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ABSTRACT

Wave-induced velocity diffusion is studied with a one-dimensional relativistic
Vlasov-Poisson code. The diffusion coefficient is determined by following test
electrons in the self-consistent electrostatic field formed by a narrow spectrum of
electron plasma waves. The diffusion coefficient is found to be slightly larger
than the quasilinear value at intermediate values of Chirikov's overlap
parameter. The largest deviation is about 20 to 30%. At higher values of the
overlap parameter, the diffusion is slower than quasilinear for a small number of
field modes, but faster than quasilinear for a large number of the modes.

1. INTRODUCTION

In tokamak plasmas, the wave-induced current obtained in rf current drive is
usually calculated from the Fokker-Planck equation by using the quasilinear
diffusion coefficient (BONOLI and ENGLANDE, 1986, BERS and RAM, 1992).
After the original work of VEDENOV et al. (1961) and DRUMMOND and PINES
(1962), several generalisations of the quasilinear theory have been investigated.
Some of these models predict diffusion coefficients that differ considerably from
the quasilinear value at certain parameter regions.

DUPREE (1966) and WEINSTOCK (1969) developed resonance broadening theory,
which gives a small correction to the quasilinear diffusion coefficient. The direct
interaction approximation originally developed for Navier-Stokes turbulence
was applied to Vlasov turbulence by ORSZAG and KRAICHNAN (1967).
DUPREE ( (1972) formulated the so-called clump theory, which in addition to the
quasilinear diffusion also includes anomalous friction. The clump theory was
developed to a self-consistent renormalized perturbation theory by BOUTROS-
GHALI and DUPREE (1981). ADAM et al. and LAVAL and PESME (1983, 1984)
introduced the turbulent trapping model, which takes into account the non-
Gaussian statistics of the electrostatic field caused by the nonlinear mode
coupling. The turbulent trapping model predicts an enhancement of the
diffusion coefficient by a factor of 2.2 compared to the quasilinear value.

A simple method for examining the validity of the quasilinear theory is to follow
an ensemble of test electrons in a prescribed field of electrostatic waves. The
behaviour of the test electrons depends crucially on the value of the overlap
parameter (CHIRIKOV, 1979). The electron trajectories become stochastic in the



momentum space, when the trapping regions of the Fourier modes Ex overlap
significantly. This occurs when the overlap parameter
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becomes large. Here, the trapping width is denoted by v = 2| qeEx/mekl 1/2 where
k is the wave number of the mode, and ge and me are the electron charge and
mass, respectively. The spacing of the modes is Avph = lv - Vg(k)l Ak/k, where v
and vg are the phase and the group velocity corresponding to the wave number
k, respectively. Note that for ex = 1/16 the trapping regions of the modes just start
to overlap each other, i.e. vir = Avph/z.

Several important results on the validity of the quasilinear approximation have
previously been obtained by test particle calculations in prescribed electric fields.
The quasilinear estimate has been shown to be valid (CHIRIKOV, 1979) in the
limit of large overlap parameter (1). Deviations in the intermediate € -region
have been found by RECHESTER and WHITE (1980), by CARY et al. (1990), and by
JENSEN and OBERMAN (1982).

CARY et al. (1990) investigated the diffusion caused by randomly phased modes
of the electrostatic field. The found that the diffusion coefficient exceeds the
quasilinear estimate at about € ¢ = 0.3, and reaches the maximum D = 2.3DQ(, near
ek = 1. For increasing e, the diffusion coefficient approaches from above the
quasilinear limit without obtaining smaller values than Dgr. In these
simulations, convergence of the diffusion coefficient was obtained for overlap
parameters € = 0 to 6 when the number of the modes was larger than 600.

CHIRIKOV (1979) and RECHESTER and WHITE (1980) studied the case of the
exactly phased modes. They predicted an oscillatory behaviour of the diffusion
coefficient as a function of the overlap parameter, but found the quasilinear limit
at large values of €.

