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ABSTRACT

A large number of theoretical, heuristic and empirical models for transport in a
Tokamak have been developed. Many models have been claimed to adequately
describe subsets of the wealth of data accumulated from several Tokamak
experiments. Yet no single transport model has emerged as an obvious candidate
that will give an accurate extrapolation from today's large Tokamaks to a reactor.
It is shown how this situation can arise from three features associated with the
testing of models against experimental data: 1) measurement errors, ii)
collinearities in the data and iii) confinement degradation with power. These
features, when combined, permit the claims that a variety of transport models
based on different physics can fit the data. It is proposed that transport models
should be tested against data from experiments in which only one dimensionless
plasma parameter is being varied at a time. Such experiments include the scans
carried out on DIIID, TFTR and JET of the parameters p. (normalised Larmor
radius), v. (collisionality) and B. It is also shown that the testing of transport
models must include data from two or more Tokamaks of different size in order
to separate model predictions by more than the experimental measurement error
level.

1. INTRODUCTION

The first generation of Tokamaks, T3, ST, ATC, ORMAK, CLEO, produced
diagnostic data mainly in the form of global measures such as the stored energy,
loop voltage etc. The testing of transport models against experimental Tokamak
data, which is the subject of this paper, was hence rather limited and
inconclusive, as described in the reviews of computational studies [1] and of
computer models [2]. The early models [3] were based on classical transport
theory but needed additional non-classical physics in order to match data from
the second generation of Tokamaks like TFR, T-10, PLT, DITE, JFT2, ISXB, ASDEX
and PDX. The article by Hugill [4] reviews some of the theoretical-computational
efforts that were needed to explain the plasma energy loss rate which was
observed to be non-classical; specific models could be tested against data from e.g.
PLT-PDX [5], ASDEX [6] etc. The third generation of large Tokamaks, JET, TFTR,
DIIID, JT60, Tore-Supra and JT60U can all produce the essential ingredients
required for meaningful tests of plasma transport models: time and spatially



resolved profiles of density, temperatures, radiation, Zeff, x-ray emission, safety
factor. A concurrent development of many transport models has taken place:
empirical models explaining the scaling of global confinement [7-9], heuristic
models featuring a mixture of theory and experimental observations [10-11} and
purely theoretical predictions. The latter include too many references to quote
and the reader is referred to a recent article "Survey of theories of anomalous
transport” by Connor and Wilson [12].

Given the wealth of Tokamak data, why is it that no single transport model has
emerged as an obvious candidate for extrapolations towards a reactor regime
from the available data? This paper will address this question by examining in
this detail what tests of transport models against local and global data involve.
The aim of the study is to establish what constitutes a meaningful and successful
test of a model such that an accurate extrapolation to a reactor regime can
confidently be made.

In section 2 we put forward a description of the thermal flux and diffusivity in a
Tokamak starting from the scale invariance approach to confinement scaling of
Kadomtsev [13] and Connor-Taylor [14]. The dimensionally correct forms for
heat flux q and diffusivity x include an unknown function of dimensionless
parameters. This prescription is used in section 3 to establish the link between
global and local confinement using a one fluid treatment. The properties of
Tokamak data, in particular JET data, are highlighted in section 4 with an
emphasis on the data collinearities which affect transport model testing. The
link between local and global confinement (section 3) is applied in section 5 to
analyse the testing of transport models against global data; in section 6 we
perform a similar analysis of tests against local JET profile data. The results from
both sections demonstrate how it becomes possible for different physics models to
reproduce the data values when allowance is made for experimental
measurement errors. It is the experimental errors and collinearities in the data
being tested combined with confinement degradation with power that make the
tests insensitive to the details of a given transport model. An undesirable
implication of this result arises when extrapolations towards a reactor are made
with models which can reproduce present global or local data; we illustrate this
point in section 7 using the ITER L-mode database.

In the concluding section 8 we therefore put forward arguments for testing
transport models against data in which only one dimensionless parameter is



being varied. Such data can be obtained from the Tokamak discharge scans of p.
(normalised Larmor radius), v« (normalised collisionality) and B carried out on
DIII D [15], TFIR [16] and JET [17]. We emphasise that a test of a transport model
must involve data from more than one Tokamak and to facilitate such test we
propose the assembly of a multi-machine local transport data base. In this paper
we use SI units with temperatures in eV.

