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ABSTRACT

An asymptotic evaluation of the NBI fast ion distribution function is given. The
result is applicable to problems in which the form of the distribution is required
such as microinstability studies and charge exchange recombination spectroscopy
analysis.

Calculation of the Distribution Function

In the Neutral Beam heating of a tokamak plasma the fast ions slow down to
thermal energy through Coulomb collisions with the background Maxwellian ions
and electrons. This relaxation to thermal energy is described by the Fokker-Planck
equation in the 2-D velocity space variables v, {,
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where in standard notation, D, o, v¢, and B are functions of the plasma parameters
that describe the Coulomb scattering processes, S is the source strength, 15 the
Spitzer time, and v, the initial fast ion velocity and {o (= cos 8,) is the initial pitch.
The solution to Eq. (1) is well known and takes the form [1]
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Vo is the injection velocity, Pp, is the Legendre polynomial of order n, g(v) describes
energy diffusion, the + exponent is to be taken when v < v, and H(x) is the
Heaviside function.

While the fast ion distribution function as developed above Eq. (2) is convenient for
the calculation of averaged quantities it is not particularly useful when calculating
its form on or near the ion injection velocity. Close to the injection velocity v = vg
(u= 1) the above series converges very slowly, and many terms are required to
produce acceptable convergence and in some cases n = 100 have been needed. In
order to avoid this convergence problem we proceed as follows.

Writing
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Then introducing a Fourier series representation for the delta function S(X—n—a)

gives
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and under a change of integration variable 1= xva we have,
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For n # 0, a — 0 it is easily shown using the Riemann-Labesque lemma [2] that
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consequently we only need to consider the n = 0 term in the series.

Hence
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and since the principle contribution to the integral is when 1 # 0, and since a<<1,
and t/+a >>0, we can use the following asymtotic form for the Legendre functions

of large order (3]
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where € < ¢ < w-¢&. The product of the Legendre functions appearing in the above
integral can now be expressed in the following form
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The integral appearing in this expression is of a standard type and can be readily
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evaluated. Integrating along the imaginary axis from i to 0 and then along

the real axis to « we obtain
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Introducing { = cos 6, {, = cos 0,

6—0o = cos 1L - cos 1, = W—i—cf(g - Co)'

where [{ - {,|<< 1, we finally obtain for particles injected initially into the regions of

velocity space, where Cg < 1.
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where o 1s now defined as
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The fast ion distribution function then takes the form
f(v, 0 = E(v, {) exp{-g(v) H(v-vo)},
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where F(v, {) =



Finally, it is worth mentioning that for velocities v < vi, where
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the fast ions have undergone consideration pitch angle scattering and the
expression for the distribution function, Eq. (1) should be used. For this velocity
range Eq. (1) converges rapidly and only a few terms have to be summed.
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