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ABSTRACT

Expressions, suitable for numerical evaluation, are given for the parameters character-
izing the locations of the R—cutoff (upper X-mode cutoff), the L-cutoff (lower X-mode
cutoff) and the O-mode cutoff for electromagnetic waves in relativistic plasmas. The
ion motion is ignored, and it is assumed that the plasma is collisionless and in thermo-
dynamic equilibrium. A new derivation of the relativistic cutoff expressions, starting
from first principles, is given, together with an heuristic explanation for the relativistic

shift of the O—mode cutoff.

PACS numbers: 52.60.+h, 52.25.Mq, 52.40.Db, 52.70.Gw

1 INTRODUCTION

Relativistic modifications to the dielectric properties, besides absorption, of plasmas at
the temperatures found in present fusion experiments can have practical consequences
for a number of microwave diagnostics used in experiments on magnetically confined
fusion plasmas. In particular it has been found that in millimetre wave Thomson scatter-
ing [BINDSLEV, 1991a] and in reflectometry [BINDSLEV, 1991b and 1992; MAZZUCATO,
1992] it may be essential to take relativistic effects into account when analyzing re-
sults, while diagnostics relying on electron cyclotron emission can be affected by the
relativistic increase in the cutoff density [COSTLEY and BARTLETT, 1993].

The need to take relativistic dielectric effects into account in a range of applications
including those mentioned above adds to the desirability of having accurate relativistic
expressions which may be evaluated with a minimum of computing time, and which are
readily accessible to workers who are unfamiliar with relativistic calculations.

Fully relativistic expressions for the locations of cutoffs in plasmas have been derived by a
number of authors, all starting from expressions for the relativistic dielectric tensor. For
an isotropic Maxwellian momentum distribution expressions were given in BATCHELOR,
GOLDFINGER and WEITZNER (1984). This work was extended for the X-mode R—cutoff
(upper cutoff) to a loss cone distribution by BORNATICI and RUFFINA (1988), who also
presented approximate relations for the R—cutoff. A weakly relativistic expression was
given by ROBINSON (1986a).

In Section 2 of this paper we give an alternative derivation of the fully relativistic
expressions for the cutoffs with an heuristic explanation for the relativistic shift of
the O-mode cutoff. Approximate expressions suitable for numerical evaluation are
presented in Section 3, and their accuracies are compared numerically in Section 4.

In the expressions presented here the ion motion is ignored, and it is assumed that the
plasma is collisionless (i.e. the dynamics of the electrons in the plasma can be described



by the Vlasov equation). The unperturbed velocity distribution of the electrons is taken
to be the isotropic relativistic Maxwellian.

2 ALTERNATIVE DERIVATION OF THE RELATIVISTIC EXPRES-
SIONS FOR THE LOCATIONS OF CUTOFFS

In this section the relativistic expressions for the locations of cutoffs are derived ab
initio, without reference to expressions for the dielectric tensor. By leaving out the
complications involved in the derivation of the dielectric tensor this approach facilitates
a better appreciation of the underlying physics in the relativistic shifts of the cutoffs.

Mathematically a wave is cut off when its wavelength is infinite, which implies that the
refractive index and spatial derivatives of quantities relating to the wave are zero. From
Maxwell’s equations we then find that cutoffs occur when the second derivative of the
dielectric displacement, D, 1s identically zero,

8D
=0 . (1)

The dielectric displacement consists of the vacuum dielectric displacement, ¢oE, and
the plasma dielectric displacement, P (0P /0t is the plasma current), so (1) takes the
form
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The time derivative of the plasma current, 9P /9t?, is given by

O’P of)
—qe/ / dp , (3)
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where v = p/ym. is the velocity, p is the momentum, v = (1 4+ p*)"/2, p = |p|/me.c,
m, is the electron rest mass, ¢ is the vacuum velocity of light and f()(p,t) is the first
order perturbation to the electron momentum distribution. f(!} satisfies the linearized
Vlasov equation with d/dr = 0:

Py 51 90
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B is the static magnetic field and f(©)(p) is the unperturbed momentum distribution,
which in thermodynamic equilibrium is given by
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where n(®) is the equilibrium electron density, u = m.c?/T., T, is the electron tempera-
ture and K, is the modified Bessel function of the second kind and order 2.