2 TRANSPORT THEORY

The power flow per unit area across a surface x, where 0 < x £ 1 denotes a non-
dimensional flux surface label of a Tokamak equilibrium configuration, is given
by the expression

q=-encxe VTe-enj X VTi + qq4., M

in which the temperature gradients are averaged over a flux surface and the
thermal diffusivities e, ¥iare local functions. The flow given by (1) includes a
thermal and a non-diffusive part. In the present study we shall omit the
non-diffusive component qfjow associated with convection or a heat pinch; for
many JET plasmas qflow <<de + q; = q as demonstrated by recent on-off axis
heating experiments on JET [18]. We choose a one fluid reactor relevant regime
with temperatures Te = T; = T and densities ne close to n; (DT, 4He). The total
thermal flux therefore becomes

q=Qe+qi=—eny VT )

in which the effective thermal diffusivity x is some function of the local plasma
variables. The most basic plasma model is that described by the collisionless
Vlasov equation in the electrostatic limit. For this model one obtains [14]

X = XB F(p*/ pgeom) ; XB = T/B ; P = p/a (3)

The diffusivity yp is Bohm diffusion coefficient and p. is the Larmor radius p
normalised by minor radius; both g and p will be defined in terms of B = Bp the
poloidal field (see Appendix A), pgeom denotes any dimensionless parameter
involving only the plasma geometry, e.g. inverse aspect ratio € = a/R, elongation
E etc. The unspecified function F may be determined from the physics of the
transport model adopted: for example if FLR effects are omitted (p. — 0), as in the



two dimensional guiding centre model [19], then F reduces to F = F (a/L) where L
is a length scale in the direction of B. In order to allow for more complex plasma
physics, e.g. collisions, non-electrostatic effects, the simple model (3) must be
replaced by the general expression.

C=%B F(p*, Vi, B, & Qy, P1/ P2/ ) (4)

A subset of the possible arguments of F are defined in Appendix A and denoted
by p1, p2..- etc. We have excluded dimensionless parameters which are based on
atomic and radiation physics, e.g. parameters which depend on the Debye length
Ap, plasma frequency wp, ionisation energy E; etc. The reason for this omission
is that global confinement data from several Tokamaks of different sizes has been
demonstrated [9] to satisfy the constraint imposed by the High-B Fokker-Planck
model. This constraint [13] requires that the global confinement time tg does not
depend on the very short scale length L ~ Ap.

From the general expression (4) we can recover forms of x which have a different
physical origin (see [12, 20]): e.g. resistive MHD transport model characterised by a
resistivity 1 can be transformed as

XMHD = —55 Fi() = xg p= V- BV Fay ()

i.e. transformed to the form (4). The local dimensionless parameters in Eq. (4)
feature in their definitions (see Appendix A) minor radius a which is a non-local
variable; in principle a can be replaced by a local measure such as L, =n/Vn. The
use of minor radius a is customary and it connects the definitions of the local
parameters with the corresponding global averages defined in Appendix B.

3. THE LINK BETWEEN 1 AND %

In order to examine what is involved in a test of a local transport model against
global data, we establish in this section some expressions that will be used later.
The global confinement time tg and integrated power deposition profile are

given by



1
g = § [3enT V'dx , Px) =1V qw )

(o)

where P = P(x = 1) is the total power input. We use the partial integration method
of Callen et al. [21] and note that VT = dT/dx 1 Vx |2, via the geometry factor |Vx12is
averaged over a surface; (for an equilibrium of shifted elliptic surfaces with
ellipticity E(x) one gets | Vx |2 =2E2/(a? (E2 + 1)). The result from (5) becomes

N(x) P(x) dx

—_— 6
n(x) V' IVxP g )

Tg = %38 NlTl +

O —

1
P

X

where N(x) = Jn V'dx' and subscript 1 implies x = 1 for brevity. From the
0

definitions in Appendix B of the global averages of those dimensionless

parameters given in Appendix A we can recast the above expression in terms of
the profile shapes

n(x) = <n>gn(x)/ N(x) = <n>V gN(X) ’ T(x) = <T>gT(X)

(7)

J
P(x) = Pgp(x), B() = 52¢ gp(0)

The angular brackets denote appropriate volume averages (Appendix B). The
relation between 1 and ) can now be expressed in a form which directly reflects

