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ABSTRACT

The linear theory of electrostatic instabilities driven by ion temperature gradient
is investigated for impure plasmas in shaped (e.g., elliptical and triangular)
toroidal plasma cross-sections. Kinetic theory is used to describe the response of
each ion species. Both even and odd parity branches of these "ITG" modes
[B. Coppi and F. Pegoraro, Nucl. Fusion 17, 969, 1977] are examined in detail for
parameters relevant to high temperature experiments. The Shafranov shift tends
to lower the growth rates of both nodes, most notably that of the odd parity mode.
Ellipticity in the plasma cross section has a strong stabilizing effect on the even
parity mode, but leaves the odd parity mode essentially unaffected. Triangularity
has a much weaker (also stabilizing) effect and can be ignored, for practical
situations. Strong stabilization by multiply charged impurities is encountered,
primarily due to dilution of the primary ion concentration.

1. INTRODUCTION

Since the original discovery [1] of the instability of the Ion Temperature Gradient
(ITG) mode, much work has been carried out to study the linear stability
properties of these drift-type instabilities. Both the slab branch (whose instability
requires compression of the ion fluid in the direction parallel to the magnetic
field; this compressibility couples the drift wave to the ion sound wave) [2]-[12]
and the toroidal branch (driven by the compressibility of the perpendicular ExB
ion drift; this manifests itself by the appearance of the precession drift velocity)
[13]-[26] have received attention in the literature. Both branches appear to have
the lowest threshold for instability (generally expressed by the ratio of the
temperature gradient scale length to another characteristic length, e.g., the density
scale length, n; =L, /Lt, or the toroidal major radius, ey =Lt /R) when the
effective perpendicular wavelength is of the order of an ion Larmor radius
(kgp; =1, where p; = \/m c/eB). The instability also generally manifests itself
at long parallel wavelengths, kL, <<1.

If we denote the relative importance of these two branches by the ratio of
frequencies that characterise the two compression processes, R =wq; / kT,

where wg; =2kgcT; /eBR=(L, /R)w.;, we see that R=kgp;i(L,/R)/KL, is
generally greater than unity, when kgp;=1(®=(L,/R)kL,>1 , since
L,/R=1/4-1/3, typically) and the toroidal branch is dominant in Tokamak

experiments (at least insofar as modes with finite growth rate are concerned).



Since ITG modes have long been considered to play an important role in the
process of anomalous energy loss in Tokamaks (see, e.g., Refs. [27]-[29] for
experimental evidence), it is of importance that the linear stability properties of
these modes be determined by models that reproduce experimental situations as
closely as possible. Thus, one aim of the present work is to examine the theory of
plasmas with non-circular cross-sections.

In addition, recent experiments [30]-[32] have called into question the relevance of
ITG modes in toroidal experiments by finding no appreciable change in energy
transport characteristics , as the theoretically predicted thresholds (in n; or er)
were crossed. Tentative explanations for this disagreement have included (1) the
possibility that "rule of thumb" thresholds are too crude to accurately portray the
experiments and that more precise analysis must be carried out for each shot [33],
(2) that the theory is wrong and that the ITG threshold is really determined by a
dominant trapped ion term [34]. While both proposal have merit, we wish to
recall that the ITG threshold can be radically altered by the presence of impurities.
This was first pointed out in Ref. [35], explored further in Refs. [36]-[37] (slab
branch) and [38]-[39] (toroidal branch). Recently, local calculations have produced
the claim [40]-[41] that the actual instability thresholds, computed for impure
plasmas, are actually much higher (by factor of 2-8, depending on the
perpendicular wavelength of the mode) than those for pure plasmas, bringing
theory in line with these experiments. Thus, we also consider a multi-ion plasma
(with all species considered kinetic) and study the effect of impurities on the ITG
instability with a fully non-local calculation. Throughout this paper, we assume
equal temperatures for all species, for simplicity.

2. EQUILIBRIUM

The condition for equilibrium is the well-known Grad-Shafranov equation for
the poloidal flux fiction, y:
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where P = plasma pressure, R=R, +r cos 0 is the major radius (Rp <> magnetic

axis), 8 and ¢ are the poloidal and toroidal co-ordinates and F = RBg. The



poloidal magnetic field is related to the flux function by Bp =Vy xV¢. The
equilibrium is assumed to be axisymmetric (independent of ¢). We consider the
case of a low-B equilibrium with F = constant and P having a parabolic
dependence on the flux function (this is well satisfied in, e.g., JET). We thus
define:
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We use €=r/Rp<<1 as an expansion parameter. We refer the reader to
Freiberg's book [42] for a description of techniques and cases of solution of this
Eq.. To zeroth order in ¢, the Grad-Shafranov Eq. reads:
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Notice that in this way we build ellipticity and triangularity into the equilibrium

independently from toroidal corrections. The lowest order flux function is
expanded into harmonics:

Wo = H,(r) cos mb (4)

Since Eq. (3) is separable, each harmonic can be solved for independently:
(i) m = 0 harmonic:

Hy(r) = -2Byr§[1-Jo(r / rp)] 5)
(i)  m 2 1 harmonics:

Hins1(r) = -2B1r88mJm(r / 18) (6)

where 8., is constant denoting the relative strength of the harmonic.



