) t (2)
0 (5T 4+ 66TH7] - —= [T,],+T.,J]} )

Noting that T(®) is simply related to the cold plasma susceptibility tensor, x° = x(w?),
associated with the scattered wave, [20],

wz (1) 2 n(O)qz

Xi =51 s w, = , (52)

(w")2 i MeEp

and introducing the rank three pseudo tensor

2

X3 = =I5 (65061 + 81655) {

1k c
7 [

ke
6.2T4 ") — Ti)| + 6aaTb‘f")} (53)

C

equation (51) can be written
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o —w’¢y [ dkdw a b
Ji T T 0 /(2#)4/ Y + elmnvm B B )f(l) (54)

n (Ez(lb) 4 elmnvay(llb)) f(la)] (th + X752 )

Integrating over p and retaining only terms up to first order in v, we find

o —iw"e’io dk dw (1) (la) 1a) 1b)
T T (27) {le [n E;® 4 nla g (55)
+ €imn (TUPVBEY 4 30N BIM) ]
1 . .
(M 4o e) )
where
n(a) = /f(a) dp , (56a)
v = /Ujf(“) dp . (56b)

v(®) is the electron flux associated with the momentum perturbation f(*) and should
not be confused with a fluid velocity. It is important to note that both the tensors x?;
and X7, are evaluated with the frequency, w® and, in the case of X7},, the wave vector,
k?, of the scattered wave.

If one of the interacting waves, e.g. {la], is monochromatic then the convolution integral
in the expression (55) for the source current can be eliminated. Assuming that all
quantities relating to wave [la] have the form (32) (see also discussion of expression
(33)), the expression for the source current then takes the form

o —w’e a a
3= e {XG [ MVE 4 e (57)

)
+ €tmn (vgb)B?(lla’) + ﬁga,)BSb)) ]

Equations (55) and (57) are the expressions for the source current in the low temperature
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limit, derived on the basis of the kinetic plasma model. The terms in expression (57)
involving the susceptibility tensor x° are identical to those found by AAMODT and
RUSSELL (1992). For the remainder of the terms, AAMODT and RUSSELL introduce a
number of additional simplifications, making it difficult to compare the terms in (57)
involving X7, with their result.

3 TRADITIONAL FLUID APPROACH

The expression for the source current used most widely, explicitly or implicitly, is that
derived by AKHIEZER et al. (1962 and 1967) and SITENKO (1967) on the basis of the
cold fluid equations. Their expression for the source current of the scattered field in a
magnetized plasma is

[

Xt e BV (58)

no mec w?

wa o) a a
(“:):Xik [kk‘sﬂ - 5kj kz

- = X (S, — k2)6x +6mkk“)] +X“a)kgs,-,)} .

p

Here u is the fluid velocity

via)

u? = , (59a)

n

n = n®4pla) g0 p00 L (59b)

where n{® and V() are defined by expressions (56a) and (56b) respectively. Note
that Gaussian units are used in (58). The rectangular brackets in (58) are missing
in SITENKO’s expression (11.5): this is clearly a misprint, but it has nevertheless been
reproduced in a number of more recent articles.

In the derivation of (58) AKHIEZER et al. and SITENKO ignore the difference between
v?/n and v*/(n® + n®) and consequently lose second order terms. Since scattering is
due to second order terms this is not acceptable. The momentum equation from which
they start (see SITENKO (1967) equation 11.1) also leaves out second order terms. For
these reasons (58) is not the correct expression for the source current in the cold plasma
limit.? In particular we note that the first term in (58), which represents scattering

2AKHIEZER et al. (1967) also gave a derivation based on a kinetic model of an unmagnetized plasma.
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due to density fluctuations, corresponds to the first term in equation (57) with the
important substitution of w?x® for w’x?, which means that in this term AKHIEZER
et al. and SITENKO incorrectly use the plasma conductivity associated with wave [la]
rather than that associated with the scattered wave [20].

Their result has nevertheless been quoted widely and used for predicting the perfor-
mances of diagnostics and for analyzing results, and the methods they employed may
have been used for a range of other non-linear plasma phenomena. We shall therefore
investigate their approach in detail to clarify where it goes wrong and how a fluid ap-
proach may be applied correctly to the problem of three wave mixing and scattering in
a plasma. To this end we need the details of the derivation of their result. This does
not appear to be available in the literature, so we give it here.

