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ABSTRACT

A thermodynamic analysis of tokamak plasmas is developed, starting from a
single fluid model. Some general properties of the entropy production in the
plasma are discussed.

An approach is employed which is more general than the one based on Onsager
symmetry relationships. This choice appears to be justified by experiments. The
concept of "thermodynamic stability" is introduced, and a general criterion for
the stability of stationary states far from thermodynamic equilibrium is assessed.

An upper limit on the particle density is found to exist as a necessary condition in
order to prevent disruptions. Analysis of the entropy balance shows that this
limit is modified when neutral beam heating is applied.

Radial temperature profiles are shown to be stable against external heating under
specific experimental conditions, in particular when ion and electron
temperatures are comparable.

An offset scaling law for the energy confinement time 1g = tp(Pjinp) (with Pipp
total input power) is obtained for stationary states, when stability against
additional heating is imposed.

I. INTRODUCTION

Many general features in the behaviour of tokamak plasmas, like the profile
consistency /1,2,3,4/ and the Murakami limit /5/ are still object of investigations.
A number of works have been published /6,7,8,9,10,11,12,13,14,41,48/, which try
to describe the plasma behaviour starting from the properties of the plasma
entropy S and of the functionals related with it. The quantity S has been defined
in different manners (see e.g. /6,10/) and different points of view have been
followed: either maximization of S /10/ or the so-called minimum entropy
production rate principle /8,9/.

However, ambiguities can occur when dealing with entropy in non-equilibrium
systems, like tokamak plasmas. (In the following, "equilibrium" is used with the

meaning of "thermodynamic equilibrium”). An unambiguous definition of



entropy is only possible when a complete description of the degrees of freedom of
the system is given, through the usual formula

S=—kg Y p;log(p;)
i

where kp is Boltzmann's constant and p; is the probability of the i-th microstate
of the system, including all degrees of freedom. If such a complete description is
not available, the definition itself of entropy depends on the characteristic time
scale of the processes to be described: the shorter the time scale, the lower the
entropy and the higher its time derivative /15,16,17,18/. Accordingly, no
universal dissipation principle, apart from the second law of thermodynamics
itself, can be formulated for non-equilibrium physical systems. Further, even if
the prescription ¢ = Y X;Y; on the production ¢ of entropy per unit volume is
given, with X; intensive ("thermodynamic forces") and Y; extensive quantities
("thermodynamic fluxes"), no uniqueness exists in the choice of X; and Y;.

The aim of this paper is to discuss some properties of entropy, which can be
relevant to tokamak plasmas. Starting from these properties, stability criteria for
stationary states will be proposed in the form of inequalities likely to occur in
most thermodynamic relationships. (The "state" of a system described by m
variables q(F,),..., g,,(F.t) at the time t, is the collection of ¢,(7.1,)...., q,,(F.1,) at
each 7. If there is no dependence on t, the state is "stationary").

Instabilities can occur if these inequalities are violated thus destroying the initial
stationary state, or, at least, radically modifying it. The time and space pattern of
an instability will depend on its nature, on the boundary conditions and on the
local values of the plasma parameters; in the following, attention will be focussed
on the assessment of the stability criteria themselves.

The paper will follow the approach of non-equilibrium thermodynamics of
/19,21/ and is organized as follows. In Sec. II the criteria for defining a time scale
are discussed. In Sec. III the entropy balance for an "open" physical system is
defined and in Sec. IV and V the properties of the contributions of the plasma
bulk and boundary to the entropy balance are discussed. The concept of
"thermodynamic stability” is introduced. Then, we discuss some stability
conditions: against perturbations of the impurity content (Sec. VI), of the
temperature profile (Sec. VII), and of the energy balance (Sec. VIII). A simple,



one-fluid model (ion temperature T; = electron temperature T,=T) is adopted.
We simplify the analysis by using a cylindrical coordinate system to describe a
circular plasma with minor radius 4, in order to ensure the clarity of the
conclusions of physical interest. Conclusions are given in Sec. IX.

II. CHOICE OF THE TIME SCALE

Different characteristic time scales are relevant to the experimental knowledge of
the variables n, T, namely the macroscopic moments of the distribution function.
In order to study stationary, non-equilibrium plasma states, we consider a time
scale ts such that 1p <15 < 1f (p), where 1p is the time resolution of the
diagnostics system and 1f (p) is the energy (particle) confinement time. The
inequalities above compete with tp < 15 < 1r, where 1¢ is the fuelling time.
Generally speaking, 1F > 1E (p). In the special case of pellet fuelling, when tr <1p,
a thermodynamic description of the plasma on the time scale 15 is not feasible
during the ablation period and, as it corresponds to a large (entropy source)
change in the particle flow which cannot be translated in an entropy flow, we
have to consider the ablation period as discontinuity point in thermodynamic
terms. As we expect the plasma to be far from equilibrium already before the
pellet injection, no continuity of states is to be expected across the ablation period.

In the following we shall assume a formulation of entropy based on the
relationship /22/

dG ==SdT +Vdp + " pi,dN,
k

where G is the Gibbs potential, p is the (total) pressure, Ny and puy particle
number and chemical potential respectively of the k-th chemical species: the sum
reduces to udN for a one-fluid system (unessential multiplication constants are
omitted). This relationship is equivalent to the Gibbs-Duhem relationship /21/.

We stress the point that the contributions of electromagnetic polarization to G
are neglected; that is, we neglect plasma diamagnetism (8; = 2uonTB~2 < < 1with
Ho = 4n10-7TmA-1) and both wave excitation and absorption (since the
contribution of plasma polarization is neglected): this latter condition imposes a



new lower boundary on 7 ; if Trr is the transient time scale in wave-plasma
interaction, then Trr < 15 is a condition for describing stationary states.

We shall further assume that the hypothesis of local thermodynamical
equilibrium (LTE) /19/ is valid: the entropy S in a point X of the system at time t
(as well as other thermodynamic quantities) is a function of
n(x,t), T(X,t),..., S(X,1)=S(n(X,1), T(X,1),...) just in the same manner as in
thermodynamic equilibrium §=S(n,T,...); but n, T, ... are uniform at equilibrium,
while in a plasma they depend on ¥ and t. Dependence of S on t is implicit only,
through n, T, ... An explicit expression for S in toroidal plasmas is given in /47/.
The LTE hypothesis implies that the microscopic mean free path is much shorter
than the linear dimensions of the system (problems arising in the banana regime,
where this inequality can be violated, are discussed in Sec. V).

Finally, a suitable relaxation mechanism of the actual distribution function to a
locally near Maxwelliam distribution function must be provided. Collisions
usually perform this task; in strongly collisionless plasmas, the role of electric
and magnetic field fluctuations must be considered. If fluctuations are present,
the interaction between particles and fluctuating fields can provide a mechanism
for approaching LTE on a time scale 7,75 = (k o7, )_1, where & is the fluctuating
field wave-vector and ¥,,is the particle thermal velocity. For IE‘—] = r,;ion Larmor
radius (corresponding in JET to broadband fluctuations up to 100 kHz at T; =
5keV) we have 1,7, < 10-6 seconds for a stationary magnetic field of 3 Tesla. Then
the condition 1,7, < 15 is satisfied and the LTE approximation holds.

III. ENTROPY BALANCE
The general form of the entropy balance is
dS =d.S +d;S (3.1)

where d;S is the increase of entropy due to irreversible processes within the

system, and 4,5 is due to energy and matter exchange through the boundary.

