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ABSTRACT

From first principles of plasma physics the local thermal diffusivity can be
expressed in terms of the Bohm diffusivity x5 and a function F of dimensionless
parameters. Tests of transport models, theoretical, empirical or heuristic,
expressed in terms of such parameters often produce ambiguous answers which
arise from collinearities in the experimental data. In experiments on
dimensionally similar discharges [1] the scaling of confinement with one single
dimensionless parameter can be examined in a more un-ambiguous fashion.
Experiments on JET have been carried out in which only the normalised Larmor
radius p, is varied. This is achieved by varying the plasma current, the toroidal
field, the density, the ion cyclotron frequency and power level in a
predetermined pattern such that other dimensionless parameters like
normalised collisionality v,, B and safety factor qy are kept constant. The
experiments on JET demonstrate that L-mode confinement both globally and
locally scales with p, according to the long wavelength or Bohm scaling. The
implications for theory and future experiments are outlined.

1. INTRODUCTION

In Tokamak research confinement studies employ three different approaches to
determine what governs energy transport: i) in the theoretical approach the
emphasis is on the understanding of physics mechanisms which can explain the
experimentally observed anomalous loss; ii) the empirical approach with its
roots firmly in the experimental Tokamak programme aims at scaling from
present data to future machines; iii) a heuristic approach has been adopted by
some researchers who combine theoretical features with experimental facts, often
for computer simulations of present and future Tokamaks. Each approach has
produced a wealth of papers on confinement theories, scaling laws, plasma
transport models, etc. It is, however, generally believed that at present no single
theory, scaling law or computer simulation is capable of accurately projecting the
energy loss rate in a Tokamak reactor plasma from the extensive accretion of data
on Tokamaks like JET, DIIID, TFTR, JT60. It has been stressed in [1] and
elsewhere, that such a projection involves only an extrapolation of the energy
loss rate with respect to one single dimensionless parameter p,, the normalised
Larmor radius. Other parameters characterizing a reactor plasma and hence its
loss rate, can be held at values of present Tokamaks. An accurate assessment of
the dependence of the plasma energy loss rate upon p, is therefore,



experimentally as well as theoretically, a critical issue in Tokamak Research for
estimating the performance of a reactor.

The recognition of this issue has led to a series of experiments being carried out
on the DIIID Tokamak [1, 2], on TFTR [3, 4] and on JET [5]. On each of these three
Tokamaks the experiments have aimed at producing a sequence of discharges
which are dimensionally similar [1], but which have different values of the
dimensionless parameter p,. This type of confinement study is based on the
dimensional analysis by Kadomtsev [6] and Connor-Taylor [7]. Scale invariance
arguments are applied to several possible forms of transport equations (Vlasov,
MHD etc.) and dimensionally correct forms for thermal diffusivities and power
loss rates are obtained. The latter we express via the thermal flux q which may
contain several components, diffusive and non-diffusive. The non-diffusive
parts (flow are found to be small, i.e. Iqfow! << Iql, in off-axis heating
experiments on JET [8] and DIIID [9]. The diffusive parts qe (electron loss
channel) and qj (ion loss channel) are combined into the following
representation for the total thermal flux.

gq=-e(neVTe +n; VT)) x (1)

The effective diffusivity X = xeff can be associated with either of or both the loss
channels. The question addressed by the JET experiments (as well as those on
DIIID and TFTR) is: how does q in Eq. (1) depend on dimensionless parameters
such as p,?

In Section 2. we define a set of dimensionless parameters and we define q in
terms of these parameters. The experiments carried out on JET are described in
Section 3 together with the results from an analysis of global JET data. In section
4 we present the main result of the paper; this is based on a series of local
transport calculations with the TRANSP code [10]; the results include details of
the intended matching of profiles in the experiments together with a few
unintended-unavoidable departures from ideal conditions. In the summary
section we discuss the implications of our results in the light of those obtained
on DIIID [2], TFTR [4, 5] and the joint JET-DIIID similarity experiments [11].

In this paper we use a standard plasma physics notation for plasma parameters
and if dimensional, these are expressed in SI units with temperatures in eV.