In the traditional fluid approach the expression for the source current of the scattered
field is derived as follows. The total current associated with the electrons is given by

j = genu . (60)

In the cold fluid approximation which neglects pressure terms and collisions the density,
n, and fluid velocity, u, are governed by the continuity equation,

on  O{un}
o + o 0, (61)
and the momentum equation,
Ou Ju ¢
—a?-{-ut'aTl—E(E‘{‘UXB) (62)

As in Section 2, solutions are sought to this set of equations as perturbations to a time
and space independent solution, i.e.

n(r,t) = n©@ + 2O t) + 2@(r,t) +
u(r,t) = ul(r,t) + u®(r,t) +

(63)
E(r,t) = EW(r,t) + E®(r,t) +

B(r,t) = B@ 4+ BO(r,;t) + B®(r,t) + ...,

This derivation unfortunately has some mistakes which bring the result into agreement with their incorrect
fluid result.
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corresponding to a homogeneous and stationary plasma where the equilibrium values of
u and E both are identically zero.

As in the kinetic treament in Section 2, inserting (63) in Maxwell’s equations and
equations (60), (61) and (62) results in a set of equations for each perturbation order
which is linear in quantities of that order. We may therefore represent the first and
second order solutions as a sum of the elements [1a], [1b] and [2a], [2b], [20] respectively,
where the significance of each element is the same as in Section 2, and hence [20] is
the scattered wave which is found from the second order equations including only cross

terms in first order quantities.

The equations for [20] are Maxwell’s equations, the current equation,
5 = g, (ROl 4 RO 4 (DO (64)

and the second order momentum equation for u(®?.

3.1 Unmagnetized plasma

First we consider an unmagnetized plasma, i.e. B(®) = 0. The momentum equation for
u(??) then takes the form

o (20) aa (1b) a (1a)
u ne yow +u§1b)_‘:l__

8t ' 87',' (97‘,‘
e (EC?) + ul®) x BUY 4 (¥ x B(la)) _ (65)
M

Note that because u(® = 0 we do not need a separate equation for n(??),

Fourier transforming (64) and (65), assuming that wave [la] is monochromatic and of
the form (32), and ignoring terms involving the sum frequency, one finds

- 2 (0
s(207) Y4 : [E(Za) 4+ ula) % BUP) 4 y(1b) o B(la’)] (66)

wome,

+ gen'® [(u(la’) . kb) u®) 4 (u(lb) . ka) u(la')]

w

+ ¢ [n(la')u(lb) + n(lb)u(lay)] :
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The first term in this expression 1s the current driven by the scattered field itself. The
rest of the terms make up the source current, }°, which drives the scattered wave. At
this point AKHIEZER et al. consider the interaction of a monochromatic wave, [la), with
plasma fluctuations, [1b]. They further assume that the fluctuations are electrostatic,
implying that BU'®) = 0 and hence that the second term in (66) is identically zero. A
further consequence of the electrostatic approximation is that u(*® || k> which makes
it possible to solve for u(™ in the linearized continuity equation for wave [1b]: u(!® =

kPwPn(1b)/ (kb)2 n(©). Using this relation, Faraday’s law, and the linearised momentum

equation (the two latter for wave [1a]), the third, fourth and fifth terms in (66) take the
form

zz%:ii) ullb) 5 Bla) | %{fo) [(u(la') _ kb) ul®) 4 (u(lb) ) ka) u(la’)]

“I: d a’ (4
= ey (B

Making use of the continuity and momentum equations for wave [la)], the sixth term in
(66) takes the form

: iq? wP )
qen(la )u(lb) — e . 2kb (ka . E(la )) n(lb) . (68)
e

while the seventh term can be written

- 2
gen(Pu(1e) = e _pua),1e) (69)
Mo

Collecting expressions (67), (68) and (69) the source current takes the form

, b /b, E(a) k2 - gQ1a)
E(la) + w - k° + - kb n(lb) ) (70)
(F)\ e w

This expression for the source current of the scattered field is identical to that given by
AKHIEZER et al. (1967), page 144.

2
0T __ zQe

J
Mew?

In an isotropic medium transverse and longitudinal oscillations decouple. In the cold
plasma approximation, although longitudinal oscillations exist, only transverse oscilla-
tions propagate. In expression (70) one can isolate that part, j9, of the source current

which is responsible for the scattering of a transverse wave [la] into a transverse wave
[20]:
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ja_ — lqz E(la7)n(lb) (71)
n s .