In the following, we neglect short-range interactions such as viscosity, chemical
and nuclear reactions. The fluid-like nature of the system is maintained by long-



range interactions which dominate the plasma behaviour. We assume LTE and
Ti=Te=T at all times.

We show in Appendix A that Eq. 3.1) can be written in the form

d (n,,s)

e -V-J,+0o (3.2)

where 1y, is the mass density, s the entropy per unit mass, J, =7, T~ =7, uT™" the
entropy flux, J,the heat flux, J the particle flux, and

0 =0+ Oq
is the entropy production density, where

VT -7, vur!
_EJ
T

l'l'il-ml

and E, J are the electric field and current density respectively.

It is shown in Appendix A that J represents heat sources and losses with the
exception of convective and of electromagnetic contributions on a time scale 1.
Then, both radiofrequency heating and radiation losses due to atomic processes
(recombination, ionization) and collisions (Bremsstrahlung) appear in the
entropy balance through J,. Including short-range interactions leads to new
additive terms in ¢. In a multi-species theory a contribution to ¢ appears due to
collisional heat exchange between ions and electrons, as T;differs from T,.
Neutral beam heating supplies heat (contribution to J,) and matter; since
entropy is an additive quantity, new terms will have to be considered, i.e.
contributions to J, and to collisional terms in o).

In the following, we shall investigate some of the properties of the quantities
which appear in Eqgs. 3.1), 3.2). These properties will be employed to analyse
overall plasma stability conditions.



IV. PROPERTIES OF d, S/dt

Let us consider a region Q of plasma surrounded by two magnetic surfaces, an
inner one Al and an outer one A2. The boundary of Q is N Q. The surface vector
outcoming from Q is parallel to &, on A2, antiparallel to 2, on Al, (fig. 1). It is
supposed that the safety factor q is > 1 on Al, so that no sawtooth instability
occurs within Q. If ¥ = 0 then (in the following we denote with w the radial
component of a vector w, w=weg,)

A= —f T =1, A7)+ (1AT) o+ (1AT™) (1T @1

Conservation of energy in stationary conditions implies

(JgA)1 = (4A)2

Since T7 > T> we have

~ (JAT- D + (AT )y = (JoA)1(T171 = T2 (4.2)

We define

1o _p1dl
dr
e
dar

Ly

L)'=
= -1

Z=[.1T

Then VT-1 = L1-1T-1 and

q,- dz
op=J,77'L7' ~Jp— (4.3)
1,- dz\!
Jp =(JqT s —o’o)(:i;) (4.4)
and
d,S R 1,- dz\™!
;z =(JaA)1(T11—T2’)+(JqT llJrl_o'O)ZA(;;) |12 (4.5)

We write (J;A)1 = Py, which is proportional to the power lost from the system
through non-convective mechanisms (conduction + radiation), and (J,TA); =



Py, which is proportional to the power lost from the system through convection.
It is useful to define

1 3
Jeg =1gT" =3 Jp
3
For a perfect gas /24/ z = In(n,,) - 5 ln(T) + k, k = const. Then /25/
3

oy =J T = I Ve=J, L + L = Py AT T + PLAT'TT (1: —EL;) 4.6)

(for V(n,,)/n,, = V(n)/n), and

4.5 _ R L - I dz\'

- (T - T3 )+(5b,— L oA TS I 4.7)
dz 3

Since 7 LT - Ly, we write

detS =P (17" =73 )+ P} (4.8)

Let the radial profiles of particle density and temperature be "pseudo-parabolic”

/2627/

[¢44
I‘2
n(r)= n,,(l - —ZJ + Nogge 4.9)
a
P
N
T(r)= To[l - ’—2) + T e (4.10)
ap

with negge«no, Tedge«To. In stationary conditions both P¢4 and P, do not depend
on the surface label, i.e. on the surface they are computed on. Then, we can take
the surface Al as reference, with no loss of generality. Let us consider the
behaviour of the two terms on the R.H.S. of the expression for d,5/dt in the limit
r2 — ap, where rp is the minor radlus of the surface A2. Divergent terms are
—P.4T7 YV and P (zT-1)7 = P,(1n(n2To" 2)+ k)T>-1, where ny = n(r2), To = T(rp).

The ratio W between these two terms is W = — P, Pog l(k + In(naT2-3/2)); it
behaves like 2
- PyPeg Wk + lim In(x@- ‘B)) asx=1- 3o 0 (k includes In (nyTy" 2)

ap

Experimentally, particle density profiles are found to be flatter than temperature
profiles (Fig. 2). Taking o < 33/2, the limit is »1 (divergence is removed for non-



zero Tedge, Nedge)- Then W «-1, and the absolute value of the Py, term is much
larger than the absolute value of the first term; since the first term is < 0, it is
clear that d,S5/dt is dominated by a positive, convective term in the external
region. Loss of particle through the external boundary makes the plasma entropy
to increase. This result is confirmed by the observation that z has a maximum for
r/ ap = 1 in many JET discharges under different experimental conditions (Fig. 3).

Even when dealing with viscous, multi-species plasmas the expression of d,S/dt
remains unchanged. The same holds for chemical and nuclear reactions (their
effects enter d,S/dt through ], only). Usually, in the plasma bulk P4 > Py, but
near the wall dz/dr — 0. It is clear from these considerations that the entropy
balance of tokamak plasmas is actually an "open system" balance.

: deS : :
Further consequences of the expression for 4t Will be investigated below.

V. PROPERTIES OF d; S/dt

d;S
We want to point out some useful properties of P =-7= . If the "internal” entropy
production density is written in the form (see Eq. 4.6)

O=J L'+, L +E-JT7 =Y XY, (5.1)
then a possible definition of thermodynamic forces X;is (i = 1,2,3)
X, =L X, =1}, X3=E (5.2)

with corresponding thermodynamic fluxes

Yy =Jps Y=, Yy =TT (5.3)
) o ) ) VT Vn Vp VT
This choice is not unique; another choice for X, X7 are T, of .

/14,2328/ and X5 = ET"', Y; = J /25/. Relationships between X's and Y's are often
supposed to be linear

Yi= Z (TR (5.4)



and the invariance under time reversal of the equations of motion for the
individual particles in the system can be expressed by Onsager symmetry
relationships /29/

Li]’ == L]',‘ (5.5)

where the sign depends on the parity of the quantities involved with respect to
the magnetic field and the angular velocity. Furthermore, it is often assumed that
the coefficients L;; are almost constant and uniform.

Starting from these hypotheses and taking the sign + in Onsager relationships
(these assumptions are often referred with the collective name of "linear non-
equilibrium thermodynamics", LNET), it has been shown /30,44/ that the value
of P is the minimum value compatible with given boundary conditions in
stationary non-equilibrium states. If the non-equilibrium state is non stationary
(e.g. if some perturbation occurs at a given time), then

ap
P o (5.6)

and, in stationary states only,

dP

This is the so called "minimum entropy production rate principle”, quoted
above. This principle was first applied to problems of chemical reactions with
particle diffusion and later extended /31/ to include heat diffusion.

The minimum entropy production rate principle can provide a stability criterion
against perturbations. A small variation dP of P due to a perturbation of a
stationary state will relax to zero, provided that dP is positive at all times. If dP <
0 at any time, then its absolute value will increase with time beyond control.

We stress the point that neither the condition S = const. -which has been utilised
to describe stationary states /47/ - nor the condition S = maximum /12/ are
general conditions of stability against perturbations, since plasma stationary states
are far from equilibrium.