To first order in the toroidal correction, the Eq. for the equilibrium reads:
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Substitute for y, from Eq. (4)-(6) and defining the dimensionless variable
x =1 /g, the following equation is obtained:
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Once again, each harmonic in 6 can be obtained independently, expanding
vll(x,9)=2hm(r)cos mB. A set of Eq.s, written symbolically as Lph,(x)=xM,,

where L,(x)= x[d2 /dx% +(1/x)d / dx +(1 ~n? /xz)] and Mp is the coefficient of

the cos n® harmonic of the right side of Eq. (8). These can be formally solved via
Green's function techniques, where the Green's function corresponding to the n-
th harmonic is:

Gn(x,y)= —g[In(x)Yn(Y)H(y—X)+ Y ()Tn(y)H(x-y)] )

where Jn and Yn are Bessel functions of the first and second kind respectively
and H is Heavyside's step function. Thus, the formal solution
hi(r)=-/§ dy yG(x,y)M(y) can be evaluated in principle (here X is a free
parameter, which is adjusted so as to give no contribution from the
homogeneous solution of Lh.,(x)=0). For example, we show the pure toroidal
correction (i.e., neglecting contributions of order €d,, <<1, which represent the

coupling between toroidicity and non-circularity):
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In what follows we specialise in an equilibrium of zero order in € and keep only
ellipticity (m = 2 in Eq. (4)), apart from one case study in which we will vary
triangularity , and one where the effect of the toroidal correction (Shafranov
shift) will be discussed. This is motivated by a desire to explore the linear stability
of the inner portion of the plasma column, where triangularity (m = 3) is very
small, for low-B experiments (small Shafranov shift). The neglect of terms of
order ¢ is not crucial for modes with high poloidal wavenumber. The Jacobian of
the transformation of co-ordinates (from r, 6, and ¢ to v, 6, and ¢) is then:
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Using this Jacobian, we can define an inverse rotational transform (i.e. a
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generalised "q(r, 6)"):

q(r,0)= J ’ dB’(-r-B—“’)

W = const = const

(12)
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where the subscript y = const indicates that the minor radius is to be taken over a
constant -y flux surface. The toroidal magnetic field at the magnetic axis is
denoted by Bp., Thus, we can relate the constant B to qp, the equivalent
cylindrical inverse rotational transform at the magnetic axis (take the limits
r/rB—0 and §; =0 in Eq. (12)): qg =By /B;. Similarly, the scale length rB can
be related to the edge value of the equivalent cylindrical q(r), by using
By =~(1/R)(dy)(dr) in q(r=a)~aB, /RBy=(By/2B;)(a/rg)(1/J1(a/rp)) in the
cylindrical case. One thus obtains the transcendental equation
2(rg /a)J1(a/ rg)=qg / q(a) which can be solved for rg =f(a,qg,q(a)).



The ellipticity of the equilibrium, at a given flux surface y, can be computed

2r(y,0=m/2) 249,
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3. ANALYTIC LINEAR THEORY

easily:

(13)
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In order to introduce some salient features of the instability due to ion
temperature gradients and precession drifts, we focus on a simple limit: that of
fluid-like modes (whose frequency is much larger than the precession drift
frequency) that are strongly ballooning (i.e., have a maximum at =0 and decay
very fast away from it) in a plasma with circular cross section. The dispersion
equation for electrostatic modes can be written as:

2 . . = :
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where ¢(8) is the amplitude of the perturbed electrostatic potential (i.e., the
potential is 6(r,0,0)=¢(6) exp iS, where B .VS=0),mg; =2kocT; /eBrR is the
precession drift frequency (it arises from the compression of the ExB drift),
+i =kgcT; /eBrL;, is the ion diamagnetic frequency, m;=L,; /Ly is the ion
temperature gradient parameter, b; :k%Ti / miQiz represents the finite Larmor
radius (FLR) parameter, ¢4 = m is the sound speed, and gR plays the role of
a parallel wavelength (more precise definitions of all these quantities will be
given in the next chapter). The variable 6 represents both the poloidal angle as
well as the coordinate parallel to the magnetic field (note that
BV§= exp(iS)(Bp / qR)d(B /d6). This dispersion equation can be derived directly
from fluid theory (cf. [20]), or from kinetic theory (by taking the limits |w|>> By;
and k,p; <<1). Since it has been used extensively in the literature, we present it

without derivation .