Here E(Lla’) is the component of E(!*) which is perpendicular to k?. Expression (71) is
identical to that given in SITENKO (1967), equation (10.13).

For comparison with the result derived by the kinetic approach in the previous section
we also give the expression for j° without assuming that wave [1b] is purely electrostatic
and retaining the symmetry between waves [la] and [1b]:

-2
P o= %(lE(la')n(lb)+LbE(1b)n(1a’)) (72)

me \w? w

- (1b a t(1a’ b
+ tqe (E(la’)-]( )k +E(1b).l( )k )

mew’ w? wb

e /. ) 4 s(1a
4 (J(lb) x B 4 j0 )xB("’)) '

mew?

Here use has been made of the linearized momentum equations and the linearized current
equations for waves [la] and [1b].

Comparison of expression (72) with the kinetic expression (33) reveals a number of
differences. In particular the first term, which is usually the most significant in Thomson
scattering, differs in the two expressions by w?/w?.

3.2 Magnetized plasma

The traditional fluid derivation of the source current in a magnetized plasma follows
the same lines as that of the unmagnetized case. Here we therefore only give those
steps in the derivation for a magnetized plasma which differ from the derivation for an
unmagnetized plasma.

Expression (64) for j2%) is again the starting point. In the magnetized case the momen-
tum equation (65) is modified to read

5u(2‘7)+u(1a) Oulth) + u(1b)au(la)
0t ' 37‘,’ ! a’f','

(73)

e (Eua) + u®) x BO 4 4(23) » B L ((1b) o B(la)) ]
Me



Fourier-Laplace transforming equation (73), assuming [la} is monochromatic and ig-
noring terms involving the sum frequency, we find

m-u??) = Je (E(za) 1 ul1a) 5 BOB) 4 (b o B(w)) (74)

e

i)k g1 (bl . (18
where the tensor Il has the form

H,-J- = —iw"é,-j -+ wce,-jkB,(co) ) B(O) = B(O)/IB(0)| . (75)

The inverse of IT is related to the susceptibility associated with the scattered wave:

et = O (76)

From expressions (64) and (74) one then finds that the source current for the scattered
field in the magnetized case is given by

ja" - _ ZE_O (waxa . E(la')n(lb) + wbxb . E(lb)n(la’)) (77)
n(0)

— izow?x” - (ul®) x BUY 4 u() x BO))

B EOq:ne WX - [u(la’) (k" . u(lb)) + ul® (ka : u(la'))] :

(1a’) _

i =

E](Ia,)/qen(o), and Faraday’s law, all for [1la], expression (77) can be written as

By using the linearized continuity equation, the linearized momentum equation, u

a

N §
—iWw EOXij

g~ 1€0 a_a la’ qeeowawa 4 a 1a’
Ji = % XijE](‘ In1®) 2 XijejkaklEl( )ng) (78)
n(0) mew,
~i€0wa o|ra §k? (wa)2 a (s kb § kb
+ o N k3oim — bjiky, "**—w; th(jk m + Ojm k)

m

- ieoxz,kgaim}fz}“”u“b) .

This expression for the source current of the scattered field in a magnetized plasma
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is identical to expression (20.3) in AKHIEZER et al. (1967) and expression (11.5) in
SITENKO (1967), except that we have used SI units.

The first term and the last term in (78) are symmetric with regard to the interchange
of waves [la] and [1b] which can be seen by noting that they stem from the two first
terms in (77), or made explicit by rewriting the last term as

. a 1.a (1a”), (1b) iwbeo b r+{(1b) (1a")
— t€oXpkpbim B} Uy = — (0) xi; E5n . (79)

This term can therefore be interpreted as the interaction between the electric field
fluctuations [1b] and the density perturbations associated with the incident wave [la).
The assertion by AAMODT and RUSSELL (1992) p. 747 that the second term in their
expression (10) is new is thus not correct. Like AAMODT and RUSSELL’s result and our
kinetic result, AKHIEZER et al. and SITENKO’s fluid result for a magnetized plasma is
symmetric with respect to interchange of waves [la] and [1b]. This is not explicit in
their final result (78), but it is evident in expression (77).