2. DIMENSIONLESS PARAMETERS

In the scale invariance approach to confinement scaling [7] the scaling of the heat
flux q with plasma parameters depends on the choice of physics model. The
simplest plasma physics model one can envisage is described by the collisionless
Vlasov equation in the electrostatic limit. For this simple model one obtains [7]

X = Xg F(ps, "geometry”) , xg=T/B (2)

in which yp is the Bohm diffusivity and F is some function of the normalised
Larmor radius p. and T, B represent temperature, magnetic field; "geometry"
means dimensionless parameters characterizing the plasma geometry, e.g.
elongation. To cover more complex models which include the physics of
collisions, plasma equilibrium, instabilities etc., this simple representation must
be replaced by

x =X Flp«p1, P2, ) (3)

in which pj denotes a set of dimensionless parameters describing various aspects
of plasma physics. By combining yp and pj other formal representations are

possible and the review by Connor [12] describes many of these.

The representation (3) is thus completely general provided the parameters pj
form a complete set of physics parameters relevant for thermal transport. Such a
complete set would, however, be too untractable in analyses of experimental data
for two reasons: i) empirical results show some parameters to be irrelevant for
confinement physics; ii) some parameters cannot be estimated or inferred
accurately from experimental measurements. Parameters describing atomic and
radiation physics and parameters based on length-time scales of order Debye
lengths-inverse plasma frequency can be discarded; one reason for this omission
is that global confinement data in the ITER data bases has been demonstrated [13]
to satisfy the so-called Kadomtsev constraint; this constraint [6] implies that F in
(3) does not depend on Ap, the Debye length.

Reduced sets pj of dimensionless parameter definitions can be found in the
literature: ref. [3] defines 18, ref. [12] treats 6, ref. [14] uses 10 etc. The set
considered in this paper is defined below and B denotes the poloidal field while
B¢ is the toroidal field.



The plasma surface geometry is characterised by
aspect ratio € = ax/R,, ellipticity E and triangularity A.

The scale lengths of n, T, safety factor as well as, shear and power deposition
profiles are

e;l=Ro<Vn>/n , £}1=RO<VT>/T
RB
Qy =5 §-3k =eEV2<By /B> |, s=xq'/q )

gp=P/P =4[ qe v dx;

Ratios for species are expressed via
ZEffl Te/Tu mP/me/ M = ml/mP

The three dimensionless parameters describing FLR, collisions and pressure are

1/2 3 41/2 172 2
mp M T, e“logA naZ g 4 n.T.+n;T;
=|— ———-—-——; = , = e ———— e
Ps ( e ) aB * (3(27:)3/2 e.2 ) T2 B=(4eno) 2B2 ©®)
We notice that the local dimensionless parameters are defined in terms of local
variables and one characteristic global length scale, minor radius a. By doing so
we follow other authors although in principle the minor radius a could be
replaced by a local measure such as L, =n/Vn.

In similarity scaling experiments [1] attempts are made to vary only one
dimensionless parameter while keeping the remainder of the set fixed. Since in
experiments we can only control a, n, B, T (or P) we form the inverse relations
using a one fluid treatment with ne = nj = n and Te = Tj = T; the bracketed terms
of Eq. (5) C,, C,, Cp combine to various forms like Cpx CVY Cp? which for brevity
we label e.g. Cp

B= Cp aS/4 o2 V4 B4 M4 gV

T= CT a—l/2 p:l v:l/z Bl/z M]/Z ngz
(6)
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n= Cn a p# B M
— _ 1/4
Xp = CX a3/4 p1/2 V‘1/4 Bl/4 M V4 7

eff
Egs. (6) show the scaling of plasma variable with minor radius a and the
dimensionless parameters. The total power input P scales as ~n Ta xg F or