The self-consistent electrostatic field was taken into account in the simulations by
THEILHABER et al. (1987), who studied the weak beam-plasma instability. The
simulation parameters were chosen in order to test the predictions of the
turbulent trapping model. THEILHABER et al. (1987) found that the growth rate
of the instability was by a factor of 1.2 to 1.6 larger than the quasilinear growth



rate. The diffusion coefficient was not directly determined in these simulations.
However, one can see from momentum conservation arguments that the
diffusion was enhanced by the same factor as the growth rate. In the simulations,
the enhancement of the diffusion was therefore somewhat smaller than the
factor 2.2 predicted by the turbulent trapping model.

In the present paper, the relativistic one-dimensional Vlasov and Poisson
equations are solved for a system of waves which are adiabatically turned on. In
contrast to earlier work (THEILHABER et al., 1987), we take into account the
finite temperature of the bulk electrons, which yields realistic dispersion
properties of the waves. We make a direct measurement of the diffusion
coefficient from the simulation data, and compare the results with the
quasilinear theory. For simplicity, the plasma is modelled as homogeneous and
infinite by using periodic boundary conditions. The waves are taken to form a
narrow spectrum with up to 33 externally excited modes which have phase
velocities from vph = 3.2ve to 3.9ve. The diffusion coefficient is evaluated by
solving the equations of motion for test electrons by using the self-consistent
electric field obtained from the Vlasov-Poisson solution.

The present simulations deal with the electron plasma waves. In the high
frequency limit, the lower hybrid waves can be considered as magnetized
electrostatic electron plasma waves. In this limit, the dispersion relation of the

lower hybrid waves is approximately w? = wlz,kuz/k_zL, where 1<||2 << ki, and k||2

and k_2L refer to the wave numbers parallel and perpendicular to the magnetic
field, respectively. Our one-dimensional Vlasov-Poisson simulation is therefore
analogous to solving the velocity distribution of the electrons in the direction
parallel to the magnetic field for lower hybrid waves.

The paper is organised as follows: In Section 2, the model equations for the
simulations are presented. A method for estimating the diffusion coefficient
from the results of the simulations is described in Section 3. In Section 4, the
diffusion coefficient is compared to the quasilinear theory. The time evolutions
of the distribution function and of the electrostatic field are also investigated. The
origin of the broadening of the electrostatic spectrum and of the diffusion regime
are discussed. Finally, Section 5 contains a brief summary.



2. MODEL EQUATIONS

In test particle calculations, the stochastic motion of the electrons in the
momentum space is determined by a prescribed electric field. Solution of both the
Vlasov and Poisson equations makes it possible to investigate the evolution of
the momentum distribution in the self-consistent electric field determined by the
electron distribution. This approach takes into account the nonlinear Landau
damping and the mode-coupling effects (LAVAL and PESME, 1983), which are
caused by the nonlinear term in the Vlasov equation. Inclusion of these effects
may affect the diffusion, when the amplitudes of the modes are large.

In a one-dimensional electron plasma, the relativistic Vlasov and Poisson

equations are
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where n, is the electron density. These one-dimensional equations provide a

simple enough system for routine numerical studies.

To study the momentum diffusion of the electrons, consider the spectrum of
waves

E(z,t)= Y E(t) cos (kz—oyt=-¢y)
k>0

= -12- ZEk(t) exp[i(kz -t - ¢y )],
k=0

4)

where the wave numbers are k = 2nn/L in a box of length L, and ¢k is the initial
phase. We assume that one frequency wy can be assigned to each mode. The
Fourier components of the electric field are defined by

L/2 |
Ec(0= £ [ E@D expl-i(kz - wyt- o )liz ©)

In equations (4) and (5), we have adopted the notation E_x = Ex and w.x = ~wy and
Q-kx = Pk



3. DIFFUSION IN MOMENTUM SPACE
3.1 Quasilinear diffusion
In the quasilinear theory, the space-averaged Vlasov equation is

approximated by the diffusion equation (DRUMMOND and PINES, 1963);
KAUFMAN, 1972)

f
a_inDQL_, (6)

where the slowly-varying space-averaged distribution function is defined

1 (L2
by fo(p,t) =L j_mf(z,p,w dz.

According to the quasilinear theory, the diffusion coefficient of the
electrons in the momentum space is

DaL(p,t) =l?f‘ kzoEk(t)B oy —kv). (7)
>

In the continuum limit, the sum on the right-hand side yields
DQL(p,t) ZkAv Ek(t) (8)

where k is the root of the equation v = wi/k. The resonant velocities are
spaced by Ak =2r/L.