The differences between the traditional fluid expression and the new kinetic expression
are best appreciated by comparing expressions (77) and (57). We find that in the first
two terms, representing scattering due to the interaction of electric fields with density
perturbations (E(#)n(P) and E(P)n(12)) ) the factor w’x? in the kinetic expression (57)
is replaced in the first and second terms of the traditional fluid expression (77) by
w?x® and wPx® respectively. In the third and fourth terms, representing interaction
between particle fluxes and magnetic fields (¥11®) x B(12) and v(12) x B(1?)) we find
complete agreement between the two results (the difference between v/n(® and u is
of higher order and not significant at this point). In the fifth and sixth terms we find
considerable differences between the two expressions.

While the differences are of minor practical importance to most laser scattering exper-
iments, they are not negligible for the millimetre wave scattering experiments planned
at JET [COSTLEY et al., 1988] and TFTR [WOSKOV et al., 1988], and from a theoretical

point of view these discrepancies are clearly not satisfactory.

4 CORRECTION OF THE FLUID APPROACH

Since the fluid description has been used so extensively in the modelling of Thomson
scattering it is of interest to see where the traditional approach goes wrong, and how
the correct expression for the source current may be derived by the fluid approach.

There are two main problems with the traditional fluid approach. To expose the first
problem we write down the exact definitions of the fluid variables associated with each
wave in terms of the momentum distribution of the plasma:

S}
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n o= Y n®, (80a)

n® = [fap, (80b)

u = Y ul?, (81a)

1
(¢) _ = (a)
u = / vf@dp. (81b)

We note that while n{%) depends only on f{*) this is not the case for u(®: through the
division by n, u® depends on the density perturbations associated with all the other
waves that are present in the plasma.

The differences between the fluid velocities associated with a given wave but with dif-
ferent sets of additional waves present is of second or higher order and it is therefore
acceptable to ignore the differences in linear problems. Since the problem of scattering
or three wave mixing is manifestly nonlinear, second order terms in the definition of the
fluid velocity may not be ignored as is done in the traditional fluid approach.

The second problem with the traditional fluid approach is that the pressure term, Ww,

WW =

3|

J(v—u)v-wifdp, (82)

in the momentum equation was ignored. While it may be acceptable at low temperatures
to assume that the first order pressure term, Ww(!), is small compared with the other
terms in the linearized momentum equation, this is not the case for ww(?) in relation to
the other terms in the second order momentum equation, as will be shown in subsections
4.1 and 4.2. Consequently, it may be acceptable to ignore the pressure term in linear
problems but not in scattering and three wave mixing.

To overcome the first problem we use the electron flux, Vv,

<
I

Z v(a) (83a)

v = / Vi@ dp | (83b)
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as the second fluid variable instead of the fluid velocity, u. The second problem we
overcome by including the pressure term in the momentum equation. This, of course,
implies that the energy equation is required. QOur basic set of equations are thus, in
addition to Maxwell’s equations; the current equation,

j = ¢V, (84)

and the zeroth, first and second order moments of the Vlasov equation,

0 5}
d 0 e
j e

0 0 e
EWF} + mvil’jvk - 51: (Eiv; + viEj + (bki€itm + 0ik€jim JOkUIBr) =0.  (87)

Here we have introduced the variables 7;7; and 7;0;0; defined analogously to ;:

T = Y mn (88a)
v = / vio; f@ dp | (88b)
v = ) oY (89a)

s = v dp. (89b)

To first perturbation order the moments (85), (86) and (87) of the Vlasov equation give
the familiar linearized fluid equations. To find the source current we need the equations
for the second order terms. Making use of (83a) we find for the current associated with
wave [20]

j(2¢7) — qev(2a) ) (90)

Comparing expression (90) with the traditional fluid expression (64) we find that already
at this stage in the derivation there are significant differences.
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4.1 Unmagnetized plasma

We first consider an unmagnetized plasma where B(®) = 0. Making use of (83a) and
(88a), and including, in addition to [20] terms, only cross terms in first order quantities
we find from (86) that

vy T} | e o)
— = - = 4 g 91
Ot aT]' + mcn ' ( )
+ 2 (n(“’)E,(la) + n(l")Eflb))
me
1 (1a ) a
+ —€iji (JJ('] 'B} +J]('1b)Bk) :

e

We assume that vw(© ¥vw{) and ¥vwv(?®?) are small compared with the other terms of
zeroth, first and second order respectively. This essentially amounts to limiting the
plasmas to low temperatures. With this set of assumptions we can close the set of
equations for j??) with the energy equation for ¥¥(2). Retaining only second order
terms it takes the form:

a 1 a a a a
—T;T; (20) (Ez(l ) - (1b) + E(1 )Jz(lb) + E| lb) (1 )+E](- )]51 )) ) (92)
ot Me