The minimum entropy production rate principle has been employed in plasma
physics /6,7,8,9 and Refs. therein, 14,48/. However, its validity is limited not only
within the domain of LNET, but also by the choice of the time scale. If effect, an
interesting counter-example has been found /8/. The minimum entropy
production rate principle is violated when acoustic and Alfvén wave effects are
included in a linearized resistive MHD treatment of an one-fluid plasma
(however, it is then possible to define a suitable "dissipative potential" which
goes monotonically to zero in non-stationary states and reaches zero when a
stationary state is reached).

Irreversible processes considered in Ref. /8/ are ohmic heating and viscosity; heat
and particle transport is neglected. Nevertheless, it is worthwhile to assess the
applicability of the minimum entropy production rate principle to real tokamak
plasmas. In LNET o= ZX"Yi even in the banana regime. (A flux surface average

3

of ¢ in toroidal, axisymmetric geometry is computed in Ref. /23/, starting from
the neoclassical transport theory. It is shown that, even in the banana regime, it is
always possible to write the flux-surface-average entropy production density in
the form o= ZX;'Y;', provided that L;; is a suitable function of the neoclassical

3

transport coefficients.).

For the symmetric form L;;X;Y; to be non-negative (see Appendix A) a necessary
condition is that all principal cofactors of ij = (Ljj + Lji)/2 be non-negative. This
implies L11 >0, L2 >0, (L12 + L71)2 — 4L11L27 < 0. If we write /25/

]eq = arLlt ! + oy Ly (5.8)

Ip= BrLr ! + BuLy! (5.9)

the above conditions give

or >0 (5.10)
Brn>0 (5.11)
4a1By > (o + P12 (5.12)

10



and LNET implies

Introducing ¢ = B,/ ar:
o ¥

4caf >4al; c> (——"—) = Crin (5.14)
o

Multiplication of J, by L, and division by o, gives

J, L 1 1
=8l 22 52 (5.15)

L, P _n
ancf(" by %n

] Ly 1/2
on

p
Ln o> L * Crin (5.16)

Definition of Jg; gives [5 = T + (3/2)],T. Neglecting the convective term in the
plasma bulk we obtain:

]q = T]eq
Be Ky defined by J, = nTKyL7 1. Then, the expressions for Jeq, Jg and Ky give

1

o l+ceZ LpL!

anlz Cmmlf n (517)
nKpChin

and, together with the inequality for Ly/p/0,, we obtain the following necessary
condition for the validity of LNET

3 -1
(1 + Célinl’an Ln‘lp L 3
> 42 (5.18)

min

T
nK hCin L
This inequality may be checked using values of the relevant parameters either
measured directly (n, T, Ly, L), or through power balance analysis, (Kp, cmin)-
The result of such a comparison is shown in Fig. 4, for data obtained on JET for

various plasma conditions, to rule out the validity of LNET in many cases /43/.

However, a "general evolution criterion” has been shown to hold in many cases
beyond the domain of validity of LNET. If particle transport only is present, if

11



LTE is valid, and if boundary conditions are stationary, then the following
"general evolution criterion" holds /32/

dyP
d—tso (5.19)
with
d P dx,
= J;—d
dt Jv; Lt Y

when V is the volume of the system and

dxP
dr =0 (5.20)

in stationary states only. The general evolution criterion is a generalization of the
minimum entropy production rate principle.

Starting from the general evolution criterion, the following statement has been
shown to hold /19/. Let a scalar parameter y exist, such that y corresponds to one
and only one stationary state of the physical system. If thermodynamic
equilibrium corresponds to y., let a small JX;(F) perturb at ¢t =t, the
thermodynamic force X; of the system in a stationary state y. (Nothing changes if
a set of parameters y1, ..., y,; is considered. The following arguments will be
separately repeated for each y;,i =1, ..., m). The corresponding perturbation of P
will be dP(tp). Then, an interval — y1 <y - yeq < + ¥1,y1 > 0 ("thermodynamic
branch", TB) exists, such that if y belongs to TB,

1. P >0fort>t,

2. oP(t) is maximum at t = t;, and decreases monotonically — 0 as t — o, and,
consequently:
3. the stationary state has "thermodynamic stability", i.e. the system will relax

again to the value of P of the initial stationary state after a suitable
relaxation time.

Further, for a given t. 2 t,, the system is unstable for t > t. if JP(t;) < 0. In this case
the system will be driven away from its state at t = t;, and a finite, negative

12



variation of P develops in a finite time interval from an initial infinitesimal
perturbation.

Then, a necessary condition for stability for t > ¢, is dP(t,) 2 0, and a sufficient
condition for stability for t > f, is dP(t) > 0 for all t > ¢,

An interpretation of the stability condition within the framework of statistical
mechanics is given in Ref. /39/.

Since dP is built by varying the X;'s only, it is not an exact differential. The non-
existence of a general variational principle based on exact differentials and valid
for stationary states in LTE, beyond the narrow domain of validity of LNET, has
been explicitely shown in /40/. The validity itself of the general evolution
criterion depends on the choice of a proper time scale /15/. Then, this validity
has to be explicitely assessed for each term in o.

As far as the heat conduction term in ¢ is concerned, this proof is given in /21/.
The general evolution criterion is therefore valid for ¢ = 6,. We shall check its
validity for ¢ = 0, + O,

First of all, we show that the ohmic contribution ¢ is not negligible in real
tokamak plasmas. Wecompare g = E ¢ J /Tto the conduction term J,T-1L7"Tin o,
If E= nJ n="0,ZyT 2, where Z.f is the effective charge, then 6, = ng- 1Zeff

3 I T?. Conservation of energy in stationary ohmic discharges gives

ot -1 = T i [

for a volume V of plasma surrounded by a surface A with minor radius r4 and
major radius Ry (Spitzer resistivity is assumed). Then

-1 1T %
J, =5 [Ef [, T2 ar
and the ratio between the conduction and the ohmic term is

2
where p=1-rya,2 and T(r) = To(1 - rzap'z)ﬁ. For realistic values of B(B = 1.5) at
ra =.7ay F = .9apLT'1. The conclusion from this estimate is that conduction

13



and ohmic contribution play comparable roles in entropy production (in ohmic
discharges at least). Introducing neoclassical resistivity does not affect this

conclusion significantly.

In order to apply the general evolution criterion, it must be shown that in a
tokamak plasma

d, ¢ EeJ

= av <0
a’v T

This task is performed in Appendix B.

In the next Sections we shall apply the stability conditions which have been
derived above from the general evolution principle. We shall make use of small
perturbations of the thermodynamic forces. These perturbations will be suitable,
arbitrarily choosen functions of the radial coordinate, in order to obtain useful
necessary criteria for thermodynamic stability.

A different approach to the plasma entropy is discussed in Appendix C.

Analogously, the small "displacement vectors" of MHD stability theory are
suitable trial functions of the radial coordinate, in order to derive MHD stability
criteria, e.g. Suydam's criterion /27/.