3.2 Diffusion in Vlasov-Poisson simulations

The one-dimensional equations of motion for a single relativistic test
electron in the field of the electrostatic waves are

dp
dt = qu(Z/ t), (10)



where v and p are the velocity and the momentum of the electron in the
z-direction.

The diffusion coefficient is obtained as the rate of change of the
momentum variance

D(p,t) = %%{<[Ap(t)]2> - <Ap(t))2}, (11)

where Ap(t) = p(0) is the momentum increment, and ( ) stands for an

ensemble average. Hence, the diffusion coefficient can be determined by
solving the momentum variance as a function of time for a group of test
electrons which have the initial momentum p(0). The trajectories are
solved by leapfrog scheme which is similar to the one presented by
GHIZZO et al. (1993).

In Vlasov-Poisson simulations of the velocity diffusion, we assume
periodic boundary conditions which correspond to infinite interaction
region. The Vlasov and Poisson equations (2)-(3) are solved by the method
introduced by CHENG and KNORR (1976) (see also GHIZZO et al., 1990).
The advantage of this Eulerian method over the particle-in-cell
simulations is that the code is almost noiseless.

At the beginning of the simulation, the electron distribution is a
relativistic Maxwellian. The electrostatic waves are excited in the plasma
by external fields which are of the form given in equation (4). The
oscillation frequencies wy = w(k) of the external field components are
estimated from the linear dispersion relation of the electron plasma wave.
The driving fields are turned on adiabatically in the beginning of the
simulation and turned off before wpt ~100. The diffusion coefficient is
measured in the self-consistent field after wpt = 250.

In a periodic box of finite length L, the wave numbers have to satisfy the
relation k = 2nn/L, which together with the dispersion relation determines
the spacing of the phase velocities of the modes. The simulation of a large
number of modes having a narrow phase velocity spectrum requires a
large box compared to the wavelengths of modes. This sets an upper limit
to the number of the modes which can be simulated within reasonable
CPU time. Typically, the evolution of up to 50 modes can be followed in
the phase velocity region 0.7vpg — 1.3vpg, where vpg stands for the average



phase velocity of the spectrum. A more detailed description of the
numerical methods used and of the code has been given by BERNDTSON
and PATTIKANGAS (1992).

4. VLASOV-POISSON SIMULATIONS

In order to compare the diffusion coefficient (11) to the quasilinear estimate (8),
we consider cases where 2N + 1 =9, 17 and 33 waves are excited in the plasma by
external fields. The wave numbers of the external fields are in the range kAp = 0.3
to 0.4, and the corresponding phase velocities vary from vph = 3.21ve t0 3.87ve. In
this wave number range, all the 2N + 1 modes which were compatible with the
periodic boundary conditions were excited. The separation of the modes was
therefore AkAp = 0.1/2N. In the present simulations, the electron density was
ne = 1020 m-3 and the temperature was T, = lkeV.

4.1 Plateau formation

The time evolution of the Fourier components of the field is shown in Fig.
1, where nine external field components excite the waves. After the
excitation at wpt> 100, the Fourier components oscillate and decay
gradually. After wpt = 200, the oscillations are damped and a quasi-steady
state is approached.

We define the average of the Fourier amplitudes as

1/2
E:{(2N+1)‘]2E§} , (12)

k

where 2N + 1 is the number of the driving field components. In Fig. 2, the
average Fourier amplitude of the nine components is shown. The time
evolution of the average is much smoother than that of the individual
Fourier components in Fig. 1. The steady state has not yet been reached at
wpt = 300.

The space-averaged electron distribution fo(p,t) is shown in Fig. 3 at
various times. The trapping width in the momentum space is also shown
for each Fourier component. Only nine waves were excited between
kAp =0.3 and 0.4 by the external field. The resulting spectrum, however, is



broader due to several new Fourier components outside the initial wave
number region. This is most likely caused by the mode-coupling which
will be discussed in Section 4.3.

The distribution function is considerably deformed already at wpt = 100,
and the plateau forms by wpt = 300, the steady state is reached, and there are
only minor variations in the Fourier components and in the distribution
function.