Here we see that ¥w(2°) can indeed be similar in magnitude to the other second order
terms even if vw{!* and vw('®) are small compared with the other first order terms.
vv(29) must therefore be retained in the momentum equation. Fourier-Laplace trans-
forming the current equation (90), the momentum equation (91) and the energy equation
(92), eliminating ¥(?*?) and ¥¥(??), and subtracting the linear plasma response to wave
[20] we find the new fluid expression for the source current where, as before, we ignore
the terms involving the sum frequency:

ja‘ — iera {Qe (E(la’)n(lb) + E(lb)n(la’)) (93)
MW
L 3(1b) | Ko . E(1a) . ke i(1a’) | ke . E0b) . ko
T L RS (AL S T A S T AL
w w’ w? w?

Comparing expression (93) with (33) we find complete agreement, demonstrating that
the expression for the source current can be derived correctly by the fluid approach. It

25



is interesting to note that the third to sixth term on the right hand side of (93) (the
second line) all stem from the term 8{%;5;(*")}/9r; in (91) which was determined by the
energy equation (92).

The most important consideration used in guiding this derivation was that fluid variables
relating to a particular wave should not include higher order terms relating to other
waves. This helped to ensure that no second order terms were lost in the manipulations.
The failure of the previous fluid approach was primarily due to the inappropriate use
of the fluid velocity as one of the fluid variables. As pointed out earlier, this variable
cannot be related to a single wave only, but contains second order terms from all waves
present. Its use led among other errors to an incorrect expression for the scattering
due to the interaction of E12) with n{'®) which is in many cases the dominant term.
Further errors were introduced by the omission of the pressure term in the momentum
equation which left out terms of the same order as those included in the traditional fluid
expression for the source current.

4.2 Magnetized plasma

For a magnetized plasma we again derive the expression for the electron flux, ¥{?7),
associated with wave [20] from the momentum and energy equations (86) and (87), but
now assume that B(®) £ 0. Including only second order terms and only cross terms in
first order variables we find that the momentum equation gives

20 20
0T | 0T e (o pn) 4 gl 4 o8 )
at arJ me 1 1 1

qe — (20 —(1a . a
__nll €ik (vj(2 )BI(cO) + v],(l )Bl(clb) +vj(lb)Bl(cl )) = 0. (94)

€

From the energy equation we find

;P g
—U—g]t—— _ 4 exim(8ik6in + 6inb 1) B T75,(27)
mMe
“'q_e(éikéjl + 6ubjx) (U_l(la)E;(clb) + U_l(lb)El(cla)) = 0. (95)
m

e

Fourier-Laplace transforming equation (94) gives



o537 = L (n@EP) 4 n) g 4 n(0) g (96)

Me

2 (B £ 00 BE) )

€

The tensor I is defined in expression (75). Fourier-Laplace transforming equation (95)
gives

— 1w T o 0% = ge (6akObt + Oaidpk) (U_z(“')E;(‘lb) + v_l(lb)E;(cla,)) . (97)

€

Here the rank four tensor I'y,; has the form

W,

Labij = 60i0p; +

(€im BO 61845 + €xjm B9 80i64k) . (98)

wa

We have made use here of the symmetry of 7;7; with respect to interchange of 7 and j
in order to bring I'y;; into a form which facilitates the finding of the inverse of T' (see

below).