Eq. (4)

1
{x)
= m+ G, G=[Fgdx , g = aAVx?ELELEL ()
0

We have set 11 = 3eN1T1/P and for L-mode plasmas 17 << 1, e.g. for JET 17 ~ 10-3
- 10-2 1g typically. From global fits to confinement data [7-9] we notice that the
dimensionless parameter G is O(103); The geometry factor is O(1) while the
profile shape ranges from typically 0 to 5; we thus expect F ~ O (10-3). Local
transport models can be expressed as [12, 20]

F = pJ v, B gy f(p;) 9)



in which f(p;) mimics any residual dependence of F upon parameters such as &,
€T, S, A, etc. We substitute the relations in Appendix B between e.g. p. and <p.>,
insert (9) into (8) and solve Eq. (8) for 1g in the limit 11 /1 — 0. The result is

- é)l/(xt+2)

e = (% Xp = 2Xy + X (10a)

N

’ X =

The tilde symbols are intended to indicate that tg has been removed from the
definition of 1g as well as from those for <p.>, <v,>, <B> contained in G via F
given by (9). The relation (10a) which is explicit in T can also be written in the
power law form

1p = Ca% <n>?%n I$I P% gZei2x AZA G/(Xc*2) (10b)

where the exponents z,, zn etc. depend on xp, xy, xg as shown in [9]. Empirical
scaling laws [7-9] are usually represented as (10b) but without the profile term G.
We notice in the global scaling expression (10a) that the profile effects arising
from F given by (9) are suppressed via "the power degradation” index xt + 2. In
Appendix C we list twelve theoretical, heuristic and empirical scalings and give
the resulting value for xt + 2. Theoretical scalings for F usually take the form (9)
but it has also been demonstrated [22] that 20 empirical scaling laws for tg
originate from Eq. (9). Together with the theoretical models they fall mainly in

two categories:

I. Empirical, Bohm like P Xp=0, xy 2 0, x3>0

(11)
Il Theoretical, heuristic, gyroBohm like : x,=1, x, § 0, xg<0

4. PROPERTIES OF THE DATA

Global confinement data from a range of second and third generation Tokamaks
is available in the ITER L-mode and H-mode databases. When such data is
represented in terms of the global averages <p.>, <v.> <B> and qy inner
relations or data collinearities are present; these dimensionless parameters have
not been varied independently of each other in the experiments the extent of
which can be demonstrated by a principal component analysis of the data [9]. The
approximate relations



<pL> =~ <[3>1/2 , <Ve> ~ <B>

-3/2t0 2 (12)
can be established from graphical representations of the data. The first relation in
(12) is depicted very well in Fig. 1 which shows the ITER L-mode data [23]; the
dotted line is the result of a linear regression fit. We notice that at a given value
of <B>, the range of variation in <p,> is only by a factor ~2. Collinearities are also
present in local data as a direct consequence of Eq. (12) but additionally because
the profile shape functions gn (x), gt (x) etc. do not vary much. From an extensive
range of transport interpretation calculations with the TRANSP code [24} we
have selected local confinement data from six JET L-mode pulses: three steady
state pulses (p, scan) and non-steady state pulses (two current ramps, pellet
injection and off-axis ICRH). For each data variable pj we evaluate at each radius
x the temporally averaged value and the standard deviation via

{Pj(X,t)}='p_j(X) + Gp(x) = ﬁj(x)(1+6pj(x)) (13)

The angular brackets indicate an ensemble of typically 50-100 time points and &p;j
is a normalised standard deviation. We examine only the range 0.3 < x < 0.8; for
x < 0.3 sawteeth effects cause large variations and x > 0.8 is excluded because of

limited diagnostic capabilities.

Figures 2a-2d show the time averages of p,, v., B, Qy plotted against each other;
the straight lines from linear regression fits are indicative of the inner relations
(12). The relative variations around the mean are ~ of 1-10% for steady states and
>10% for non-steady states. We therefore find to a good approximation that the
profiles of the dimensionless parameters of F can be represented in steady state

pulses by

p.(x,)=<pu(t)> go(x) (1 + 8p(x)) (14)

The profile shape functions g, etc. for steady states exhibit little pulse to pulse
variations such that Eq. (14) directly reflects the collinearity problem (12). Thus in
order to locally avoid data collinearities, non-steady state data with n, T, B

evolving is needed.