By considering strongly ballooning modes, we can expand the harmonic
functions about 6=0: cos®=1-67/2, sin =6 and obtain a Weber-type equation
which can be solved analytically. The resulting dispersion relation is:
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and where N is the radial mode number (i.e., order of the Hermite polynomial);
the choice of sign in Eq. (16) is dictated by the requirement that the mode be
spatially localized. Note that our Eq. (15), is the same as Eq. (14) of Ref. [22], as
expected.

One comment worth making at this point concerns the parity of the mode under
consideration. Even parity modes (i.e., modes that have ¢(-8)=¢(6)) can be
driven unstable both by the ion temperature gradient and by the precession of
trapped electrons, they have been studied ([43] under the appellation of
"ubiquitous modes". The odd parity modes (also considered in Ref. [43]) are not
affected by trapped electrons (to lowest order in the ratio of mode frequency to
electron bounce frequency) and, thus, are purely nj-type modes. In this study, we
choose to disregard the effect of trapped electrons, so as to isolate the
consequences of the presence of two ion populations, each with a temperature
gradient.

The dispersion relation, Eq. (15)-(16), can be cast as a fifth order polynomial in
®/®.. An interesting limit occurs for (cg /qu*i)2[(§ ~1/2)(rn /R)=b;]<<1,
when the sound wave decouples from the toroidal ni mode (the ion temperature

gradient instability).

The resulting dispersion relation has the solution:
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where £=2r, /R (the ratio of the density gradient scale length to the major
radius) and M =1+1;. This solution is the same as that from the local theory (in



the small bj, fluid-like limit). Note that the unstable mode can rotate in the
electron diamagnetic direction (for small Mb;, cf. [20]-[23]). This is a feature of our
fluid limit that permits an instability even at small values of =1+1n (e,
nj <0!), whereas kinetic theory will show the mode to be stabilized at finite
positive values of m; (due to Landua or precession drift damping). Still, it is
interesting to see an "ion" mode propagating in the electron drift wave direction.
Also, not that the solution of Eq. (17) predicts that an instability of the toroidal
branch exists only for a range of temperature gradients: T_ <7 <m, where n, are
the roots for the zero of the discriminant in Eq. (17).

Solutions of Eq. (15)-(16) are presented in Fig. 1. We recover the known result
(from the description of the slab branch in sheared geometry, cf. (2] and [44]) that
modes with moderate N grow strongest (i.e., not the fundamental but, rather, the
N = 5 - 10 harmonics) and see that the coupling to the sound wave tends to
broaden the m; interval in which the mode is unstable (for b; =0.1 and €= 0.25,
Egs. (17) predicts instability for 0.24 <m; <2.36). Indeed, as m; increases to large
values, the mode becomes more slab-like and the instability of the slab branch
tends to dominate over that of the toroidal branch (for these particular choices of
parameters, b; =0.1,0.25, which denote long perpendicular wavelength modes).
This can be seen analytically by ordering 1; >>1 and ®/ w,; <m; in Egs. (15)-(16),

while taking (for example) 1<e/b; <(2N+ 1)2(cS /qR(:),‘i)2 /b; in Eq. (17). The

resulting cubic in the frequency always has an unstable root (the growth rate of
this fluid-like instability has an asymptotic value that is independent of ;).

The solution of Eq. (14), namely the fluid limit without the strong coupling
approximation, is show in Fig. 2, for both the even and odd parity modes. One
can see a clear trend toward stabilization by (small values of) the FLR parameter
(at constant w,;). Also, we note that the modulation of the precession drift
frequency results in a lowering of the growth rate, showing that the toroidal ITG
mode is primarily driven by the 6 component of the precession drift (the term
that carries the cos 8 factor in Eq. (14)). Once again, the odd mode
is somewhat more unstable than the even mode. Note that
@/ kT = (00 / 045) @xqR /V2¢ = (@0 / m*i)\/BTR/ L, is much larger than unity
only for finite values of 7;, in Fig. 2, indicating that our ordering fails for small
M; and that the slab branch will dominate the behaviour of the long wavelength

modes near marginal stability.



4. LINEAR KINETIC THEORY

The modes of interest are high poloidal mode number drift-type waves (as
discussed in the introduction, we are looking at regimes where kgp; ~1) in
equilibria with finite magnetic shear. Hence, the well-known "ballooning
formalism" [45] is appropriate here. We refer the reader to Refs. {46]-[47] for a
detailed derivation of the equations governing linear stability. Here we simply
not that the formalism considers modes that are localised near a mode rational
surface, whose principal structure perpendicular to the equilibrium magnetic
field is that of a plane wave (k; >>k;) and which have a variation along the
magnetic field with a maximum at 6=0 (even "ballooning” modes) or at
16]=6p < /2 (odd "ballooning” modes). Periodicity of the eigenfunction in the
poloidal direction requires that the physical eigenfunction be constructed
through the superposition of the aforementioned plane waves, leading to the so-
called "ballooning representation”. A transformation of the governing equations
to conjugate space leads to the final dispersion equation (in the electrostatic limit,
or set of equations in the electromagnetic limit) expressed in terms of a single
angle-like variable, known as the "extended" poloidal variable [45]. For practical
purposes this simply entails replacing 6 by this extended variable in the
governing equations and extending the space from (-7,n) to (—oe,).