Orienting the coordinate system such that z = B(O), then I'y,; can be written

Labi; = 6aibs; + 182(&ails; + 0aibs;) (99)

where Q = w./w?. &; is defined with 7,; and (;; in expressions (44). We define the

inverse of I'y;; as the rank four tensor, Pi_j};b’ which satisfies the relation

TiaDabim = 6ibjm - (100)
This tensor has the form
_ 1 )
Ty = a0 [—ZQ (iabs + Eiamjp) — 2% + (1 — 292)’7:‘::'71'!»] (101)
+ T [maCjb + Ganjp — 1Q(Ciajp + fiaCJ‘b)] + CiaCjp -

Solving for vw{27) in (97), inserting the resulting expression in (96) and solving for

v(2°7) in this equation we find the flux and thus the current associated with wave [20].
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Subtracting the linear plasma response to the wave itself gives the following expression
for the source current:

.- —w’e o a’ a’
Jho= n(o‘)—oxhi{"(l 'EM 4+ nM g (102)

+ eije (70 BEY + 500 B)

Nea

kS ' .
w_]gri_j(lzb(fSakébl + 8atdbk) (v_l(l" VE(M® 4 ) g1 ))} .

+

Orienting the coordinate system such that in addition to Z = B® we also have that
k? = k(X + kjz, then

Ned

k7 1.,
—L T o(6akbbr + barbur) = zXhlk

oo iab

where X7, was defined in (53), and we find that the new fluid expression (102) for the
source current in a magnetized plasma is in complete agreement with the kinetic result

(57).

5 INTERACTION OF A MICROSCOPIC AND A MACROSCOPIC WAVE

In the previous sections we have considered non-linear interaction between macroscopic
waves, 1.e. waves for which the ensemble averages of their microscopic fields and distri-
butions did not vanish. These descriptions of scattering do not include the scattering of
a macroscopic wave by thermal fluctuations, which is most readily seen by the fact that
the ensemble averages of the microscopic fields and microscopic distributions associated
with the thermal fluctuations and the resulting scattered fields are identically zero.

Here we must resort to a microscopic description of the plasma, introducing the en-
semble average at a later stage in the development. Let N(r,p,t) be KLIMONTOVICH’s
microscopic distribution function [KLIMONTOVICH, 1967 and 1982; SCHRAM, 1991}, and
EM(r,t) and BM(r,t) be the microscopic fields. The microscopic distribution function
satisfies the dynamic equation [KLIMONTOVICH, 1982, Section 24]

ON  ON " "
W_*_v*é—;‘_-*_qe(E +VXB)'

ON

%5 =0 (103)

We now split the microscopic quantities [N, EM, BM] into a macroscopic part [f, E, B|
and microscopic fluctuations (N, E, B], defined respectively as
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f=(N)y, E=(EY), B=(BY), (104)

and

N=N-(N), E=EY-(EM), B=B"-(BY), (105)

where () denotes ensemble average. Note that from the definitions (105) it follows that
<.7\7 > = <E> = <B> = 0, as stated in the first paragraph of this section. It is convenient

to introduce also the fluctuating microscopic force F = ¢.(E + v x B).

Taking the ensemble average of the dynamic equation (103) we get the Vlasov equation
plus the collision integral, d (N F;) /0p; [KLIMONTOVICH, 1982],

Of L .. 0F L ROF L 9 npN
§+U1'5E+Eapi+5])—i<]vﬂ>—05 (106)

which governs the macroscopic waves.

Subtracting (106) from (103) we obtain the dynamic equation for the fluctuating mi-
croscopic distribution,

O S L (RR A (BR (B} =0, o

We see from (107) that the fluctuating microscopic distribution is modified by the pres-
ence of macroscopic waves through the terms FN and Ff (the term 0 (FN — <f‘N>) /Op
represents fluctuations in the collision integral and can be ignored for the present pur-
pose). This modification is the scattered wave resulting from the interaction between
macroscopic waves and the microscopic fluctuations (e.g. thermal fluctuations). Let [§]
represent the microscopic fluctuations in the absence of macroscopic waves and let [i] be
the macroscopic waves. The dynamic equation for the first Born approximation to the
scattered field, [s], is obtained from (107) by retaining, in addition to the homogeneous
part of (107), those terms which involve cross products between quantities relating to

[6] and [i]. The result is

af® . AN® ., 3f
I ~F-—$—F-5;. (108)

LN = —F*.