5. TESTING MODELS AGAINST GLOBAL DATA

A prerequisite for a transport model, whether theoretical, heuristic or empirical,
is that it reproduces the measured global tg values. An acceptable test of a model
is usually based on an RMSE test

N 2 1/2
Z TE = Tmodel /TEz < 61 (15)

associated with a standard regression fit to N data values. In such fits [7-9] the
normalised st.d. 8; is of order 0.1-0.15.

We wish to estimate a level 8Fmodel Of the relative uncertainties (defined below)
on models for F that satisfy the test (15). We assume that the models can be
represented by the formula in Eq. (9) and proceed, as in section 3, to extract tg
from the global averages which enter Egs. like (14). Next we expand as follows

Fmodel (1 + AF) 2 F (1 + 8Fmodc’:]) (16)

In this expansion F denotes the part of F without 1g; AF denotes the relative
error on calculating F from experimental data with its associated error bars;
0Fmodel represents the discrepancy between the model and the true (and
unknown) F; the source of such a discrepancy could be the approximations made
in a theory using correct physics or it could originate from the use of an incorrect
physics model.

We insert (16 ) in (8) and assume that the relative error on G can be based on the
Gaussian estimate

AG? = Ag? + AF?
The relative error on g is also assumed to be derived from the Gaussian estimate
Ag® =gy + Agh + Agp + Agh
the experimental profile errors are defined as e.g.

measured

8T =g7(x, t) (1 £ Agt (X)) (17)



where Agrt should be sampled from a Gaussian distribution of halfwidth Agt
(and similarly for n, B, P). After solving Eq. (8) for 1g we get

8Fmodel = % (2 + x¢) 8; £ AG (18)

Experimental errors on the profiles for n, T, P and B and those associated with the

determination of F ,i.e. AG, combine with "the confinement degradation" index

2 + x¢ and 98¢ to permit a level of uncertainty, 8Fmodel which substantially exceeds

8¢ in the test (15). Two simple examples may serve as an illustration; for

Fmodel = Fo we have x7 = 0, AF = 0; for Fmodel = p«we get
1

~ 1 , .
XT= 2 AF? = > Ag% + Ag%. (For complex models with many parameters AF

will  of course increase). As a rough guide to Eq. (18) we find, for
8; =0.15 and the A's of (17) assumed uniform in space and equal to say 10%,

0.4 < 8Fppq < 0.8
6.  TESTS OF MODELS AGAINST LOCAL DATA

The test of a transport model in simulations or prediction calculations is that it
reproduces the measured temperature profile to within experimental errors, i.e.

Tmodel/Tdata =1xAT (19)
where AT is equal to, or of order AgT of Eq. (17). The calculation of Tmodel is the

result of integrating Eq. (2). We assume that models can include temperature and
VT dependencies such that

Fmodel = }E T E');'E (20)

in which the exponent xT denotes the non-linearity while the tilde symbol means
that F does not contain T. Integration of Eq. (2) starting at x = 1 yields

T (x) = | TV 98 1y Q1)
model (X) = 113 +.[Y]en Wi )
l mo



where y; = (2 + x1) y, and y, = 1/(1-x¢g). We can again estimate the level dFmodel Of
uncertainties on models for F which satisfy the test (19). The error on the
integrand of (21) is now

Ah? = AF? + Ag? + Agh + Agh (22)
Eq. (20) is then expanded like Eq. (16) and inserted in Eq. (21). This gives

SFmOdel = * (XT + 2)AT + Ah (23)

The result is similar to that obtained for the global test in the previous section
(Eq. 18). Ah%is smaller than AH? by Ag%, At is likely to be of order 8; and xT will
be equal to x; such that x7 + 2 can again be thought of as a degradation index.
This index encapsulates the temperature "resiliency” concept studied in detail by
Callen et al., [21], it permits in conjunction with experimental errors the level of
discrepancy (Eq. 23) in tests like (19). In order to see how it works out in practice
we examine temperature profiles from predictive model calculations with the
JETTO code [25]. In these JETTO calculations Eq. (20) is evaluated as described
above and in addition Maxwell's equation for B(x) is solved by a neoclassical
resistivity model. Calculations have been performed for the six JET pulses
described in section 3. These pulses exhibit a small parameter range of variation
as regards a, n, Iy, P, €, H etc. Regression fits (like the ones made to the ITER
L-mode data) of this JET local confinement data against models for F such as
given by Eq. (9), do not make sense for the reasons evident from Fig. 2. At most
we can test data trends and for this purpose three heuristic models have been
chosen. These are represented by