The mode parallel phase velocity is taken to be larger than the ion thermal speed
o > wg; = kyor;, cf. the introduction) and much smaller than the electron thermal

speed. Hence, the electron response is purely adiabatic (ﬁe =edn, / Te), while we

can safely ignore trapped ion effects. Trapped electron contributions are
disregarded, as noted earlier, in order to isolate the "pure" n; variant of the ITG
mode. In real life, trapped electrons will influence the even parity branch of the
toroidal ITG mode. The dispersion equation that governs linear stability then is
(cf. [47]):
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where b-V’=(1/]By)(d/ d) is the effective parallel wavenumber (from now on

0 denotes the "extended poloidal variable”), b is the unit vector in the direction
parallel to the equilibrium magnetic field, the energy dependent diamagnetic
frequency is

A P i
while the precession drift frequency (function of energy E and magnetic moment
W) is

_ 2T, .
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note that we use the low-§ definition of the precession drift frequency (see, e.g.,
Refs. [48]-[49] for the general definition). The magnetic curvature vector is defined
by k=b-Vb, while the eikonal S, whose gradient defines the lowest order
perpendicular wavevector, is: S=n[0—q(r,0)] with q defined in Eq. (12) and n
being the toroidal wavenumber. The wavevector VS can then be evaluated in
any coordinate system, e.g. (r,6,¢), using the expression for y. The Bessel
function Jo is a function of @slVS(w,6)|vl/Q where Q=Z;eBy/mjc is the
cyclotron frequency. The perturbed electrostatic potential, once transformed by
the "ballooning representation" leads to the eigenfunction ¢(8), and its
"amplitude" ¢(6).

A straightforward evaluation of the poloidal derivatives in Eq. (18) follows
leading to the final form of the dispersion equation ( a second order ordinary
differential equation for ¢). Its form is given in the Appendix; here we simply
note that the velocity integrals can be performed analytically (reduced to
Z-functions [50], or to Dawson's integrals as shown in Ref. [38]) since we neglect
trapped ion effects (or, equivalently, we ignore the poloidal modulation of ).
This equation is then solved numerically by expansion in a set of basis functions
and diagonalization of the resulting determinant (examples of such a procedure
can be found in Refs. [51]-[52]; here we use the same expansion in terms of
Hermite functions). In all that follows we choose the surface ¥=0.3 as a
reference flux surface; in a plasma with circular cross section this corresponds to
r/a=0.4 (and rg/a=0.37 for g(a)=3). Note that the equivalent Shafranov
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shift (cf. y; in Sec. 2) will be quite small in low-f JET plasmas:
vi/yo~rp/R=0.1. We will also fix p; /rg =0.01; this value is typical for high
temperature experiments (e.g., JET); also L,; /R=0.33, which is characteristic of
JET (or any machine with a density profile that is parabolic and aspect ratio near
3). Finally, we take qp=1 for illustration, since most of the dependence on this
parameter can be compensated by a shift in toroidal mode number
(nqp = constant).

Fig. 3 shows the ITG modes, with even and odd parity in 6, as a function of the
toroidal mode number n (the only good "quantum” number in the problem) for
a single-ion plasma. As expected, the mode growth rate peaks for perpendicular
wavenumbers that are of the order of an inverse ion Larmor radius: kgp; =0.3
(odd mode) and 0.6 (even mode). The odd mode has a somewhat higher
frequency of oscillation and, at least for 15<n <30, slightly larger growth rate, in
qualitative agreement with the fluid results of Sec. 3. The dependence of the
mode frequency (real and imaginary part) on the temperature gradient
parameter, 1;, is shown in Fig. 4, showing how the mode frequency tracks
W+Tj = NjW«i- As a result, the growth rate turns over, after reaching a maximum,
for very large values of m;: the mode decouples from both the sound wave and
the precession of the ions (wg;) and growth is turned off (cf. Ref. [6]).

Turning to the effects of ellipticity, we consider Fig. 5, which repeats Fig.4 but for
varying degrees of ellipticity. As can be clearly seen, the odd parity mode is
essentially unaffected, while the even parity mode is strongly stabilized by
vertical elongation. The primary cause can be traced to the effect elongation has
on the components (k. and kg) of the "equivalent" wavevector, k 1(8)=bx VS
(which occurs in the precession drift frequency, the diamagnetic frequency and ,
in absolute value, as an argument of the Bessel functions in, e.g., Eq. (18)):
elongating the cross section tends to yield smaller values of k; and kg at the
midplane and larger values at the top and bottom. Note (cf., the local theory, Eq.
(17)) that we expect the growth rate to vary with wg; =« w,; =< kg. As a consequence,
the even parity mode (which is weighted principally at the midplane) is "walked
down" in kgp; (cf., the curves in Fig. 3) to lower growth rates. The odd parity
mode, instead, tends to weight the region with 8 =n/4 more heavily. In this
region, kgp; is largely insensitive to the elongation and the mode is unaffected.
Since collisionless trapped electron modes (e.g., the "ubiquitous” mode of Ref.
[43]) tend to also appear with kgp; =1 we expect that elongation will also have a

11



stabilizing influence on them. Indeed, elongation was found to produce a mild
reduction in the linear growth rate of the dissipative trapped electron mode [53].