-3/4 _-5/2 -3/4 a7/4 5/4 53/4
P=Cp a>/4 p>/2 yJ3/4 p7/4 54 73/4 )
while the fusion product scales as

nTtp = Cp a=5/4 p7/2 V714 BS/4 \7/4 ZV/4 g

In the similarity experiments on JET the scanning of p, at constant v,, B, qy etc.
implies from Eq. (6) that n ~ B4/3a'1/3, T ~ B2/3al/3, B ~ Iy ~ By. From Eq. (6) we
can derive global averages, denoted by angular brackets, such as those used in [13]
<Ps>, <V4>, <P> etc. Eq. (7) thus determines the power level required to establish
dimensionally similar discharges once a variation of F with p, is assumed;
conversely F(p,) can be determined using Eq. (7) from the power levels at various
B (or Iy) required for matching the values of v, and B. Three generic plasma

models (F; is some number) are described by

F=F, p, ®)

The value of the exponent x, indicates a characteristic length scale A associated
with turbulent transport: for x, = -1 one has A >> a, corresponding to a plasma
with ergodic field lines; for xp =0 A ~ a corresponding to long wavelength
turbulence and the scaling (8) is the Bohm scaling; for x, =1 A ~ pg in which case
the transport arises from short wavelength (Larmor radius) turbulence and the
scaling (8) is then referred to as gyro-reduced Bohm or gyroBohm scaling which
is common to most theoretical models [3, 12]. By inserting Eq. (8) in Eq. (7) and
using Eq. (6) to substitute B for p, we find that the power input scaling required
to match the three generic plasma models x, = -1, 0, 1 becomes

Pxp=-1)~147/3, Plxp=0)~1s5/3, Plxp=1)~I ©)



The purpose of the JET experiments described in the next section is essentially to
determine xp. In terms of the global parameters in (9) we notice that if Iy is
increased by e.g. a factor 2 at constant v,, 3, qy, the input power required should
be increased by a factor 5.04, 3.17, 2 respectively.

3. JET SIMILARITY EXPERIMENTS

In the JET experiments ICRH has been used as the additional heating method in
preference to NBI; since density n must vary in a scan of p, the use of NBI can
lead to different heating profiles [1-4]. The available range of wicrH on JET is
27-55 Mhz and thus a range by a factor 2 in By is possible with on-axis heating. A
series of 3 different Tokamak discharges with Iy = 2, 3, 4 MA, By = 1.7, 2.6, 3.4,
OICRH = 27, 41, 54 Mhz all have x = 1.44, qy = 4.37, a = 1.18 and density varies as n
~ By#3 or Iy#3. This ensures globally (see Eq. 6) that

<V, > <B>2=const (10)

The ICRH power has been varied from 2.7 to 14 MW to cover the range predicted
by Eq. (9) for Iy = 2, 3, 4 MA; fine tuning of P at the upper and lower ends of the
range has resulted in 7 2MA, 4 3MA and 5 4MA discharges. The global data from
these discharges depicting the relation (10) is shown in Fig. 1. The 2, 3, 4 MA
pulses are represented by circles, triangles and squares respectively. It can be seen
that the path of Eq. (10) is represented very well by the data. The arrow in Fig. 1
points to the three most similar pulses. These three pulses # 27658 (2 MA), #
27680 (3 MA), # 27654 (4 MA) will be the subject of a detailed local analysis in the
next section.

The global confinement scaling can be examined by studying the variation
of tg/ (1B <F>) with  <p,>; the Bohm time is

15 = ¥ a’/<yp> = Yepom a> <n> Iyk/ePtg and <F> is given by Eq. (8).
In Fig. 2 we show for xp =-1, 0, 1 the ratio Tg/tB <F> vs <p4> for all 16 pulses.
This ratio should for the correct scaling approximately be equal to some constant;
despite the slight variations in v« and B (see Fig. 1) it can clearly be seen from Fig.
2 that the Bohm scaling xp = 0 is the best representation of the data; the three
lines in Fig. 2 are the result of linear regression fits to the data points. This result
is also immediately recognised from the power input requirements of Eq. (9).



The three most similar pulses arrowed in Fig. 1 have P = 4.1, 8.1, 12.0 MW
respectively close to the Bohm scaling ratios of 1, 1.97, 3.17. Thus global
confinement in the JET similarity experiments exhibits the long wavelength or
Bohm scaling characteristic of L-mode plasmas. That same result has been found
in the similarity experiments on DIIID [1, 2] and on TFIR {3, 4]. Analysis of global
confinement with the ITER L-mode database [13] has also produced this result.