4.2 Diffusion coefficient

We first study the momentum diffusion in the middle of the plateau
region, between p/mec = 0.1436 and 0.1736 in Fig. 3, by using the method
described in Section 3.2. Fig. 4 illustrates the time dependence of the
momentum variance (Ap?) for seven ensembles with different p(0), when
nine Fourier components of the field have been excited. For each initial
momentum, the momentum variance is calculated for an ensemble of 128
test electrons having different z(0). The saturation levels of the

momentum variances vary between (Ap?)/ rngc2 =5x10"4 and 8 x 104,

In Fig. 5, the diffusion coefficient (11) in the momentum region between
p/mec =0.1436 and 0.1736 is determined from the rate of change of the
average of the momentum variances of Fig. 4. The diffusion coefficient is
estimated from the steepest slope of the variance, i.e. before the saturation
caused by the finite width of the spectrum (ISHIHARA et al., 1992).

Fig. 6 shows the diffusion coefficient obtained from the simulations and
normalized to the quasilinear value (8) as a function of the overlap
parameter (1). The overlap parameter was calculated from the average of
the Fourier amplitudes that was presented in equation (12). The diffusion
coefficient was calculated for the average seven ensembles as was discussed
above.

In Fig. 6, the diffusion coefficients are shown for 9, 17 and 33 externally
excited modes. All the three cases seem to exhibit the same qualitative
behaviour. At small values of the overlap parameter, the diffusion
coefficient stays above the quasilinear value. The largest deviation is about



20 to 30%. At higher values of e, the diffusion is slower than quasilinear
for 9 and 17 modes, but faster than quasilinear for 33 modes.

In the derivation of the quasilinear theory, it is assumed that the
autocorrelation time of the wave is short compared to the evolution times
of the electric field and the averaged distribution function. The

-1
, where 8k is the

autocorrelation time is defined by 1, :ESk“]‘v—vg
width of the spectrum. In our simulations, we had 8kiAp ~ 0.1 and hence
®WpTac = 3.8. Note that the momentum variance grows as

<Ap2> ~t? at Wpt =250 << W,T,e in the beginning of the measurement of

the diffusion coefficient (cf. Figs 4 and 5).

The evolution time of the electric field was large in our simulation
because we measured the diffusion coefficient close to a steady state. For 33
modes, the evolution time of the electric field at wWpt = 250 was Wptg > 1000
at all values of the overlap parameter. For 9 modes, we had wptg = 50 for
intermediate overlap parameters (€ | ~ 1), and WptE = 450 at large values of
the overlap parameter (e x ~ 6). For 9 modes, the plateau was not yet fully
developed by wpt = 250 for intermediate overlap parameters, and therefore
the evolution time of the field was so short. In all cases, however, the

assumption 1. << tg was well satisfied.

The evolution time of the space-averaged distribution function is

tfzmz/(kzDQL'ch). At intermediate values of the overlap parameter

(ex~ 1), we find Optf = 1200 and 79000 for 9 and 33 modes, respectively.
When the overlap parameter is large (e = 6), we find wptf = 34 and 2200
for 9 and 33 modes, respectively. Therefore, the assumption 13, << t¢ is
valid in the simulation of 9 modes even in the large amplitude region
where the diffusion is slower than quasilinear. In this parameter region,
the bounce time for the simulation of 9 modes at e ~ 6 is Wptf = 78, which
is large compared to the autocorrelation time.

ADAM et al. (1979) and LAVAL and PESME (1983, 1984) have derived an
additional condition for the validity of the quasilinear theory. According to
their model for 'turbulent trapping', the field amplitudes must be so small
that tg << trp, where 1rp = (k2DQL/m2)-1/3 is the resonance broadening
time. Otherwise, the mode-coupling effects will give rise to non-Gaussian



statistics of the field which will enhance the diffusion. The refined
threshold for the enhanced diffusion is tg 2 ttrg (THEILHABER et al,,
1987). According to the turbulent trapping model, the diffusion coefficient
is D = 2.2DqL in this parameter region (LAVAL and PESME, 1984).