The geometric effect of a Shafranov shift can be examined by including the effect
of y, cf. Sec. 2. As indicated earlier, we expect this shift to be small in Ohmic and
low power RF heated discharges in JET, but one can do a case study by using Eq.
(10), replacing the factor nrg / 2R by a varying constant, 8;. We have performed
this analysis and found a stabilizing effect on both modes. This geometric effect is
due to the increase in effective k,(0)p; which leads to a modulation (decrease) of
the ion driving term by the Bessel functions. This trend is in agreement with that
found by Rewoldt et al. [51] (cf. their Sec. III A, where they mention the
stabilization due to the 8-variation of the magnetic drift velocity components).
The cos 8 modulation by these terms causes the odd parity mode to be affected
more strongly than the even parity mode( for n; =3 and noq =30, a variation of
81 from 0 to 0.3 is sufficient to stabilize the odd mode, while the even mode has
its growth rate decreased by 48%), as expected (the 8 modulation of kg is present
here as well). For the parameters of interest §; ~0.1, the effect is far smaller (y
decrease by 10% for the even mode, 30% for the odd mode).

Fig. 6 shows the case where we vary triangularity (we turn ellipticity off for this
case study). The results qualitatively repeat the case for varying ellipticity, though
the effect is smaller for the even mode and slightly more pronounced for the odd
mode. Here, the weighting of VS is done at 8=+rn/3, causing the small
difference. Since, in addition, ellipticity is expected to be rather small in the inner
plasma region, we shall not consider finite 83 any further.

We now come to the effect of having an impurity in the plasma. Note that we
choose to peak the impurity density relative to the principal ion: Ly =L, /Z;
(the principal ion is taken to be hydrogen, for illustration). This is motivated by
classical transport theory (see, e.g., the review by Isler [54]) which predicts this
peaking: the ion-impurity friction force vanishes for this ratio of density scale
lengths. This choice of ratio also automatically entails that w.; =w.;; thus there
will be no effects (on the linear modes) due to differential diamagnetic drifts
(there is, however, a difference in the effective particle "drift frequency”,
a);rj(E,nj)). In actual situations, data on the steady-state radial profile of nJ is

seldom obtained. Profiles for Zeff have been re-constructed and cases with and
without peaked Zeff (r) have been published. We keep the main ion parameters
(e.g., Lnhi / R,m;) fixed when varying the impurity concentration. This is in order
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to isolate the direct effect that the impurity species has on the mode. We choose
equal temperatures for all species in the plasma (electrons and ions) for
simplicity; this entails that My =n; / Z; << ;. Thus, impurity driven toroidal ITG
instabilities will be rather weak. Equal temperatures can be expected in the central
region of the plasma, though high temperature, auxiliary heated experiments
commonly have dissimilar electron and ion temperatures.

We immediately see that impurities tend to lower the growth rate of the toroidal
ion temperature gradient modes (both even and odd parity branches, cf. Fig. 7) by
a combination of dilution of the primary fuel (nj=n,—Zmn;) and their
modification of the mode-particle resonance (in this case, a resonance with the
precessing ions, different from "standard" Landau damping). This picture holds
for almost all cases, the exception being even parity modes in low-n; plasmas (cf.
the case with n; = 1 in Fig. 8) for which a small impurity concentration can have
a slight destabilizing effect: initially, an addition of impurity ions tends to lower
the mode frequency; if this frequency is not much greater than the transit
frequency of the primary ions, the growth rate can be temporarily enhanced by
the stronger resonant interaction that ensues. We regard this as a "quirk” that
occurs in a region where our frequency ordering (jo|>>kjur;) is only marginally
satisfied, and which may not occur in a more complete calculation. From Fig. 7
one sees that dilution is the primary effect: the curves for Beryllium and Oxygen
are very close together when the impurity is singly charged, indicating little
selection by mass. On the other hand, the curves for fully ionized impurities (Z] =
4, and 8, respectively) are lower and further apart, showing the dominant effect of
dilution. The odd parity mode is affected more, given its lower initial growth rate

and its tendency to be influenced by the mode-particle resonance ((o—a)Dj(E, p))

more strongly. Since the odd parity mode has somewhat higher frequency that
the even parity branch, more particles resonate with the wave (the argument of

the plasma dispersion function is & = \ﬁo / @g;— Ui / Urzr]- , cf. the Appendix, thus

only a portion of phase space, v; <V . is resonant for a given mode frequency).