VI. STABILITY AGAINST PERTURBATIONS OF THE EFFECTIVE CHARGE
VI.1 Ohmic Case.

We suppose that a small perturbation 0Z. of the effective charge Z.¢ occurs in a
stationary ohmic plasma. In a multi-species plasma model this perturbation
corresponds to small deformations of density radial profiles of various
impurities. For simplicity, we choose a perturbation which does not change both
the z profile and the J/Tprofile. For given J(F), T(F), a perturbation d£ in the
thermodynamical force E arises from the Z off dependence of the plasma
resistivity. Moreover, there is a perturbation d(dS/dt) = dP + d(d.S/dt), dP being
caused by 0E (we keep dL,"1 = 0, dL1 = 0). Stability requires dP(t) — 0 as t — oo.
Then, after a suitable relaxation time, the non-vanishing perturbation of the
entropy total derivative is just the boundary contribution

14



d deS

We have shown that the inclusion of the most external region of the plasma
makes d.5/dt to be dominated by the convective term: since z is unchanged, we
write

de aPCU

If we write the mass conservation law in an integral form

we get

Jp = nap/(ZIp)

In the case of constant density dJ, = % nayd(1/1p) and

0 %S— oc R,,a,,Znau /) (6.4)

Now an expression for d9(dS/dt) can be written. The heat produced through
ohmic dissipation by a current Iy, in a plasma with temperature T in a small time
interval dt is

2
dQ = ZefT3/? RpayIp dt
since Rp and af, are proportional to the length and the cross section of the plasma

column respectively. Accordingly, the total entropy change is

ds dQ

-5/2 2
T = Tar > ZefT™ 2Rpay I

If a perturbation dZf occurs, the resulting variation in total entropy change is

d
d af o T5/2R 0, 209 Z o (6.5)

15



(Here the radiative contribution is considered to be much smaller than the ohmic
contribution; consequently, we can suppose that for small dZ.f the ohmic power
is much higher than the power lost by radiation both in the initial state and in
the perturbed state. Radiation will be taken into account below). Since 9(d5/dt) =
0(d.S/dt), we can write

s

! 5/2 -1 -4
ZeffxT n-dp I?’ (6.6)

B

2
Using the Bennett relationship /33/ 12 < na T which is qualitatively equivalent
to the Grad-Shafranov MHD equlhbnum equation for low B, cylindrical

plasmas, we can write T-5/2 ocI Syd / zal7 and 6.7)
0Ty 1

P -

azeff“ Ip 3n3/2aP' (6.8)

For " Jyise = ok eB;,]ol, Byol = Iy, and
9 7o Biorly (6.9)
eff torlp

Let us suppose that the perturbation dZ.¢ does not lead to a severe disruption.
Then, a finite upper limit on the L.H.S. of this proportionality exists. In fact, if a
finite upper limit does not exist, 1,1 goes to e for finite dZ.y, the particle
diffusion coefficient Dy, Eaprp'l diverges and particles are no more confined.
This is a necessary condition for stability of ohmic stationary states against
perturbation of Z. It can be written as

-1
¢1BtorRp 1gedge > nip! (6.10)

(ci's are finite positive constant). Given a class of perturbations dZ.(F), a
corresponding necessary criterion for stability may be derived from similar
considerations. The existence of such a condition is a matter of thermodynamics;
its detailed structure depends on the particular features of the physics of the
discharge. A simple example can be considered.

Ohmic heating must supply enough power to sustain radiation losses due to
impurities. If we just consider Bremsstrahlung losses due to collisions against

ions of atomic number Z; and density n;, we can write

2 2 2
szeffT_3/21pRpap'2 > C3RpapnniZiT1/2

16



Assuming ngi =< n2 and only one Z; > 1 ion impurity species present, then nn; =
(Zeff - Zi) (Zi — Z;)"In2. Bennett relationship gives f(Z;, Z.q) > I,, where fis a
function of Z;, Zeff only. Substitution in the necessary condition for stability gives

-1
nq = c4BiorRpGedge > 1 6.11)

which is the form of the well-known Murakami limit on particle density for
ohmic plasmas /5/.

Even in this extremely simplified model, the Murakami limit is likely to be a
necessary condition for stability of stationary states of ohmic plasmas against
perturbation of impurity contents. More precisely, if the necessary criterion for
stability is fulfilled, convective losses on the boundary (the [p term in d.S/dt) can
"remain under control" as Zeff varies, under the restriction of having no
unbalanced radiative losses. In the opposite case, the confinement of particles is
lost, and the initial state of the plasma is destroyed. In this latter case, the entropy
balance behaves as follows. P goes from its initial positive value, (¢ > 0, see
Appendix A) to zero, since:

1. Radial profiles of particle density and temperature flatten and L1, L1 — 0.

2. Convective loss of plasma energy increases sharply, since 1, — 0.
Then, T — 0, 6g e T1/2 - 0.

Correspondingly, a finite, negative variation of P occurs, starting from an
infinitesimal perturbation (see Sec. VI). The value of the boundary contribution
deS/dt to the time derivative of the entropy becomes exceedingly high, since J, —
« as Ty, — 0. Then, a sudden, net increase of the entropy time derivative occurs.
There is a sharp transition from the ordered state of a confined plasma to an
highly disordered final state. Our stability condition is equivalent to requiring
that the evolution of the entropy increment exhibits no explosive behaviour.

However, it can be noted that the occurrence of thermodynamic instability in
plasmas is not likely to coincide necessarily with hard disruptions. For instance,
the minimum absolute value of the quantity P is zero, since ¢ 2 0; and it is
reached when L,1 = 0, LT71 - 0, 63 — 0. But there are sudden transitions to flat
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radial profiles of temperature and density in the plasma bulk with no vanishing
Cgq, as the L-mode to H-mode transitions. Thus, the disruptive nature - if any - of
a thermodynamic instability has to be separately verified in each case.

The analysis has been limited to perturbations of dS/dt induced by dZ.f, and to
the necessary condition for stability against these perturbations. An impurity
influx model of fast disruptions of practical interest for tokamak plasmas is given
in Ref./45/. Analytical theory and stability conditions of the energy balance of a
plasma with marfes and near the density limit - including radiative losses - is
given in Ref./46/. According to the models developed in these Refs., a suitable
increase of impurity ions leads to disruption.

V1.2 Neutral beam heating case.

We have shown in Sec. III that additional heating enters the entropy balance
through J;. In the particular case of neutral beam injection (NBI), extra mass is
injected into the plasma. Consequently, the entropy balance is somehow
modified, since entropy is an additive quantity. We did not show explicitely that
the general evolution criterion holds for NBI-heated plasmas. However, it is
worthwhile to analyse the entropy balance. Let us suppose that an ohmic
stationary state with current I, and total ohmic resistance Ry, is brought by NBI to
a new stationary state with current I’y = Ioy + I¢q (Ipn is the ohmic current of the
final state, I3 is the non-inductive term of the final state, due to NBI). The ohmic
resistance of the final state is R';4. We can keep the applied voltage V, fixed: V, =
Raly = R'alpp. Since the temperature T is increased by NBI and the ohmic
resistivity is a decreasing function of T, R > R, and [, < Ipp.

The energy Ejp of the beam is described by dEy/dt = Ep/1e4, with energy
equipartition time Teq e« n-1T3/2, as beam particle velocity is smaller than the
electron thermal velocity. Then, for a given neutral beam source, the neutral
beam power absorbed by the plasma is Pp o< Tgp1 enT-3/2.