The limit of the large evolution time of the field in the turbulent trapping
model is interesting for the current drive applications, where the
formation of the plateau decreases the damping rate of the waves. In the
parameter region € =1, where we find enhanced diffusion in our
simulations, we have WpTRB = 26 and 105 for 9 and 33 modes, respectively.
Since we have WptE > 1000 for 33 modes, the condition for the enhanced
diffusion tg = 5tRrp is valid in our simulations. On the other hand, we also
found enhanced diffusion for 9 modes in the region e =1, where
Optg = 50 and the condition tg = 5trp is not valid. In all cases, the
enhancement of the diffusion that we find is also considerably smaller
than the prediction of the turbulent trapping model.

The diffusion coefficients obtained in simulations with five modes, which
are not shown in Fig. 6, behave irregularly already at fairly small values of
the overlap parameter. Similar irregular features are found for nine
excited modes, but at larger values of the overlap parameter and the width
of the spectrum are kept constant in equation (1), the amplitudes of the
Fourier components become larger if the number of the modes decreases.
The spacing of the modes Avpnh also becomes larger when the number of
the modes decreases. The discreteness of the spectrum is described by the
discretization time t4 = 27c/kAvph, i.e., the time it takes for an electron to
resolve the separate Doppler frequencies of the modes (CARY et al., 1992).
In our simulations, we had WpTd = 190 and 760 for 9 and 33 modes,
respectively.

4.3 Mode-coupling effects

All the generalisations of the quasilinear theory that were discussed in
Section 1 involve the treatment of the nonlinear term in the Vlasov
equation (2), i.e. the mode-coupling term. The second order nonlinear
terms lead to modes with wave numbers k = 0 or £ 2kj, where kj is a
typical wave number in the original narrow spectrum. Since the natural

frequency of these second harmonic waves is very different from w =0 or
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2w1, the second order nonlinear coupling is weak (DRUMMOND AND
PINES, 1962). The enhanced diffusion of the turbulent trapping model is
caused by the third and higher odd order nonlinear terms (LAVAL and
PESME, 1983). These terms can drive modes that have wave numbers close
to the original narrow spectrum. For instance, if we have the modes ki =
) k2 ~ k3 in the wave spectrum, the phase matching condition yields k =kj
+ ko — k3 ~ ki.

As the first numerical experiment on the mode coupling, we investigated
the broadening of the spectrum in Fig. 3, where the external fields had the
wave numbers from ki = 0.3 to 0.4. We performed a simulation whereby
only every second of the modes allowed by the periodic boundary
conditions were excited by the external fields. In other words, the modes
from kAp = 0.3 to 0.4 with step 2AkAp = 0.0125 were excited externally in a
simulation where the step size of the allowed modes was AkAp = 0.00625.
In such a simulation, we found that the spectrum became wider so that
new modes with wave numbers kAp = 0.3 - 2nAkAp and
kAp = 0.4 + 2nAkAp were generated (cf. Fig. 3). No modes were found with
wave numbers of the form kAp = (n+%)2AkKD. The reason for this is

probably that the phase matching conditions discussed above yield only
such wave numbers that are multiples of 2Ak.

The simulation shown in Fig. 7 is similar to the one described above except
that we have added an extra Fourier component at kAp = 0.35625 to the
spectrum of the external fields. Therefore, in this simulation the phase
matching conditions of the form k = k1 + kp — k3 can also yield such wave

numbers that are of the form kAp = (n + %)ZAIOLD. In Fig. 7 such modes can

be seen to grow between the externally driven Fourier modes in the
interval kAp = 0.3 to 0.4. After the external fields have been turned off at
wpt =100, the spectrum evolves towards equilibrium which is achieved at
Wpt ~ 300.

In the spectra of Fig. 7, one can see a signal around kAp = 0.7, which is the
second harmonic of the waves of the original spectrum. At wpt = 80, there
is a gap in the spectrum between kAp = 0.4 and 0.6 which is filled due to
generation of new modes by wpt = 300. Modes at very low amplitude are
also excited in the long-wavelength region near kAp =~ 0. These signals are
caused by the second order nonlinear term in the Vlasov equation.