It is this sensitivity to changes in the resonant contributions within the reponse
of the main ion and the impurities that cause the stabilization of the odd parity
branch, as opposed to a (large) reduction of the growth rate of the even parity
branch (cf. Fig. 8). Note that, as the impurity concentration is increased, the
dilution process robs the mode of its main source of free energy (the primary ion)
and simultaneously lowers its oscillation frequency, enhancing the resonance
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(ions of lower energy become resonant). In general, our results tend to agree with
those of Ref. [39], where the dilution process was emphasized.

5. CONCLUSIONS

In this paper, the linear stability of electrostatic ion temperature gradient modes
is examined, for shaped toroidal plasmas (in particular, we consider elliptical
cross sections) that contain impurities. The specific case of a two-ion plasma (a
main ion + one impurity) is studied and linear properties of the toroidal ion
temperature gradient (ITG) modes are analyzed in the limit where kjup; <.
This limit is generally relevant to the toroidal ITG branch, which has its
maximum growth rate in the neighborhood k p;~1. Thus,
o/ kot >0g; / ko =gk p;. The so-called "ballooning formalism" is
employed, since we are describing modes with large nq (n is the toroidal mode
number and q is the inverse rotational transform). Attention is payed to the
comparison between the even and odd parity (in 6) branches of the instability.
The odd branch is a "pure” ITG mode (modes that are odd in 6 average out the
trapped electron response, to lowest order in the ratio of the mode frequency to
the electron bounce frequency, and, thus, cannot be driven unstable by them).
The even parity branch, on the other hand, feels the effect of trapped electrons
and can tap their free energy (i.e., their temperature gradient) as well as that of
the ions (cf. [43]). Thus, the concept of a "threshold value" for
n;=d In T; /d In n; is really meaningful only for the odd parity branch. As was
clearly illustrated by Rewoldt, Tang, and Frieman (cf. Fig. 5 of Ref. [55]) the
instability of the ITG mode connects in a continuous fashion with that of the
trapped electron mode: as m; is lowered to (and past) zero, the mode goes from
rotating in the w,; direction to rotating in the w,, direction with a decreasing,
though finite, growth rate. In this work, we ignore trapped electrons, so as to
isolate effects due purely to ion temperature gradients.

Having said this, the main results of the present research are two-fold.
Toroidicity (in the sense of a Shafranov shift of the magnetic flux surfaces, as
opposed to the magnetic precession drift which drives the instability) tends to
lower the growth rate of both even and odd parity modes, with the odd parity
mode being measurably affected even in cases where the shift is small
(v, / vy ~0.1). Ellipticity has a stabilizing effect on the even parity mode, but
leaves the odd parity mode essentially unaffected (triangularity has a much
smaller, stabilizing effect, affecting even and odd modes roughly equally at

14



maximum growth). One can quickly generalize this result to cover the trapped
electron mode ("ubiquitous"): it will behave exactly as the even ITG root. The
presence of an impurity species, on the other hand, tends to affect the odd ITG
root more strongly than the even root. Still, both roots tend to be stabilized by the
presence of impurities, mostly due to a dilution of the concentration of the
principal ion (n;=n,-Zn;, for hydrogenic main ions). As the impurity
concentration is raised, the mode oscillation frequency and its growth rate
decrease, thus our calculation may actually underestimate the stabilizing effect
somewhat, as it assumes that kjuri <w. In any case, we find that the only
important "selection" is by impurity charge (as opposed to mass, singly ionized
impurities have effects that are quantitavely almost identical). As long as the
impurity is "light" (e.g., Beryllium), we do not have to worry about impurity
driven modes (cf. Ref. [40]-[41]): the impurity-ITG mode (due to m;) will not be
active for peaked impurity density profiles my=(Ly /Ly)n; is small for
Lnr =Ly / Zp) provided the impurity is fully ionized. The impurity drift wave (cf.
[35], [56], [57]) will not contribute either for light impurities, as its window of
instability in parameter space nearly vanishes (see, e.g., Refs. [40] and [56}).

An analysis of marginal stability properties of these modes is highly desirable
[M. Ottaviani, private communication], especially for the odd parity mode (for
which the concept of a critical n; is meaningful). Unfortunately, this objective
cannot be achieved using the present dispersion equation, Eq. (18). As the
temperature gradient parameter is lowered, in our study, the mode frequency (as
well as the growth rate) becomes smaller, until it falls below the transit frequency
of the primary ion, thereby invalidating our orderings. This points to the
necessity of a systematic study that keeps Landau damping effects to all orders. It
seems apparent that coupling between the slab and toroidal branches is most
important near marginal stability; indeed it may determine the threshold. For
the modes that are amendable to this analysis (i.e., high toroidal mode number
odd parity modes which have large real frequencies), the threshold value of n; is
indeed raised by factors of order Zjnj / n, (e.g. M crit, goes from 1.45 to 2.0 for the
n = 55 odd parity mode, as the impurity concentration is raised to Zin; /n, =
0.12). This trend is stronger than the increase in threshold temperature gradient
found in Ref. [19] (see their Fig. 1, which turned off both FLR and the sound
wave; the latter effect is in our opinion the major cause of the difference). The
analysis of Ref. [39] is not amenable to a comparison (the authors of that work
find a non-monotonic dependence of the threshold value of LT/R on impurity

concentration), as they include collsional trapped electron dynamics, treat the
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impurities as a fluid, and approximate the resonant denominator in the primary
ion response by making the precession frequency a function of energy alone.