The total entropy time derivative becomes

ds _ R'olPon + Py

dt ~ T (6.12)

Let us perturb Z.¢ in the ohmic and in the NBI case. We want to compute the
relative variation d(dS/dt)/(dS/dt) of the entropy total time derivative dS/dt due
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to a variation of Z.¢ in both ohmic and NBI case. In order to perform this task,
we choose a particular azeff, such that the absolute variation d(dS/dt) of dS/dt is
the same in both cases, i.e.: 3(dS/dt)y, = 9(dS/dt)Np; = ORGIST-1. (2(dS/dt)en and
0(dS/dt)Nnp] are two different functionals of the same function azef,( r)). Then,

the relative variation is

ds

°df _aRg
d5 7 Rg
dt oh

in the ohmic case, and

ds

Chr ) If,aRQ
fi_s T R'oPon + Py
dt wsi

in the NBI case. For Py, > 0 the relative variation is lower than in the ohmic case
(R'qI2o4 = Voloy > Voly = RQI;). (We could have kept the current fixed; nothing
changes, provided that Py is high enough). If Py»R’oI2,y the relative variation in
the NBI case is obtained from the relative variation in the ohmic case through
multiplication of the latter by a factor w = RQI:;;Pb'l. All quantities but Py refer to
the initial ohmic state. From the Bennett relationship and the expression for Py,
we get:

2 - -
W ec RQaPTS/2 < Rody 3[2n 5/2
In the initial ohmic state the density is of course lower than the Murakami limit:
n < nge< I, Substitution in the expression above gives (apart from a factor
w > csly5/2 (6.13)
We can conclude that the ohmic value of the relative variation of the total
derivative of the entropy for a particular class of perturbations dZ.¢ is multiplied

by a factor w > ¢sI,%/2 if NBI is applied.

In our previous discussion of the ohmic case, an upper limit was imposed on
d(dS/dt) in order to preserve particle confinement. Here, d(dS/dt) is the same in
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the ohmic and the NBI case. Since, for our &)Zeff, just the relative variation is
different in the two cases, we come back to the ohmic problem if we multiply
dS/dt by 1/w. But dS/dt is linear in the particle density n; then, our NBI problem
is simply equivalent to the ohmic one, provided that n is scaled by a factor 1/w.
Intuitively, the smaller the relative variation of dS/dt, the smaller d(dS/dt) in
comparison to the initial dS/dt, and the weaker the restriction on n, since this
restriction is just obtained by imposing an upper limit on dS/dt. Then, the new,
NBI-modified Murakami limit will be ngw! instead on ng, and

n < nowl < cengly>/2 (6.14)

We remark that the above argument does not depend on the actual validity of
the general evolution criterion for NBI-heated plasmas, because we investigated
the stability condition against a particular perturbation; and, for this perturbation,
the stability problem reduces to the ohmic problem.

If NBI increases density at a given rate, the maximum final density will be
reached for maximum initial density, that is n = ng. Then Py« nT-3/2 = noT-3/2,
and Y o< PbT3/2

Finally, in order to avoid runaway, the streaming parameter I' = I;)/(nevgy, - o), e
electronic charge, vy, ., electron thermal speed, must be lower than some
maximum value Tmay; since I e I,/ (nT1/2), the inequality 1,1 > ¢;n-1T-1/2 holds.
This inequality and Bennett relationship give I, > ¢sT1/2 and consequently T3/2 <
cgl?,. Then, the above relationship for ng may be written in the form ng < ¢13Pplp.
Substitution in the expression of the NBI-modified density limit gives

n < c1oPplyl/2 (6.15)
This condition is compatible with experiments /34,35/.

VIL. STABILITY AGAINST PERTURBATIONS OF THE RADIAL
TEMPERATURE PROFILE

Let us consider a region of plasma where the convective and the radiative losses

are negligible in comparison with the conduction losses. A good example of such
a region in L-mode discharges of tokamaks is the "confinement zone", i.e. the
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intermediate zone lying between the central sawtooth zone and the external
region where atomic processes are relevant.

Entropy production density is ¢ = 6, + 6o, where
3

Op = PegA VT ILT 1 + P, A IT-I(L,-1 - 5 Lt V)=P4A-1T-1L11 = K’y L2 where
K'tyh =nKyy = K'4y(n, T,B,VT,Vn, ...) and
Gq=nol1 | E 12T1/2,
Then

_ - P -1 E 127172
P J’Vodv jVK LT dV+J no-! | E 1271724V 7.1)

v
Since dV = 4n2Rrdr and d(no 1t E 12)/dr=0 as ap/Rp«1 it is useful to define P’ =
P/(47t2Rp),‘ then
p’= jK',hLT-Zrdr oV VEI12 | TV 2rdr=F + G (7.2)

where F and G are the first and second term respectively.

As usual, we take pseudo-parabolic profiles for n(r), T(r) for stationary states in L-
mode discharges. For this profile Lt V= 2Br(1 - ray) 1ap 2,

Let us perturb the temperature profile of an initial stationary state:

B—pB+09p.

Here we neglect perturbations of the particle density profile, and assume T(r), n(r)
to be pseudo-parabolic at all times. Then, a perturbation of the thermodynamic
force

L1 L1+ 9Ly

occurs, where

oLt1 = 2r(1 - r2a,2)1a, 20

for small d(dB)/dr. We write the corresponding perturbation of P’ (i.e., of P)
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oP’' =0dF +9G
If we write
-2
r = ayX(1 - r2a, )L71(2B)

it is straightforward to show that G — G +dG, dG = (df/B)G. Developing to first
order

, , o OK'th
K'tp = K'yy +—_—_8LT'] oLt

and, in the variable L7-1, with 7 o« L1
-2 ) 3 2 -1 200 o -1
rL1" = rLr° + 5apB (1 - r2ap )L 9 L1

. 1, -
we obtain, as dLt / LTl = df/B,

0 In(K'p)

W)r dr

OF = (%ﬁ )JK'thLT-2(3 + L1
(Integrals have been computed for 0 < r < r, for the sake of simplicity).

The second addendum on the R.H.S. can often be neglected, at least when K’y >
0. Then

oP = 4n2R,(3F + G)B-10B (7.3)
Stability of the initial state against the perturbation dL7! depends on the sign of
dP. Additional heating modifies both the peak temperature and the radial
temperature profile, i.e. both § and the total energy U

3 1
U=|5 nNTMAV =c Tolo + B + 1)
Let us investigate the sign of df3 in the case where we apply additional heating to

an initial stationary state, at constant density and applied voltage V,. We consider
a simultaneous perturbation

B—o>pB+apB
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Uu-u+dU

with dU > 0 at all time during the application of additional heating. The
corresponding perturbation in central temperature T, due to additional heating is

9Ty = c11 W (UIP + (o + B + 1)aUl)

The ohmic power is

Po= JE o7 AV = c1aT> 2(3B + 2

and another expression may be derived for 9T,

0T = €1272/3(2P2/3(3B + 2)-1/30B + % Po1/3(3B + 2)2/30Pg)

By equating these two expressions for dT, and dividing by T,, we get

2 9P, AU
OB((o+ B+ 11— 238 +2)1) = 5 ( 7;3 ETh (7.4)

Since Vo = const., Pq = Volp and 0P/ P = dlp/l,. The RH.S. of Eq. 7.4) equals
3115/ >U-1)). For B, = 1, U o= I and a(In(y “U-1)) = 9(1n(U-2/3)) < 0 for aU > 0.
Then df > 0 for B < 2¢. If the additional heating raises the poloidal beta, I,
increases more weakly with U, and our argument is even more valid. Since oU >
0, 0B > 0 also. As dP is linear in dp and has the same sign, then dP(t) > 0 during
additional heating.

Additional heating produces, through df, a perturbation of the thermodynamical
force L1, which makes a positive perturbation 9P of P. Then, as a consequence of
the general evolution criterion (Sec. V), the perturbation dP monotonically
decreases from its initial (maximum) value to zero after a suitable relaxation
time. As usual, no information can be obtained about this relaxation time from
our purely thermodynamic treatment; it depends on the details of the heat
transport mechanism.