Noting that equation (108) has the same form as (12) we have that the scattered field
is given by
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Ak, w?) - Bk, w’) = — (K%, w°) (109)

where j7 is the source current,

i’ = qe/vN" dp , (110a)

. . ON* . Bf
S n e 2L b
LN F o F Bp (110b)

With the assumptions made in equations (34) to (36) but relating to N¢ instead of f°,
and assuming a coordinate system where Z = B(® and k° = kI% + k{iz, the source
current takes the form

Yo —w’e o | =8 P E ~5 pi =i B
o= ﬁm)_‘)/{ X5 [716E, + 0 Ef + €lmn (van,,+va;§)] (111)
ral ~6 i —i 76 dkid"di

where k% = k% — k', w® = w? — W' and

PL- /N‘sdp, (112)
¥ = [vNtdp. (113)
With the use of the relations
i 1 i i
v o= —ZUGE, (115)
q
n = —-Z—;—Okixi,E,i, (116)

B, v' and n' can all be eliminated from the expression for the source current:
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g —iw%ey [ dk'dw' o 6 > weo ;s
Ji = (0 (2r) {Xu” _Xijejmk_qe—'XmIBk (117)

. k; 1) _
+ (X,‘jejkmemnl";ni' + XS;I'C‘) UZ

o 180 i i
- (Xikq_ijjl + ngk?]—x_jl) E; } E;.

The expression for the source current, }°, can be written in a number of other ways,
for instance by the use of relations between the variables relating to the fluctuations
[6]. For specific applications various simplifying assumptions may be in order. For the
purpose of generating a general routine for numerical evaluation of the scattering cross—
section or equation of transfer for a scattering system the form given in equation (117)
is convenient.

6 EQUATION OF TRANSFER FOR A SACTTERING SYSTEM

The equation of transfer for a scattering diagnostic has been developed and investigated
under a range of conditions by a number of authors including SIMONICH and YEH (1972),
BRETZ (1987), HUGHES and SMITH (1989) and BINDSLEV (1991). To ease the use of
the expressions for the source current derived in the previous sections we demonstrate
here, using expression (117) as an example, how these results may be intgrated with
the equation of transfer derived in BINDSLEV (1991).

When a monochromatic incident beam, [i], is scattered in a plasma by fluctuations,
[6], then the scattered power per unit angular frequency, OP3(w®,t;)/0w®, received by a
coherent detector in the time interval ¢ = t; to t = t; + T is given by equation (52) in
BINDSLEV (1991). In most plasma Thomson scattering experiments the anti-Hermitian
part of the dielectric tensor associated with the scattered wave, (%)%, is negligible; this
simplifies the equation of transfer considerably [BINDSLEV, 1991] and we have

oPs (W, t;) 1 <|J(W5,ti)|2> (118)
Ow? T 4regeS® T
where § is the normalized flux,
1 wEeg 66:1]
_ 1l _weo . 1
S €oC { 7 2 ak [ B ( 19)
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The Poynting tensor, S;;, is defined as

ki
S}, =
{ J}l 2HOUJ

(—bikbj1 — 6jkbut + 261655) (120)

where e is the unit electric field vector and & is the Hermitian part of e. J(w®,t;) is
defined as

ti+T o .18 s
J(w® ;) = (&%) - /t /R VT (r,£)e KT gy (121)

where 7 is the normalized beam intensity [BINDSLEV, 1991]. It is assumed that the
receiver has a polarization filter which ensures that only scattered light from one mode
is accepted. k®* = k®(w®) and e® are respectively the wave vector and the unit electric
field vector associated with this mode in the scattering region.

Let the incident field be a monochromatic beam:

eiei(ki-r—-wit) + (e )*e—i(ki-r—-uit)
2

E'(r,t) = E"\/Ti(r) (122)

The total power P! in this beam is

P= s (B (123)

The Fourier-Laplace transform of the incident field is

E'(k,w) = nE" (ei\/Ii(k — k)6(w — w') + (') /Ti(k + ki)§(w + wi)) . (124)

Replacing (k',w') by (k,w) in expression (117), inserting expression (124) and integrat-
Ing over w, gives
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- —iweoE" [ dk
i T 75,0 (2r) Tk = k) (125)

) w' 50 i F)
[xﬂn X1 €imk—— T Xmi By

i

+ (Xz]ekaemnl + thl ) i

105 weg
—(X p kXﬂ‘*‘Xf]k ot XIJI) E,f]e}

8 = w? —w', k% = k? — k and we have again ignored terms involving fluctuations

at the sum frequency w’ +«'. Expressing the convolution over k as a Fourier transform
of a product and assuming that the beam widths and the integration time T are large

relative to the plasma dielectric response length and time respectively [BINDSLEV, 1991]
we find