The consequences for experiments are as follows: the concept of "measuring” a
critical LTj (via the parameter m; or in the ratio LTi/R) by considering energy
transport across the plasma column is by no means straighforward. We have
noted that both parity branches of the ITG instability are affected (stabilized) by
the presence of multiply charged impurities (dilution effect). Thus, any
comparison with theory must account for the presence of impurities, rather than
employing values of 1; oy computed for pure plasmas (cf., Fig.3 of Ref. [30], and
Fig. 5 of Ref. [31]). Secondly, at least one branch ( the even parity branch) can
employ the trapped electron channel to become unstable and affect the ion as
well as the electron energy fluxes (cf. Fig. 7 of Ref. [58]). Thus, any experimental
effort toward resolving the origin of the anomalous energy transport would
benefit from a determination of the parity (about the midplane) of the modes that
produce the observed microturbulance.

Note added: At the time this manuscript was being accepted for publication, a
paper by Hua, Xu and Fowler appeared in print [59]. That paper deals with the
effect of ellipticity on the even parity modes in pure (Z. =1) plasmas. It too

shows the stabilization by increasing ellipticity.
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APPENDIX

Here we give the specific form of the dispersion equation which we solve. We
choose to express it in terms of the plasma dispersion function, Z (cf. [50]). The
alternative is to use a form involving Dawson's intergral (cf. [38]), which must be
evaluated numerically anyway. The equation reads:

{ ZZn TJe¢(9 z , ni T, ‘ "njé*jroj'

J#e Ne j¥e ne

+2J:dyyexp( )13 (b ) &~ &1 - mi(372-¥2) (A-1)

vf, 27 | oo
nlé*fg-‘-]é Z(6L)+ _ﬁf_{lﬂj Lljde 1’21592} %W):O

where the purturbed electrostatic potential is related to its "amplitude” by
o(r,8,0) = exp [iS(r,B,(b)]&)(G), S is the eikonal introduced in Sec. 4, ] is the Jacobian
defined in Sec. 2, y=v; /vy is a dimensional velocity variable,

éj =w/og; and é*]- = ,j / wgj are dimensionaless frequencies and, &, = w}F,j - y2 )
2

The finite Larmor radius parameter is b; E(IVSh)Tj /Q]-) and

Lo; EIO(bj / 2) exp (—bj / 2) while the temperature gradient is characterized by

n; E(dlnTj /dr)/(dlnnj/dr). The three coefficient LNj are given below; the

coefficient of the second derivative is:

Lz:—2.[ dy y exp(-y?/2) 2z £ r{{(et-1/2)2 -2z, - 20 (A-2)

-n,(3/2- yz))] - njé*jél[(ﬁ -5/2)2% - 22]}

Here Z(&,) is the plasma dispersion function and Z(N) is its N-th derivative.
The first derivative coefficient is written as Lyj = Lyj1 + Lyj2, where:

* d|VS Jln] Jdlnwg;
Lljl —_-6_[0 dy y exP(_y2 /Z)IO[Zy(p] '86 |)I +( 89] + = di j]O]
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xé{ [("’:i ‘1/2)2(2) _221[61 - g*j(l— nj(3/2—y2))]

(A-3)
—n,é*,-éf[(éi—5/2)z<2>—2z] }
dlnw J' 1
(é, "’) dy y exp(-y /2)1(%é {[glz(” (36,20 - z)][g
+ (A-4)
~&j(1-n(312-57))|- ;6. 626120 + 62127 +3(e. 2% - 2] }
The last coefficient is split into three pieces, Lo;j=Lgj; + Loj2 + Loj3, where
- AVSN? 1 ey JnJInwy,
. :2_[ d —v2712V.4 v? o. ) + /. j
Loj gy y cxp( yo/ )o{[)’ (P, 50 w0y 9 96 90
dlnwy \2 omvs\: 1 9?vs)
-3 L™ 7o = »VSlp; -
( 26 ”0 g lp’{( 36 j VS| 967
(A-5)

A1n|VS| dInJ  _ dIn|VS| dln 2 ()
i’ _1/2)z® ~2z
Y96 o6 > o6 a8 gl{[(é /2) )