We have shown that df is proportional to dP through a positive constant at all

times. Then, since 0P — 0,0 — 0 and additional heating leaves temperature
profiles unchanged, provided that the applied voltage is kept fixed. This result is
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relevant to the so-called "profile consistency" /1,2,3,4/. Our demonstration is
subject to a number of restrictive hypotheses.

Pseudo-parabolic profiles for n(r), T(r) are assumed.
All integrals are computed from 0 to ap; that is,

the radiation-dominated zone be small

Tg=1 «Ap, Tg=T the g=1 radius.

However, if an uniform dT/dr is assumed in the confinement zone /36/, the
relationship dP =< @1 VT is straightforward, and the validity of the above result in
this zone follows immediately (ohmic dissipation increases with |VT! for fixed
voltage).

We made use of a single fluid model, that is, we supposed T; = T,. This is
unrealistic when describing additional heating, unless high density plasmas are
considered. A complete description of the entropy evolution in a plasma with
additional heating requires a multi-species model, which separates entropy
production of ions and electrons and takes into account the entropy term linked
with collisional heat exchange between particles of different species.

However, if the particle density is low the collisional coupling is weak; if ohmic-
heated electrons are initially hotter than ions, our argument can be repeated,
provided that ion and electron contributions to P are written separately. The ion
temperature gradient is smaller than the electron one in the initial state. Then,
ions contribute to the total P of the plasma much less than electrons do. In this
case, we expect that the ion temperature profile will change with additional
power, and that the electron temperature will not. This is true, unless the ion
contribution to J; is exceedingly larger than the electron one.

If a population of fast ions is present, a corresponding new term appears in P, and
our argument cannot be applied straightforwardly.

For fixed oU/U, 0f is an increasing function of . Assuming pseudo-parabolic

profiles and Spitzer resistivity, B is an increasing function of gegge for fixed safety
factor on the axis q(r = 0) (see also /3/ and, for Gaussian profiles, /4/). Then, for
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fixed dU/U at a given time the perturbation of the temperature profile increases
with ge4ge. Then, we expect that profile consistency is relaxed at high gegg, (see

/37/).

We remark that we have dealt with profiles of temperature T, not of current
density j. However, ohmic and conduction terms in ¢ are comparable (Sec. V),
and we could just repeat our arguments using j instead of T, as the
phaenomenological relationship j = j(T) is monotonic in the confinement zone
with dj/dT > 0, and T, replacing T in the multifluid case.

Another interesting consequence results from Eq. 7.4). If any physical process
subtracts energy from the plasma (dU < 0) and the df3 due to this process is non-
zero, then dP < 0 and thermodynamic instability occurs. The end of the discharge
is an example of this evolution. In fact, a particular case is the external voltage
pre-programming at the end of the discharge (for § = B(ge4ge)) (the switching-off
of additional heating is not: if heat transport leaves  unchanged during
additional heating, the same occurs when additional heating is switched off).
Within the limits of this model, we can say that a singularity in d(1/1y)/0Zf
does not occur, if the stability condition on density of Sec. VI is satisfied at all
times.

VIII STABILITY AGAINST PERTURBATION OF THE ENERGY BALANCE

The simplest way to write the energy balance of a plasma is

au
FTi Ploss + Pinp 8.1)

where U is the total plasma energy, and Pjyp, Pjoss represent power input and
power losses respectively. We suppose that conduction is the dominant loss
process Pjyss = Peg. The energy confinement time is therefore 1 = U/Pjyss = U/P4.
In stationary conditions Pjoss = Pinp. Let the particle density profile n(r) and the
temperature profile T(r)/T, be fixed. Then U « T. We apply a small perturbation
to the energy balance, i.e. Pipp = Pinp + dPinp. As 0Pjyp perturbs the
thermodynamic force L1, stability requires that the associated perturbation of
the entropy production oP = 4n2R,d(F + G) goes to zero after a suitable time. We
can write oF o< d(Pjpss/ T) o< d(Pjoss/ U) o< d(1/1E). In the unperturbed state Pjpp = Py
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+ Payy; leaving the ohmic power P, unchanged and perturbing Py, only (i.e., the
perturbation in Pjy,p at the onset is due to additional heating only), we can write G
o< Po /T and 0G o< d(Pg /T) o< d(1/T) = d(1/U). The condition oP — 0 gives

- d(l/tg) =ad(1/U) (8.2)
with a dimensional, positive constant. Integration gives

g -1l =all

(g integration constant), which can be rewritten

1g = (1 - hU-1)-1

(here g =1/g, h =aq). Since U = PjyptE in stationary conditions, we get

TE =g + hPipy! (8.3)

as 1¢ > 0, g > 0. The quantity h depends on various plasma parameters through a
and is arbitrary. Eq. 8.3) describes therefore a whole family of possible functions
TE(Pinp).

The thermodynamic stability discussed in Sec. V against perturbations of the
energy balance due to additional heating requires that te(Pjyp) belong to this
family, at least for fixed n(r) and T(r) with conduction as the dominant loss
process. Rebut-Lallia scaling law for tg /38/ satisfies this condition.

Straightforward generalization to non-stationary states within the time scale 1y
requires the substitution Pjoss = Piny — Ploss = Pinp —dU/dt, and 1 =g + h/(Pipp -
dujdt).

Since we cannot apply this theory during a pellet ablation period (Sec. II), we

would conclude that the Rebut-Lallia confinement law does not fit well pellet-
fuelled discharges. This statement is not in contrast with experiments /49/.
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IX CONCLUSIONS

We have discussed the features of the production of entropy in a low beta, large
aspect ratio tokamak plasma.

A single fluid model has been utilized, with T; - T,. Ambiguities in definition of
entropy have been overcome through suitable choice of a macroscopic time scale.
Pseudo-parabolic radial profiles for particle density n, temperature T and current
density j /26/ have been assumed.

The validity of the approach of linear non-equilibrium thermodynamics, based
on Onsager symmetry relationships, is shown to be questionable in real plasmas.

A general evolution criterion /21/ has been assessed for the time evolution of
the entropy production is low beta tokamak plasmas.

The behaviour of stationary (d/dt = 0) states of the plasma is investigated, when a
small perturbation of any thermodynamical force occurs. Either relaxation to the
level of entropy production in the plasma bulk of the initial state or uncontrolled
evolution of this production occurs. If the former case occurs, the initial
stationary state is said to have "thermodynamic stability".

A set of stable stationary states actually exists ("thermodynamic branch"). Plasmas
near to thermodynamic equilibrium belong to the thermodynamic branch;
nevertheless, no linearization of phaenomenological relationships is used in the
model.

The actual behaviour of the entropy production in the plasma bulk depends on
the macroscopic parameters (n, T, magnetic field B), on their gradients, and on
the particular thermodynamic force which is actually perturbed. Various

necessary conditions for thermodynamic stability are found.

Stability against small changes of the effective charge Z.¢ in ohmic plasmas
implies that an upper density limit exists:

1.-1
n < c4BiorRp 1qed88
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with By toroidal magnetic field, Ry, major plasma radius, ge4g. boundary safety
factor, ¢4 positive constant. This result is similar to the well-known Murakami
limit /5/.