4. THE SCALING OF LOCAL HEAT FLOW

A series of local transport calculations with the TRANSP code [10] have been
carried out for the three pulses indicated by an arrow in Fig. 1. We shall present
results for the 2 and 4 MA pulses for which the <p,> ratio ~ B2/3 is 1.59. The heat

deposition profiles for ions and electrons QcrHe,i (X) due to minority ions

accelerated by ICREF is calculated by the SPRUCE code [15]. No charge-exchange
ion temperature profile data is available since ICRH is used rather than NBI. The
calculations employ a Kadomtsev model for flattening the q profile inside the
inversion radius following a sawtooth crash; the inversion radius at R = 3.6 m
inferred from ECE measurements in all three pulses agrees with that measured
by the Faraday rotation measurements; it corresponds to x = 0.4 and is between
the values 0.29 quoted for TFTR [4] and 0.5 for DIIID [16]. At a sawtooth crash no
changes to the heat deposition profiles Q[CRHe,i (X) are made to describe the
redistribution of energetic minority ions; such changes are however estimated to
be negligible as most of the ICRF power is deposited inside x = 0.3. The TRANSP
calculations use as input diagnostic data on Te(x), ne(x), Tio, Zeff, P together with
the plasma boundary determined from fits to magnetic pick-up coil data. The
output data values include nj(x), Ti(x), q(x), B(x), By(x). This data has been
selected from those calculations which best reproduce the diagnostic data (global
confinement time, loop voltage, Faraday rotation) that is not used as input. Two
models for y; have been considered. The first model with %e = %i cannot
reproduce the X-ray crystal spectrometer data on Tjp. In the second model, which
has been used for our analysis, ¥i = OXneoclass. where o is determined from the
Tio data. The calculated Tj profile is not used directly for our conclusions but
only to monitor the Te/Tij ratio.

The output data from TRANSP calculations exhibits time variations due to
sawteeth and due to variations in the measured input data. This is particularly
noticeable for the collisionality v,. In Figs. 3a-3d we show the global averages of
<pPs>, <Ve>, <B> and qy(x=1) vs time. The data values in the time window of 1.6



s indicated by arrows, are smoothed by a running average method at each radial
point 0.375 < x < 0.875.

The profiles from which we draw our inferences about the scaling of local heat
flux are shown in Figs. 4a-4d. From such profiles we form the ratio between the 4
MA and the 2 MA data of the dimensionless parameters given by Egs. (4-5) and
these ratios are plotted in Figs. 5a-5h. It can be seen that the profiles for the 4 and
2 MA pulses are very well matched; only the €, and et ratios, Figs. 5g and 5h,
show systematic departures from 1. From the error bars in Fig. 5f showing the
magnetic shear ratio, the effects of sawteeth can be seen on the first two radial
points.

For dimensionally similar pulses the thermal flux can then be normalised as

T
qs = q/ (model , dmodel = - €n XB Fmodel y

The surface averaged gradient VT (T = Te) has been replaced by T/a, because T is
more accurately measured than VT. Those models, for which the ratio q., / q«
between discharges 2 and 1 is closest to 1, have the best prescription of the
variation of F with the scanned parameter p,. This technique offers an
unambiguous test of transport models since

Qs2 _[ 229287 0 T? ) Fmodel (Ps1) (11)
o1 a1q1B1 n; T2 ) Emodel (Pa2)

The bracketed term should be a constant C, across the radius x; the Fygdel ratio
too should be a constant 1/C, if the model is right. Experimental imperfections
or unintended mismatches between discharges 1 and 2 can be assessed via the
bracketed term; its departure from C, implies that the set pj is not perfectly
matched.