N [5}. - & (1-n,(3/2- y2))]~ ni&.,€2|(62-5/2)2? - 22]}

Lojp =6, Jo dy y exp(~y? /2)10{{

+ypja_(|;70£|313;’dfj }él{[&za) (36,20 -2)| &, - &.,(1-n,(3/2-5%))]

Inay( dnwy 1ans)_ 1 Pay),
96 90 3 96 | 3w, 06

- n;.,63(6120) + 66729 +3(¢, 20 - 2 }

(A-6)
2 oo
Lojs =~ %’91%69‘1) . dyyexp(~y? 12)3 é{[éiZ“” 26320
-3(&3 +5/2)2? - 302][;3 ~&(1-n,(3/2 —yz))] (A7)

- ¢, jgj[gjz(“) #6832 —3(£ -3/ 2)z? +1sz]}
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Fig. 1 Normalized eigenfrequency, w/w.; =Q, +i v as a function of the ion
temperature gradient parameter, 1; =dInT; /dlnn;. Circular cross section, no
impurities, fluid limit with the strong coupling approximation, solid (dashed)
lines indicate b;=0.1(0.25), N = radial mode number. Parameters are:
Ln /R=0.125(¢ £=0.25), §=1,¢5 / qRay; = (Ly /R)/ +/2; .

(a) oscillation frequency Q,, (b) growth rate T,.
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Fig.2 Normalized eigenfrequency, o/w,;=Q, +; T, as a function of the ion
temperature gradient parameter, n; =dInT; /dInn;. Circular cross section, no
impurities, fluid limit with full harmonic dependence of the precession drift
frequency, Parameters are: L,/R=0.125€=0.25),. §= 1,¢5 / qRo,;
=(Ln/R)/\/ﬁ Solid (dashed) lines denote even (odd) modes. (a) oscillation
frequency Q,, (b) growth rate TI..
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Fig. 3 Normalized eigenfrequency, oL, /cs=Q+;T", as a function of
the toroidal mode number n; kinetic theory, Parameters are:
¥=03, q9=1 p;/rg=0.01, Ly; /R=0.33, n; =5, ;=0 (circular cross section),
no impurities. Solid (dashed) lines show the oscillation frequency (growth rate);
the labels e(0) refer to the even (odd) parity mode.
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Fig. 4 Normalized eigenfrequency, oL, /cs=Q+; I, as a function of the
temperature gradient m;; kinetic theory. Other parameters
are: =03, go=1, p;/rp=0.01, L,;/ R=0.33, n=30 (toroidal mode number),

8j=0 (circular cross section), no impurities. Solid (dashed) lines show the

oscillation frequency (growth rate); the labels e(o) refer to the even (odd) parity
mode.
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Fig.5 Normalized growth rate, I'=vL, /¢y, as a function of the temperature
gradient parameter m; (kinetic theory), for various degrees of ellipticity
8, =0,0.5,1 corresponds to kell = 1,1.29,1.73 near the centre), no triangularity;
(a) even mode, solid (dashed) lines denote n = 30(50) (toroidal mode
number); (b) odd mode with n = 30. Other parameters are:
v=0.3, go=1, p;/rp=0.01, L,;/R=0.33, no impurities.



0.5 /'//
0.4+ B - -

0.3
0.2 w4

0.1 // /

0.3

~ 0.2l

o JG93.152/5

Fig. 6 Normalized growth rate, I'=vL, /¢y, as a function of the temperature
gradient parameter m; (kinetic theory), for various degrees of triangularity
83 =0,0.5,1; the ellipticity is turned off for this case); (a) even mode, solid
(dashed) lines denote n = 30(50) (toroidal mode number); (b) odd mode with n =
30. Other parameters are¥=0.3, qp=1, ,p;/rg=0.01, L,;/R=0.33, no

impurities.
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Fig. 7 Normalized eigenfrequency, wL,/cg=Q+;I’, as a function of the
impurity concentration ZInl/ne (kinetic theory), hydrogen plasma; (a) even
mode, (b) odd mode. Dashed lines show singly ionized Beryllium (mj =
9mH), crosses show singly ionized Oxygen (m] = 16mH), solid lines denote
fully ionized Beryllium (Z] = 4) or Oxygen (Z] = 8). Parameters are:
w=03,gy=1 6,=044, §;,,=0, n=30, p;/rg=0.01,7; =5,

Lni /R =0.33, L =Ly / Zp (peaked impurity density profile), Te = Tj = TI.
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Fig. 8 Normalized eigenfrequency, wL,/cs=Q+;T, as a function of the
impurity concentration ZIn[/ne (kinetic theory), Beryllium in a hydrogen
plasma; (a) mode frequency, (b) growth rate. Solid (dashed) lines show the even
(odd) parity Dbranch. Parameters are v=03 gy=1, 6,=0.44,
djz2 =0, n=30, p; /rg=0.01,m; =5,Ly; /R =033, Lyy=L, /2y (peaked
impurity density profile), Te = Tj = TI.