In the absence of a wave vector (it is identically zero) and with an isotropic (or gy-
rotropic) momentum distribution there is only one preferred direction; that of the static
magnetic field, B©) and the system is thus invariant under rotation about this axis.
Unless two or more solutions for the electric field are degenerate (exist at the same
frequency) the solutions for the electric field must also satisfy this symmetry. This
implies that E is either linearly polarized in the direction of B(®), corresponding to
the O-mode cutoff, or circularly polarized in the plane perpendicular to B(®, in which
case the rotation is either right handed (clockwise rotation viewed in the direction of
B(©) corresponding to the R-cutoff, or left handed corresponding to the L-cutoff. The
solutions are only degenerate when B(® = 0.

Since E is parallel to B at the O-mode cutoff it follows that this cutoff does not
depend on B(®. From the linearized Vlasov equation (4) we thus have

o) of©)
gt = —¢E- afp (6)

which upon insertion in the expression (3) for the derivative of the plasma current gives

P of©
W:—qf/v(E- gp)dp . (7)

Inserting (5) for f(°) and integrating we find

PP p exp{ /w}
—a—tT 1\2 / ’ (8)

Noting that 3°E/0t? = —wOE where wy is the O—mode cutoff frequency, we recover the
fully relativistic expression for the O-mode cutoff from equation (2):

) p exp{ /w}
“o = p31\2(u)/ ' (9)

Here w, = (n(o)qZ/(meso))l/?' is the cold electron plasma frequency.
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For a simple heuristic explanation for the relativistic shift in the O-mode cutoftf we
return to expression (7) for the derivative of the plasma current, 8P /dt%?. By partial
integration we find

0’P . dv
e ] 27 f(0)
S =B [ T fap (10)

where p; 1s the 7’th component of p and similarly for other vectors. Noting that dp/dt =
¢e(E 4+ v x B(®) we can write (10) as

o°P
T g [atp)f @ dp ()

where a(p, t) is the acceleration at time ¢ that an electron with momentum p experiences
due to the electric field, E(t). In the present case the acceleration due to the magnetic
field does not contribute to 9?P/dt? because f(© is isotropic (this holds also if f© is
just gyrotropic).

In a non-relativistic treatment the acceleration of an electron experiencing a force F is
simply a = F/m,.. This dynamic relation, with F = ¢.E, leads to the cold expression
for the cutoff. By contrast the relativistic equation for the acceleration of an electron
experiencing a force F is:

dv,-
a; = —F;
dp; "’
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It is noteworthy that relativity affects the acceleration in two ways. Firstly, there is a
relativistic mass increase which manifests itself in the first term in (12). Secondly, when
F - p # 0 some of the work that the force does on the particle goes into increasing the
mass rather than the velocity of the particle. This effect is represented by the second
term in (12).

At the X-mode cutoffs, where, as noted above, the electric field is circularly polarized
in the plane perpendicular to the magnetic field, we must retain the static magnetic
field in the linearized Vlasov equation (4). Integrating (4) along characteristics we find

) = LI [ Bty pr)ar (13)
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where p’(7) is the unperturbed orbit in momentum space of the electron which at
7 = 0 has the momentum p’(0) = p (p is one of the arguments of f(V)). The electrons
gyrate with an angular frequency of w./v, where w. = B|q.|/m, is the non-relativistic
electron cyclotron frequency. The electric field rotates with the angular cutoff frequency,
ws, where s = 1 if the field rotates in the same direction as the electrons gyrate and
s = —1 if it rotates in the opposite direction. With these definitions we can write the
integrand in (13) as

Swe

)‘r+wst—¢) ,
5

B(r +0)p/(r) = [B(O) ] os (. -
where ¢ 1s the azimuthal angle of p, and p, is the component of p perpendicular to
B,

To carry out the integration in (13) we assume that the field dies out slowly as 7 — —oo.
With this assumption we find after integration with respect to 7:

(0) 3

gif sin(w,t — ¢)

fO(p,t) = E0)|lpL|l———————=

( ) 7(mc)21 ( )” ll(ws . ch/'])

and after differentiation with respect to t:
0fV(p, 1) gepf

= E(t)- .

ot (me)*(y — swe/ws) ®)-p (14)

Inserting expression (14) in (3) and integrating we find

P wip® = plexp{—pv} d
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Noting that §°E/dt? = —w?E, we recover the fully relativistic expression for the X-
mode cutoffs from equation (2):

2 2 #E = plexp{—p7v}

Y TSR0 Jo ¥(7 — swefwa) 0

(16)

where s = 1 corresponds to the R—cutoff and s = —1 corresponds to the L—cutoff.