The main result of this paper is demonstrated in Fig. 6. Ratios of the normalised

heat flow (Eq. 11) are shown against radius for the model F = F, P+ P , which the
experiments aim at testing. From the three choices xp = -1 (MHD), x5 = 0 (Bohm),
xp = 1 (gyroBohm) in Fig. 6 it can clearly be seen for xp = 0 (Bohm) that the ratio is
remarkably constant and equal to 1 across the radius; Fig. 6 presents locally what
Fig. 2 does globally: the same symbols for the three choices of xp are used and the
two sets of variations with p, are fully consistent. It can now be argued on the



basis of Figs. 5a-5h that we have not kept all the dimensionless parameters
absolutely constant in the experiments. We can therefore test theoretical and
empirical models which predict dependencies of F additional to that upon p,;
such models are listed in the Appendix. Figs. 7a-7d show the ratios (Eq. 13) for
four gyroBohm based models which also depend on v, B, qy, s etc.; Figs. 8a-8d
similarly show ratios for two empirical and two resistive MHD scalings. The
pure resistive MHD scaling ~ 50 (S is Lundquist number) is gyroBohm like
(Fig. 8c); a model which assumes F ~ S1/2 becomes Bohm-like but it reflects (Fig.
8d) too strong a variation with v,. (Note that the axis ranges in Figs. 6-8 differ but
in all cases cover a factor 4). The vertical bars in Figs. 5a-5d represent the
variances op of a parameter p while the symbols denote the mean of p according
to

p=p+0p

The evaluation is performed by a statistics programme package which assumes a
Gaussian distribution of N time values p(tx), k = 1, N; typically 50 < N < 70. For
the flux ratios (Eq. 11) shown in Figs. 6-8, the vertical bars are representative of
the Gaussian estimate

= = %
Q2 /A1 =0y / duy (1+(5q31+5q32) 2) (12)

where the normalised variance is 8q; =0g, / a*l. Eq. (12) expresses the range of

variation in the values of q, calculated by the TRANSP code, i.e. the L.H.S. of Eq.
(11). It is different from the range of q. which can be expected from the
experimental measurement errors. Because we are looking for a systematic trend
w.r.t. p. of Eq. (11) we can estimate the variation of the RH.S. of Eq. (11) by
adding the errors in a Gaussian sense of n, T, q, B, F. This yields

1
A(qez2 / qe1) = @(qu +8B2 +8n2 +25T2 + 51:2)4 (13)

This estimate does not of course include errors which are common to all the
similarity pulses, e.g. systematic calibration errors. The pure Bohm scaling has
OF = 0 and yields the smallest error estimate; because qy is well matched we set



3B = 8By = 0 and assume 8q = 6n = 8T. Since the p, ratio (see Figs. 5a and 6) is 1.6
we see from Eq. (13) that a relative error of order 0.6/242 = 0.21 is required to
change the conclusions made in Fig. 6; this error must be present in ¢, in n, and
in T across the radius x for both the 2 MA and the 4 MA discharges. For the JET
diagnostics the errors 8q, dn, 8T are functions of radius x: 3T is smallest in the
centre and largest at the edge (ECE diagnostic); 8q is largest in the centre and
vanishes at the edge; dn is approximately constant until x = 0.85 and then rises
sharply. Thus a change of the trend with p, established in Fig. 6, arising from
experimental measurement errors, does not seem very likely.

If a gyroBohm or ideal MHD based model has to be accommodated by the JET
data then the only possibility lies in having F a function of &, or eT or both (see
Figs. 5a-5h). Such a function could be

+
F=p¥ U

From Figs. 5g and 5h we notice that the ep, €T ratios are ~ 1.1 and 0.9 respectively.
This would imply that (xt, xpn) = (-3, 3) or (3, -3) for the gyroBohm or MHD
scalings respectively or alternatively xn = 0, x7 = * 6. Presently no theory has
predicted such a strong dependence.

5. SUMMARY

The main result from the JET similarity experiments is that the heat flux in the
bulk of L-mode plasmas locally exhibits the Bohm or long wavelength scaling x =
xB Fo; this result is fully consistent with the global scaling result of section 4 and
with global scaling laws such as [13, 22, 23]. Other models based on the MHD and
gyroBohm scalings of confinement with p, have been tested but they do not give
a good fit to the data. The dimensionless parameters in Fig. 5 have not been held
absolutely constant, but the JET data cannot easily accommodate an MHD or
gyroBohm based scaling even when allowances for the experimental
imperfections are made.