Here and in the following formulas, the actual value of multiplicative
dimensional constants (c4, ¢jg, ...) cannot be computed starting from a purely
thermodynamic approach; the existence of stability conditions is a matter of
thermodynamics, their detailed structure depends on the particular features of
the physics of the discharge.

Entropy balance is strongly affected by neutral beam heating: when the latter is
applied, the upper limit on density becomes:

n < coPplp1/2

with Py neutral beam heating power and [, plasma current. The constraint on

density is weakened.

It is shown that, if these conditions are violated, the particle confinement time

goes to zero and confinement is lost.

Thermodynamic stability against perturbation of radial temperature profile
requires that additional heating does not change the slope of T(r) in the
"confinement zone", i.e. the plasma region where conduction is the dominant
loss process. This conclusion is valid only if a number of experimental conditions
are verified; for practical purposes, the most stringent ones are T;= T, and the
absence of a fast particle population. Invariance of T(r) is relaxed at high gegge.
Qualitative discussion of the multi-species problem seems to show that the
invariance property is more likely to be a property of electron rather than of ion
temperature profiles. Generally speaking, these arguments remain valid if the
current density is used instead of T.

Thermodynamic stability against perturbations of the energy balance requires that
the energy confinement time tg is written in the form 1g =a + bP;np with a, b
positive constant, U total internal energy, Pi;p total input power, leading to Pjyp
— Pjiyp —dU/dt for non-stationary discharges. Conduction is considered as the
dominant loss process. The Rebut-Lallia scaling law for 1 /38/ satisfies this
condition.
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We have tried to employ concepts and methods of thermodynamics in the
description of tokamak plasmas, through an oversimplified model. Further
developments are required for a multi-species treatment. Possible occurrence of
non-disruptive thermodynamic instabilities (like L-H mode transition) may be
investigated.

A number of necessary conditions for stability of stationary states has been
obtained. As usual with thermodynamics, the existence itself of such a condition
imposes a constraint on any self-consistent microscopic theory. Thus the
usefulness of a rigorous - even if rather abstract - investigation of plasma entropy
properties is emphasized.

ACKNOWLEDGEMENTS
Dr. L.C. Woods' invaluable suggestions and comments helped us to clarify the
discussion of general properties of entropy. One of us (M.B.) acknowledges useful

discussions with Prof. J.D. Callen. One of us (A.D.V.) would like to thank Dr. F.
Rosatelli of Ansaldo Ricerche for his useful comments.

29



APPENDIX A. ALTERNATIVE FORMS OF THE ENTROPY BALANCE

We consider in this Appendix alternative forms of the entropy balance to Eq. 3.1)
under the same physical hypotheses as listed in Sec. III of the text.

The second law of thermodynamics implies 4;S > 0. If the irreversible processes
within a small volume dV increase the entropy by 6dVdt in a time interval dt,
then integration over the volume V gives

d;S
P=—1; :jvodv (A.L1)
and, by the second law of thermodynamics,
c>0. (A.L2)

Let J ¢t be the "entropy flux density" through the boundary N V of the volume
V with infinitesimal surface d A, i.e. Jgor » d Adt is the entropy crossing the
infinitesimal surface in a time interval dt. The entropy flux density is positive
when pointing outwards and is associated to both energy and particle transport
through the boundary. Then

deS - —

—(F':—J‘mv JStot'dA (A.I.3)
Let

S = Jvnms dv

with n,, mass density and s entropy per unit mass. Then, the entropy balance (eq.
3.1)) in a fixed small volume dV inside the system is

oNyS _
aT_z_V, Tsiot + (A.14)

de . . -
where 5r is the usual Eulerian time derivative. Eq. A.I.4) has the structure of a
continuity equation and represents the local form of the entropy balance 3.1).
Then, it is valid for both compressible and non-compressible fluids. It is useful to

write it in a somewhat different form.
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d(e) d(e)

The lagrangian time derivative is: TR TE VeV (¢) where v is the

macroscopic velocity. Mass conservation is given by:

0
%ﬂt_ Ve (nm?) (A.L5)

Then, a third form of the entropy balance is:

ds -
nm—t=—VoJ5+6 (A.L6)
with
Js=TStot —NmsSV. (A.L.7)

Another version of the entropy balance can be considered. Neglecting
electromagnetic fields E and B on the time scale 15, energy conservation implies

/21/

dnme -
3 =~ VeJe (A.L8)

2
v -
where ¢ =5~ + u is the total energy per unit mass, the total energy flux is J, =

nmev + J, and J, is the heat flux, defined as ny, g‘? =-V « J, We define the
— n —
vector Jp such that Ir = Vel

ds
Thermodynamics supplies an expression for 7. Differentiation of Gibbs potential

/21,22/ G =U-TS + pV (U internal energy) together with the relationship 4G = -
SdT + Vdp + udN gives: TdS = dU+ pdV — udN. We apply these equations to the

-1, . .
small volume V = n,, i.e. the unit mass volume. Then dN = V,dn, n particle

density. In the following s, u, e, dq are entropy, internal energy, total energy

(kinetic + internal) and non-exact heat differential respectively in the volume V,,

du -1 dn )
i.e. per mass unit. In this volume ds = Tt pfd (n,) - A:lf .~ and the first

principle of thermodynamics dU =dQ — pdV (dQ non-exact heat differential)

; d dn
gives du =dq - pd (n,,}) so that ds = Tq - L::,,,T' Differentiation upon time and
d

ds dn
multiplication by ny gives ny ¢ :fTﬁ Ei_[t] —‘LTi Tr
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Then we can write

a7

VeTg+Eved, (A.L9)

Sk
| =

Ambiguities arising from defining J, and J, through their divergences are
removed assuming suiga(lzge boundary conditions and a privileged radial
direction (V () — &, » a5 with v.1é&,). This is a natural choice in toroidal
axisymmetric plasmas, where /23/ only surface-averaged fluxes of particles and
heat are measurable along the poloidal flux gradient.

) ds . .
The expression for n,, 77 may be easily rewritten as follows

=~V-75+o (A.1.10)

Nim

Q‘Q.
|0

where:
o=00g=JyeVI1-Jp,«VuT!
.75 = qu-l - jp/.lT-]

av
}‘he mass conservation law gives n,, dtu =V ¢« V. Then, for v1le,,V e ¥ =0 and
Nm

it = 0 and we obtain

ds  d(nms)
Mm g =" 4t (A.1.11)

- dg d - _
and -V « Jg="nm d—Lt] =~(%_tﬂlﬂ so that the definitions of J, and J, have a similar

structure.

Electromagnetic fields E, B acting on the time scale 15 modify J; and ¢ as
follows /21/:

H\ime + 320l E[* + 3 u0|BT’)
= =-VeJ,

(A.1.12)
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G =0( + Og (A.1.13)

(A.114)

g0 = 8.85x10-12 in MKSA units and Jis the current density (7 1&,). Both 6 and J
are unchanged.

Egs. ALI10), A.L11), A.L13) give Eq. 3.2).

The heat production density deduced from the expression for ¢ corresponds to
the quantity H in ref /14/.
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APPENDIX B. A MATHEMATICAL PROOF

We have to show that

(BT g (A1)
darv T

We assume a low beta, high aspect ratio, axysimmetric MHD equilibrium of the
unperturbed initial state with minor plasma radius a, « major radius Rp. The
thermodynamic flux is J /T, and its corresponding thermodynamic force is E.
The volume of the plasma is V and its external boundary surface is S.