Fi = 33107 g (e7' + egl)—B—e (24a)
B‘P

F, = 136 F; 57 (24b)

F3 = C3p.q, (e}] + Ze;]) 57! f(pj) (24¢)

Models 1 and 2 have been derived heuristically from detailed studies [26] of JET
local transport data {17, 18, 30]. Model 3 has been developed by Rebut, Lallia and

10



Watkins [10] and f(pj) contains additional parameters as well as a critical gradient
term. The essential difference between the models for the present purpose is that

F1, Fp are Bohm like (F ~ p?) while F3 ~ p. is gyroBohm like.
x 3 gy

In the JET experiments on transport scaling with p, [17] all parameters,
V., B, qQy, s, €4, €7 are held approximately constant. The scaling with minor
radius a and field B is

~a5/6 B2/3 T3 B2/3 , _,7V/3 gas3

n

. q-a 23 B F ()

In these experiments it is found that F ~ p? (Bohm) is needed in q for v, and B

to remain constant. We can therefore insert (24) in (21) to calculate what a Bohm
and a gyroBohm model for F predicts, if the flux q is made to scale as Bohm. For
xT = 0 (Bohm) and x1 = 1/7 (gyroBohm), Eq (21) predicts

TBOhm ~ 31/3 82/3, TgerBOhm ~ a2/3 Bl4/]5 (25)

Thus for a range in B of a factor 2 2MA, 1.7 T and 4MA, 3.4T) the two predictions
differ only by a factor ~B4/15 al/3 = 1.203. Figs. 3 a and 3b show the predicted
temperature profiles at a given time for the above mentioned 2MA and 4MA
pulses. All three models apparently provide a reasonable match to the data
values (solid curves in Figs. 3a, 3b); the sawteeth region inside R = 3.5m is
evident in Fig. 3a. The ratio (19) is plotted in Figs. 3c and 3d; for the gyroBohm
model F3 this ratio is, across the radius, systematically in excess of 10-15%. We
thus see that a test like (19) of Bohm and gyroBohm models can within the
experimental error levels, almost accommodate both models, although the
power requirements in the experiments follow the Bohm scaling predictions.

7. EXTRAPOLATIONS

We have seen in the two previous sections how insensitive the global and local
tests are to the precise details of transport models. An implication of this lack of
sensitivity is that extrapolations based on various transport models, each of
which can describe the data, will produce different answers. We can demonstrate
this point by using the ITER L-mode database [23] which contains ~1800 data sets
from twelve different Tokamaks. An extrapolation from present data towards a
reactor such as ITER involves mainly a change in <p,> as emphasised in [15, 17].

11



As one model we choose the ITER89P empirical scaling law for tg which can be
expressed as (8, 9].

’Cl=C]T

0.94
B <Ps>

00y, 50265054 206 (014 5064404 (26)

The ITER89P expression (25) is almost dimensionally correct and it is a Bohm
type scaling. A gyroBohm form can be obtained by a fit to the L-mode data by
enforcing the exponent for <p,> to be -1. The result is

Ty = Cy g <pe>lcv, 5027557005 207 035 A].lq?vA 27)

Notice that the collinearity in the L-mode data (Fig. 1 and Eq. 12) when going

from (25) to (26), causes <p.>! to be exchanged for <p>"12.