The testing of transport models against experimental global and local
confinement data is in general difficult. We believe, however, that the JET
similarity experiments, scanning p, with a variation of a factor of 1.6, have
conclusively shown that global and local transport in limiter L-mode plasmas
exhibit the scaling with p, characteristic of long wavelength turbulence or Bohm;

10



that same result has been obtained on TFTR [3, 4] and to some extent on DIIID [2].
The implications of the scaling of confinement with p, for extrapolations to a
reactor are important: gyroBohm based theories with xp, = 1 are optimistic
extrapolations while MHD scalings with x, = - 1 are pessimistic; the Bohm scaling
with xp = 0 exhibits a trend between the former two and as mentioned, is
embodied in empirical scaling laws. Future similarity experiments can examine
the scaling in X-point configuration plasmas with L, H or VH mode confinement
characteristics.
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Appendix : Transport Models

We list a number of theoretical, empirical and heuristic transport models for the
diffusivity yx as represented by Eq. (3) (see also [12]). If a transport model gives
only an expression for g then the F function is derived from global averages.
References are given and possible residual dependencies of F as well as
numerical constants are omitted.

1. Electrostatic Vlasov or pure F=F,
Bohm [7]

2. Short wavelength or pure F=p,
gyroBohm [1-5]

3. Ideal MHD [14] F=p,1p1/2

4a. Resistive MHD, So [12 F=p. v, Bl

4b. s-1/2 F=p,2v,3/2p5/4

4c. g1/2 F=v,1/2p3/4

4d. S [17] F=p,1p-1/2

5. nj modes [18] F=p, slen (Te/Tj)1 (mj-2/3)1/2
6. DTIM [19] F=p. vils2enl gyl el/2 M-1/2
7. Drift waves [20] F=p. s1en2 €2 (v, qyort

8. Resistive fluid Turbulence [12] F=p, v, p1/2M-1/2

9. Rebut-Lallia-Watkins 21] F=p, v,1/2 B-1/2(1-g) s Gy €
(e 142 en)) (Te/T1/2 M1/2
(1+Zef)1/2

10. ITER L-thermal [13] F = v,0.15 g1.21

12



11.

12.

Goldston [22] F = (ax)0-26 B/ XB
The nearest dimensionally
correct form is F =p,0.18 v,0.34 30.36

ITERS9P [23] F = p,0.08 y,0.25 30.28

The Lundquist number S = p,-2 v,-1 B1/2 is used to produce various resistive
MHD scalings. The model 9 features an additional critical gradient term [3, 21].

The empirical scaling laws 11 and 12 have been transformed to dimensionally

correct forms by adjusting the exponents of the scaling law as follows: Goldston
dn = 81 = 8p = -84 = 0.052 and ITER8IP 3, = 8] = 6p = -5, = 0.048.
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Fig. 1: The global averages for 16 pulses of <v,> vs. <B>. Circles, triangles and
squares refer to 2, 3, 4 MA pulses. The three pulses 27654, 27658, 27680
chosen for analysis are shown by larger symbols and an arrow.
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Similarity of scaled profiles
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Ratios (4MA to 2MA) of fluxes normalised to
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Fig.6: The 4 to 2 MA ratio of normalised thermal fluxes (Eq. 11) with F =F,
p. e for xp =-1,0,+1, corresponding to MHD, Bohm and gyroBohm

scalings.
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T
Hoe—
—~—
——
— o
e

—

QY

>~

N
*-

*A Jo (VINZ O} YY) onley

]

—

—

o
"
”
”
”
»”
”
”
”
"
"

N

*d Jo (VINS O} YT) oney

-~—

N
Ay
—

1.0

0.8

@
o

i
o

<
-
o
o
©
o

3
o

— s/evL €69 O
/d\ ~—
9 o
-
k2
e O
” o
ki
o
- <t
|
(QV] e Q
1, @ —
1/°1)0
(VW2 01 YD) olrey o
@ -~
T ©
-0 Mo
1
o
A
(@]
|

(QV] - N

S~

D

d Jo (VN2 Ol YIAP) olley