11



So far, we have assumed that the electrostatic field can be written as a sum
of Fourier modes (4), where all the modes obey the linear dispersion
relation. In order to investigate this assumption, we have calculated the
space and time Fourier transformation of the electric field

T L/2 .
Ex o= %JO dt J_L/zdzE(z,t)exp[—l(kz - wt)]. (13)

Fig. 8 shows the frequency spectra E;  for the first harmonic (kjAp = 0.35)
and the second harmonic (koAp =0.7) in the simulation discussed above.
The natural frequencies obtained from the linear dispersion relation
would be for these modes wk; = 1.22wp and wk, = 1.67wp, respectively. The
second harmonic mode shown in Fig. 8 oscillates, however, with the
frequency wz ~ 2.35wp, which is approximately the second harmonic
frequency of the fundamental mode, i.e. w2 ~ 2wk;. A small-amplitude

signal can also be seen at the natural oscillation frequency of the second
harmonic at wk, = l.67(np.

In Fig. 3 the trapping regions of the modes are located at the phase
velocities of the modes obtained from the linear dispersion relation, i.e.
vph(k) = wk/k. The discussion above reveals that such an interpretation of
the wave number spectrum is to some extent incomplete. For instance, the
phase velocity of the second harmonic mode should be approximately
vph(kz) = 2wk = Vph(k]). This modifies the diffusion coefficient slightly
near the lower boundary of the plateau. Note, however, that the
amplitudes of the modes at large wave numbers are very small.

The second harmonic plasma wave at koAp = 2kiAp =0.7 and
w2 = 20k = 2.44wp is not a normal mode but a forced oscillation driven by

the primary plasma wave. Therefore, we have Re{e ((1)2,1(2)} # 0 and
Re{e (w],lq)} = 0, where € (w,k) is the dielectric response function. We
can find an order of magnitude estimate for the second harmonic mode
with the aid of a simple mode-coupling model. The slowly-varying
complex amplitude of the electron plasma wave can be estimated from

_a_Ez__ iEzEz - _ quIE% (14)
ot dey/dw, 2m,w3dey /0w,
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where €2 = € (02, k2). In the case of a normal mode, the real part of the
dielectric function would vanish so that the only contribution would be a
small imaginary part. The second term on the left-hand side of equation
(14) would then reduce to I'E, where I' is the damping decrement.

Since the second harmonic plasma wave is not an eigenmode, the second
term on the left-hand side of equation (14) is large, and we can neglect the
time derivative. At wpt =300, we have in the simulation the field
[Eq|= 3.8 x10°V/m, and wp = 5.64 x 1011s°], and €2 = 0.76 + i0.02. Hence,

we obtain from equation (14) for the amplitude ratio | E>/E;q | ~1.4x103.

The situation is more complicated in the simulation than in the model
equation (14). For instance, the mode koAp = 0.7 is driven by all the pairs of
modes which satisfy the condition kiAp + ijD = (0.7. Therefore, we should,
in fact, have the terms corresponding all these pairs of modes on the right-
hand side of equation (14). In Fig. 7 we have at kAp = 0.35 about ten modes
within the full width to half maximum value at wpt = 300. Therefore, we
have in this range five pairs of modes that satisfy the phase matching
condition. If we as an order of magnitude estimate multiply the amplitude
ratio by this factor of five, we find | E2/E;q | ~0.7 x 10-2. This is by a factor of
two smaller than the simulation result |E2/E1 | ~1.3 x 102 in Fig. 7 at
wpt = 300.

5. SUMMARY AND DISCUSSION

We have investigated the wave-induced velocity diffusion caused by a narrow
spectrum of waves. The diffusion coefficient has been measured in the plateau
region of the distribution in conditions where a steady state current is formed.
The Vlasov simulations, where the electrostatic field is calculated self-
consistently, make it possible to test models which predict deviations from the
quasilinear theory. One of the most interesting of the recent theories is the
turbulent trapping model, because it predicts enhanced diffusion in the limit
where the evolution time of the field tg is large compared to the resonance
broadening time tpp. The enhancement of the diffusion is due to the mode-

coupling effects which give rise to non-Gaussian statistics of the field.