From the predictions offered by Egs. (26, 27) we can calculate the fusion product
<n> <T> 1 ~ P‘c% for the ITER L-mode data. Figs. 4a and 4b show the
calculated values for the fusion product plotted against <p,>. Instead of showing
1800 points we form the average for each Tokamak (see Eq. 13) but for both
scaling expressions we carry out a linear regression fit to the 1800 fusion product
values w.r.t. <p,>. The linear regression fits are indicated by the two dotted lines
whereas the fit to actual data is marked by a solid line We notice that each of the
two dotted lines in Figs. 4a and 4b, which characterize the Bohm form (Eq. 26) and
the gyroBohm form (Eq. 27), describe the data points well. The ITER89P line in
Fig. 4a is however very close to the actual data (on which it is based) and so too
are the two extrapolations to the ITER CDA design parameter [27] and those of a
more recently proposed set [28]. The dotted line in Fig. 4b representing the
gyroBohm expression offers on the other hand an optimistic extrapolation: it
pushes the ITER predictions beyond the ignition margin marked by a horizontal
dashed line. These discrepancies in extrapolations arise because we force the
existing L-mode data to fit two different models (Eqs, 25 and 26); both fits are
reasonable because of the data collinearity, but extrapolations in <p,> at fixed

<B > (or vice versa) will differ substantially.
8. SUMMARY

It has been demonstrated in section 4 and elsewhere that global confinement data
from a variety of Tokamaks exhibits inner relations or collinearities. The same
has been demonstrated for local confinement data from a limited number of JET

12



discharges. Such collinearities make it difficult to determine with confidence the
dependence of 1 or F upon the dimensionless parameters like p., v., B, qy etc.
In sections 5 and 6 we have shown that the difficulties arise from three features
which, when combined, permit transport models with different physics to
provide for adequate descriptions of the data: i) data collinearities, ii)
measurement errors and iii) confinement degradation with power. The
combination of these three features give great freedom in the testing of transport
models: the ITER L-mode data and JET profile data have been used in regression
fits and model calculations to demonstrate why a variety of transport models can
be claimed to fit the data.

To avoid data collinearities we should assemble data from different experiments
with: A) only one parameter p;j being varied at a time or B) one parameter p;
which is collinear with another py being decorrelated by using non-steady state
data. Examples of type A experiments are the non-dimensional scaling
experiments: the p, scans on DIIID {15], TFTR [16] and JET [17]; the v,, B scans on
TFTR [16]. Examples of type B experiments are the current ramp experiments on
TFTR [29], JET [30], DIIID [31] and the off-axis heating experiments with pellet
injection on JET [18].

Measurement errors have in the analysis of this paper been treated as being
random in the sense that we have assumed they are sampled from a Gaussian
distribution. Systematic errors, e.g. AT = AT(B) for an ECE diagnostic can lead to
the wrong inferences about dependencies F = F(pj). Effects from systematic errors
of a given diagnostic can be partly eliminated by comparing experiments on two
or more Tokamaks of different sizes. Preliminary experiments of this type have
recently been carried out on JET and DIID [32].

The degradation of confinement with power (or temperature) has been
demonstrated to increase the level of uncertainty 8Fmodel permitted in tests of a
transport model against global 1 data (Eq. 15) and local Te data (Eq. 21). 8Fmodel
also increases with the number of independent variables in the F function. Thus
to minimise the uncertainties in extrapolations towards a reactor all parameters,
i.e. vi, B, qy etc. should be kept fixed and only p, should be varied. The
extrapolations therefore requires a well conditioned multi-machine database
from which the variation F(p.) can be determined. To advance the
understanding of transport in a Tokamak requires additional data to establish the
trends of F, w.r.t. v,, B and qy.

13



Appendix A: Dimensionless Local Parameters
In the following definitions of parameters which can enter the function F of Eq.
(3) B denotes the poloidal field, By the toroidal field and x is a normalised flux
surface label. A standard plasma physics notation is used and all dimensional
variables are in SI units.
Geometry:
Aspect ratio € = ax/Ry;  Ellipticity E; triangularity A; (A1)

Profiles:

Scale length of n, T €, =RVn/n , e7' =RVT/T;

RB
Safety factor qy = —-?)f— §Ed§1~§ ~ e El/2 B / B; shear s= xq7/ q; (A2)

Power deposition  gp=P(x)/P = Pi,[: q(x) %V' dx;
Ratios for species:

Zess;  Te/Ti;  mp/me; A =mj/mp; (A3)

Plasma variables:

Larmor radius p. =(

2
Collisionality v, = ° lfng 3 nazze{f
32m3%e,2 ) T

nTo+n;T;

Plasma beta B=(4epu,) 5

(A4)
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Appendix B: Dimensionless Global Parameters

We write out the expressions for the global averages of the dimensionless
parameters used in e.g. [9]. A set of definitions consistent with that in Appendix
A is obtained if we start from the work of Callen et al. [21] in which the
appropriately density-space weighted average diffusivity is