Here w

J(W*, 1) = 9“" OE NA® + BB + Uidf + EEY (126)
_.TZ
where 7% = n®(w* ¢;) and
tLi+T " (1.8 s
Aty = [ [ VI (e ) e 0 e (127)
i R®

with similar expressions for B?, ¥ and E°. The coefficients N, By, Uy, and & are given
by

N = (ef)xhel (128)
w'e ;
B, = e;)” X,]GJmk a; OX;nIela (129)
oye kn
uk = (ei) (lefjkmﬁmn[ + szl ) ’ (130)
S\ * ] )] Zwe 1
& = —(€) (sz';]_‘k XJI + Xk - OXJI) (131)

The complete equation of transfer in a cold plasma can now be written as
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op*

Ows -

. S\ 2 1
POy (Xy) rZn® . %Gaﬁsaﬁ(k",ws),

(132)

where r. = ¢*/4mgom.c? is the classical electron radius, k® = k®* — k', w® = w® — w' and

O, is the beam overlap [BINDSLEV, 1991],

Oy =:jgiIXr)Z*(r)dr.

(133)

In the summation a and 3 independently take the values n, By, vt and E. The spectral

densities S,p(k®,w?) are defined as

(17°F)

& )
Snn(k , W ) _‘n(O)O"bT 3

Sg,n,,(k*,u’)

n©0,T
a8 (BT
Sup, (K, w") = (7 (B) )
, n©®0,T
B, (%)
SBkn(kéaws) — < ( ) >
n©®O,T
The dielectric form factors are defined as
(ws)4 Corﬂ
G.s = ,
O LA Sise
where
Con = NN™ |,
Cs,p,, = BBy,
Can; = NBI:' 3
CBkn = BkN* 5 etc.
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(134a)

, (134b)

, (134c)

, etc..

(134d)

(135)

(136a)
(136b)
(136¢)
(136d)



We note that those products of dielectric form factors and spectral densities which
involve cross terms such as Gan,San, and G'B,»SB,n are generally complex, but occur

in pairs which are mutual complex conjugates, ensuring that the result of the summation
in (132) is real.

Although the complete equation of transfer for scattering in a cold plasma is exten-
sive we have attempted to present it in a systematic manner which together with the
tensorial formulation should facilitate the writing of codes. Previous derivations (e.g.
AAMODT and RUSSELL, 1992) have introduced approximations earlier in the deriva-
tions. This is undoubtedly acceptable in many situations but the risk remains that
some physical phenomenon is lost in the process. With the complete expression given
here the significance of any terms that are left out of a computation can more readily
be quantified. A code that includes all terms will have the advantage of being valid in
the widest possible ranges of parameters. The added computation time is not likely to
be a major problem.

In Appendix D of BINDSLEV (1991) we discussed the symmetry of the equation of
transfer. We now believe that this discussion has a fault and that the conclusion that
the equation of transfer should be symmetrical in incident and scattered field quantities
does not hold. A detailed and corrected discussion of the symmetries of the equation
of transfer was given in BINDSLEV (1992) Chapter 9 Section 3: the results presented in
this paper satisfy these symmetries.

For completeness we give also the expression for the differential scattering cross section,

9T _ (N®)? 1
oksdws

Pm—ro= Y GapSap(K’,w?) . (137)
]ks-vg|27'r f:ﬁ

Here v, = v,/|v,| where v, is the group velocity.

Finally it should be pointed out that none of the expressions derived in this section
assume that the difference in frequency between incident and scattered radiation is
small.

7 SUMMARY

Using a kinetic model of the plasma, expressions for the source current, j°, have been
derived in the low temperature limit for both unmagnetized and magnetized plasmas.
Our result for magnetized plasmas confirms the leading terms of the result derived
by AAMODT and RUSSELL (1992). Both these results and our result for unmagnetized
plasmas are at variance with the traditional fluid results. This disagreement is explained
as being due to errors in the traditional fluid approach, resulting from an inappropriate
use of the fluid velocity in the non-linear fluid equations and the omission of the pressure
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term from the second order momentum equation. It has further been demonstrated that
the fluid approach can be applied correctly to the problem of three wave mixing and
scattering by replacing the fluid velocity by the particle lux and including the pressure
term in the second order momentum equation. With these corrections the fluid approach
yields the same expressions for the source current as the kinetic approach in the low
temperature limit.
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