In our Vlasov simulations, we had up to 33 externally excited modes with wave
numbers from kip = 0.3 to 0.4. Approximately 20 overlapping modes outside this

13



wave number region were generated during the simulation so that the total
number of the overlapping modes was about 50. In the simulations (see Fig. 6) we
observed diffusion that is faster than quasilinear by 20 to 30% at intermediate
values of the overlap parameter (ex ~1). The assumption tg>> 1tpp of the
turbulent trapping model for the enhanced diffusion was valid in our
simulations for 33 excited modes. We also observed enhanced diffusion at e ~ 1
in the simulation for 9 excited m odes where tg ~ 2tzp- The enhancement is,
however, in all cases smaller than the prediction D =2.2Dgy of the turbulent
trapping model.

It is interesting to note that the diffusion coefficients shown in Fig. 6 resemble
qualitatively those obtained by CARY et al. (1990, 1992). They found an
enhancement of the diffusion coefficient by a factor of 2.3 at ex ~ 1 in simulations
with a randomly phased prescribed field. The enhancement that we find is
smaller, but it occurs at the same value of the overlap parameter. CARY et al.
(1992) have suggested that the mode-coupling effects cause an effective k-space
discretization of the turbulence which enhances the diffusion. Therefore, the
enhancement could also be seen in simulations with prescribed fields which

have a discrete k-spectrum.

In the simulations with 33 externally excited modes, the diffusion co-efficient
also stays slightly above the quasilinear value even in the region of large overlap
parameters (see Fig. 6). In the simulation with 9 and 17 modes, we found
diffusion that was slower than quasilinear when the overlap parameter was large
(ex = 6). This was most likely caused by trapping of the electrons close to the
resonances of the large-amplitude modes.

In the Vlasov simulations, we found evidence of mode-coupling effects. When
the original wave number spectrum was between kjAp =0.3 and 0.4, the
nonlinear coupling broadened the spectrum towards smaller and larger wave

numbers. It was demonstrated that the second harmonic wave at koAp2kiAp= 0.7
has the same phase velocity as the original wave, i.e. vph(kg) = 2w,/ 2k1.

The Vlasov code has important limitations. The one-dimensional model does
not behave correctly when we approach the steady state. In fact, the diffusion
equation (6) has no steady state solution with Ex # 0 in two- or three-dimensions
(BERNSTEIN and ENGELMANN, 1966). In the Vlasov model, we also have

assumed fixed ions. This excludes, for instance, the wave-wave interactions with
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the ion modes, which affects the results at large amplitudes. Investigation of
these effects is left for further work.
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Fig. 1 Time dependence of the nine Fourier components Ex(t) of the wave, when

the wave numbers of the excited modes are between dAp =0.3 and 0.4
(ne = 1020m-3, T, = 1keV).
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Fig. 2 The average amplitude (12) of the nine Fourier components shown in

Fig. 1.
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Fig. 3 The space-averaged momentum distributions fo(p,t) at wpt =100, 200, 250
and 300, when nine modes are excited between kAp = 0.3 and 0.4. The lines
indicate the trapping widths of the Fourier components (see the right-hand scale).
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Fig. 4 The time behaviour of the momentum variance (Ap2) for seven ensembles,
each consisting of 128 spatially distributed electrons. The initial momenta of the
ensembles are between p/mec = 0.1436 and 0.1736.
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Fig. 5 The average of the momentum variances between p/mec = 0.1436 and
0.1736 versus time for the nine excited modes of Fig. 4 with € x =6.9. The
diffusion coefficient in the momentum space (11) is evaluated from the steepest
slope which is indicated by the straight line.
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Fig. 6 The diffusion coefficients obtained from the simulations normalised to the
quasilinear value (8), D/DqL, versus the overlap parameter € ¢ of equation (1).
Results are shown from the simulations where 9 (top), 17 (middle) and 33 modes
(bottom) were externally excited.
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Fig. 7 The wave number spectrum of the electrostatic field at wpt =80 and
wpt = 300. The field is excited by ten external modes which are turned off at wpt =
) 100. The wave numbers of the modes are between kAp = 0.3 and 0.4. The extra
mode is at kAp = 0.335625. At wpt = 300, the overlap parameter is € « =~ 8.7.
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Fig. 8 The frequency spectra of the electrostatic wave for the wave number
kAp = 0.35 and for the second harmonic mode kAp = 0.7. The Fourier transform
in time has been calculated for the time interval 100 < wpt < 400.