Through Maxwell's equations we may write

- = — = - -2
_ J

L3 udV:J’‘9—5-idv=c2ijB-idv—juazv (AIL2)
dth T voT T v T ve,T

where gg is the vacuum permittivity and c the speed of light in vacuum. The
term in | J 12 is always negative. The term in VA B may be developed as follows

J’VAB‘-idvzjV-(B” dV+jE-VA / (A.I1.3)
v T v T v T

The first integral may be reduced to the surface integral of Vp on the external
surface S (p plasma pressure), since the MHD equilibrium equation JAB = Vp
holds. For J = 0 and/or Vp = 0 on the external boundary, this term is zero. The
argument of the second integral may be developed as follows

BeVAa J =§-VlAJ‘+5ovAJ‘ (A.I1.4)
T T T
Then
E-ViAj':—iE-VTAJLLVT-Vp (A.IL5)
T T? T?

Since T >0, VT « Vp > 0, the contribution of the first addendum on the R.H.S. of
Eq. AIL4) to the integral in Eq. A.IL.3) is negative.

The only contribution which can be positive is Y:

v=| B oavaTav (A.IL6)
VT
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From the MHD equilibrium equation

T = h(F)B +(B A Vp)B[” (A.IL7)
with h unknown function of 7.
From Ampere's law
VAT =pohT +VhaB+9 A((B A Vp)B|) (AIL8)
(1o = c-2¢0), with
VA((BAVPBT )= BV (B Vp) )+ (B *Vp o V)E ~(5 + V)(B] V)

(AIL9)

since Ve B =0 and, in Ampere's law, IVAB |, lyuyJ | » 10E /dt) for small time-
dependent perturbations. (The role of the d E /9t contribution to Eq. A.IL8) will be
discussed below). Then, we can write

BV AT =ulif +[BfVe (|'g|‘2vp) +|B| B e(VpeV)BE-Fe(B e v)(|1§|’2 Vp)
(A.11.10)
where J//=hB .

The integral in |1/ ,,12 and the integral in |/ 2 add in Eq. A.IL2): a negative
contribution in | J - J /12 remains.

The second term on R.H.S. of Eq. A.II.10) gives

|BI12Ve(I1B1-2Vp)=V2p+ | B12Vp e VIB |2 (A11.11)
with

VIBI2=-1|B|4V(B + B)=-2IBI*BA(VAB)+(B +V)B)= (A11.12)

=21 B 14(ugVp~ (B « V)B) - c2 BAIE /)
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Then,

1B I12VpeV) 1B 12215 IVpI2 1 B12-21 B 12Vp+ (B +V)B (AI113)
2c21 B 1-2Vp e BAIE/Ot =21 | T T s/12=21B12Vp « (B « V)B

—2c21 B |-2Vp e BAOE /ot

The term in V2p on the RH.S. of Eq. AIL11) gives to the L.H.S. of Eq. A.IL1) a
contribution

c2 J. T-1V2pdv
\'

whose sign depends on the pressure profile. This term is negative for pseudo-
parabolic profiles (see text) of temperature and particle density and for Gaussian
profiles, if the density profile is not too peaked.

The term in ug on the RH.S. of Eq. A.IL13) simplifies with the negative

contribution in I'J - J;;12 on the RH.S. of Eq. AIL10) and a positive
contribution in

remains where By, =2 ponT ! B | -2, which is assumed to be a small quantity. The
c2 term is ~ Bior -

We note that Vp is parallel to the poloidal flux gradient. Moreover the radial
component of the magnetic field is zero and axisymmetry is assumed, i.e. the
toroidal component of the gradient is zero.

The fourth term on the R H.S. of Eq. AIL.10) may be written as follows

—~B «(B«V)IB|2Vp)=-B «[IB 1B +V)Vp+Vp(B «V | B 172)] (A.1114)
The contribution of the last addendum on the R.H.S. of Eq. A.IL.14) is zero since

B « Vp = 0. In the following we shall make use of the formula D.13 (and
following ones) in Appendix D of Ref. /42/, which can be applied for ap « Ry, .
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The first term of the RH.S. Eq. A.IL.14) gives to the L.H.S. of A.IL1) a contribution
which is proportional to | Bpyi/Bjor 12 « 1.

Finally, the third addendum in the R H.S. of Eq. A.Il.10) is proportional to
=12
(B

dr
Bl

The second term in the R.H.S. of Eq. A.IL.13) gives to the LHS of A.Il.l a
contribution which is proportional to

IE |_2 |§ pol i

Both these terms vanish as the toroidal field is much larger than the poloidal
field.

We neglected a term hc20 E /9t in Eq. A.IL8). Its contribution to the L. H.S. of Eq.
Alll)is

It is possible to show that the only non-negative contribution to this integral is
vanishingly small, as ap << Rp. (The same procedure which brings to Eq. A.IL6) is
followed. Integrals are computed in the coordinate system of Ref. /42/, App.D -
Bpol << Byor is assumed).

Then, the only positive contributions in the L.H.S. of Eq. A.Il.1) vanish in the

limit of small toroidal beta and small a,R, 1. Negative contributions do not
vanish in the same limit.

37



APPENDIX C. A DIFFERENT APPROACH TO THE PLASMA ENTROPY

The ohmic entropy production density o, does not contribute to d,S/dt. This is
true even for a multi-species, viscous plasma with chemical and nuclear
reactions. Then, we could justify the following approach to plasma entropy:

1. the plasma is considered as an insulated system which satisfies suitable
boundary conditions (e.g. given values of total electromagnetic energy
and/or helicity, conductive shell, etc.);

2. the entropy is a functional of current density, charge density and
electromagnetic fields only, through given phaenomenological
relationships 7:7(5, T, ..).

This point of view is developed in Refs. /10,11,12,13,20,41/. We stress that the
plasma can be described as an isolated system if electromagnetic degrees of
freedom only are taken into account. A sound basis for the point of view of Refs.
/10,11,12,13,20,41/ is the fact that the heat transport equations and the magnetic
field diffusion equation are effectively decoupled for times t </ (1gtr), 1¢ energy
confinement time and 1t resistive diffusion time /12/. Then, it is possible to
apply the usual statistical mechanics of equilibrium systems to the plasma,
through a suitable definition of a generalized temperature, which describes
thermal interaction with the external world /41/.

However, for t >+ (1gTg) we have to take into account the non-ohmic irreversible
processes (like heat transport), which appear in d,5/dt and in P. Generally
speaking, physical processes with loss of energy confinement (1 — 0) cannot be
described by the theory developed in Refs. /10,11,12,13,14/. The same argument
holds for particle confinement, since this approach does not take into account
explicitely the entropy increase due to particle diffusion. A physical process with
loss of particle confinement is studied in Section VL.
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Fig. 2. Normalised electron temperature and density profiles in JET (typical) vs
average minor radius. The lower temperature gradient in the outer layers
enhances the boundary contribution to the entropy flow.
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Fig. 3. Plot of nT-3/2 ys average minor radius in JET for different discharge
conditions; a) H-mode phase; b) off-axis ICRH heating; c) on-axis ICRH heating.
The behaviour is such that the total entropy production in the plasma centre and
in the outer plasma layers is dominated by the entropy flow.
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Fig. 4. Diagram showing the plasma thermodynamic state compared with the
range of validity of linear non-equilibrium thermodynamics, in a series of ohmic
and additionally heated plasmas at different current and magnetic fields.

The experimental data are evaluated at 3/4 radius and the different
symbols refer to different flux q values. The solid line is the lower boundary of
validity of the linear domain. Typical error bars are shown.