-1
1 N(x) dx
<y>=|4 Bl

X [anZElezn(x)V'x(x) (BD)

For y = xpand for 1Vx12=2E2/(E2 + 1) we get

-1
__1 eP1g 1 2 gN8s
< >= 2 xdx B2

XB 3eHom aZ<n>l,k ( 0EZ+1 8n8T (B2)

The edge ellipticity E(x=1) = x to conform with the notation used in global scaling
laws. The average temperature is

P‘CE _ 1

<T>= 3e<n>V T k<n>

j;(ne Te+n;T;) xdx (B3)

The Bohm time used in Eq. (8) is 1 23. a2/<x3>. The plasma variables of Eq. (A4)

become

(Am )1/2 p 1/2 P
P EFTE i _ 8 El'TE

<P >=
P V6 e, <n>l,2% 3Ho al,?
(B4)
4 7 3.2
_ 5/2 e'log Ay a’ <n>"x
<v,>=3V2n AL,
€ e Po1g

The inverse relations of (B4) + 1p are given in [9].

Appendix C: Transport Models
We list a number of theoretical, empirical and heuristic transport models for the
diffusivity x as represented by Eq. (3) (see also [12, 20]). If the transport model

gives only an expression for 1g like Eq. (10) the F function is derived from Eq.
(10a) using the definitions in Appendix B. References are given and possible
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residual dependencies of F are omitted as are numerical constants.
in curly bracket represent x; + 2 of Eq. 10a.

1. Electrostatic Vlasov or pure  F=F,
Bohm [7]

2. Short wavelength or pure F=p.
gyroBohm {1-5]

3. Ideal MHD [33] F=p,1p1/2

4a. Resistive MHD, So [12] F= p, v, B!

4b. s-1/2 F=p,2 v,3/235/4

4c. S1/2  [34] F=v,1/2B3/4

4d. sl F=p,1p1/2

5. mimodes [35] F=p,sley (Te/T)t (nj-2/3)1/2
6. DTIM [36] F=p. v.ls2eylqylel/2A172
7. Drift waves [37] F=p.slen2e2 (v, gyorl

8. Resistive fluid Turbulence [12] F= p, v, B1/2 A-1/2

9. Rebut-Lallia-Watkins [10] F = p, v, 1/2B31/2(1-¢) 571
qu (1142 en')
(Te/Ti)V/2 AV/2 (14Ze5p)1/2

10. ITER L-thermal [9] F=v,015p31.21
11. Goldston [7] F = (ax)0-26 B/
The nearest dimensionally
correct form is F = p,018 y,034 3036
12. ITER89P [8] F = p,0.08 y,0.26 3054 £2.06-0.14 A-0.64 g -0.4
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The Lundquist number S = p,2 v,"1 81/2 js used to produce various resistive
MHD scalings. The model 9 features an additional critical gradient term [10, 16].
The empirical scaling laws 11 and 12 have been transformed to dimensionally
correct forms by adjusting the exponents z of Eq. (7b) by 8z as follows: Goldston 8,
= 8] = 8p = -8, = 0.052 and ITER8IP 6, = 8] = dp = -0, = 0.048.
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Figure 1. The ITER L-mode data on <p,> vs <B> shows collinearities: at a
fixed value of <f>, <p,> varies only by a factor 2.
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Figure 3. Predicted and measured temperature profiles Te(R) for the models

given by Eq. (24); a) a 2MA JET pulse, b) a 4MA JET pulse, ¢) and d)
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made by the JETTO code [25].
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Figure 4. a) Values of <n> <T> 1g predicted by the ITER89P scaling law [8] versus
<p.+>. Each symbol represents the database average for a Tokamak
and the two stars refer to the ITER CDA design parameters [27] (open
star) and the parameters of [28] (full star). The solid line represents a
linear regression fit to the 1800 ITER L-mode data values of <n> <T>
TE VS <p«>. The dotted line represents the fit to the IETR89P
predicted values. The dashed line at 7 1020 keVm-3 represents the
ignition level for ITER.
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Figure 4. b) As figure 4a but the predictions are made with a gyroBohm form of
ITER89P (see text). Whilst the dotted line represents the data,
extrapolations towards ITER now depart significantly from the solid
line.