3 FULLY RELATIVISTIC EXPRESSION

Collecting the relativistic expressions for the O-mode cutoff (9), and the X-mode R-
and L- cutoffs (16) in one expression, we have

3K,(p)
2 [ p*exp{—pu7}
o (y—sQ)

II =

1: X-mode R-cutoff, 0<0Q <1,
vy=y1+p* |, s = 0: O-mode cutoff ,
~1: X-mode L-cutoff, 0<Q

?

where Il = wg/wf, Q = w./w, and wy is the relativistic cutoff frequency. II may also be
interpreted as the ratio of the relativistic cutoff density, n,, to the cold O-mode cutoff
density, n,, for waves at a given frequency: II = n,/n,. We will therefore refer to II as
the normalized cutoff density.

Expression (17) for II, is valid for the kind of plasmas described in the Introduction
with no further limitations. This expression, with s = 0, is identical to Expression (43)
in BATCHELOR, GOLDFINGER and WEITZNER (1984) while our expression with s = +1
follows from their expressions (39-41), with the “—” in (39) replaced by “+” (misprint).
(17) with s = 1 is also identical to (29) in BORNATICI and RUFFINA (1988) with j = 0.

For a given frequency the relativistic effects increase the density at which the cutoffs
occur. To 1llustrate this we introduce the cold normalized cutoff density, 3,

p=1-3sQ , (18)

and plot in Figure 1 the relativistic increase in the normalized cutoff density AIl = I1—1,
as a function of ¥. At the R-cutoff we have 0 < ¥ < 1, while ¥y = 1 at the O-mode
cutoff and ¢ > 1 at the L-cutoff. The plots in Figure 1 thus cover the R-cutoff, the
O-mode cutoff and part of the L—cutoff.

As noted by PRITCHETT (1984), the relativistic theory, unlike the cold, predicts that
there is a finite density limit, IIj,,, below which the R-cutoff no longer exists. From
expression (17) we have

3Ko(p)
oo nt —
2 [ plexp{—pv} dp
o y(y-1)

im =

(19)
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which is identical to (31) in BORNATICI and RUFFINA (1988) with j = 0.

At the temperatures relevant for fusion plasmas we generally have that g > 1. In this
case the following asymptotic expansions of (17) are useful:

I=K/G (20)

1/2
K = () ew{ubKan) (21a)
f: I'(5/2 +n) ) (ﬂ—(NH)) (21b)

T(5/2 — n)nl2"

n=0

151 1051 315 1

pilt e ptexp{—p(y = 1)}
= 2
¢ 3(w/202Jo (v —-1+9) 4 (222)
Y T(5/2+n)u' ™" -N
- 72) I'(5/2 — n)ni2® Frisa(C) + O (“ ) ’ (22b)
15 105 315
~ uF5(C0) + §F7/2(<) + %Fg/z(o - mFll/z(C) +.... (22¢)

Here ¢ = p1 and

Fy(z) =zt /OO exp{—z}zidz, q¢=5/2,7/2,9/2,...

z

are the Dnestrovskii functions of half integer index [DNESTROVSKII et al., 1964; ROBIN-
SON, 1986b]. These functions are readily evaluated from either their series expansions
or their continued fraction representations [ROBINSON, 1986b, Expressions (29), (30)*
and (34)], and when ¢ is not too large (( < 1000, dependent on machine precision)

IThere is an error in expression (30) in ROBINSON (1986 b). It should read



the recursive relation that exists between the Dnestrovskii functions [ROBINSON, 1986b,
Expression (14)] may be used. The real and imaginary parts of Fy/3(¢), F7/3(¢) and
Fy3(¢) are plotted in Figures 1 and 2 in DNESTROVSKII et al. (1964). Note that in the
present applications ( takes only positive real values, for which the required Dnestrov-
skii functions are purely real. Expression (22b) is, apart from a factor u, identical to
expression (19¢) in BORNATICI and RUFFINA (1988).

Including only the first term in (21b) and the first term in (22b) we recover ROBINSON’s
(1986a) weakly relativistic result for II generalized to include the O-mode cutoff and
the L—cutoff.

For small to moderately large values of { (¢ £ 1000, dependent on machine precision)
expression (22b) can be further simplfied to read:

N
G =3 aufulOu'™ + O (") (23)

where the coefficients a,, and f,(() are given by the following recursion relations:

2n -5
a = 1 n = ——Qn-1 (24a)
fo = Fs/z(() ) fo=Clat —bny1 5 (24b)
4
b() = g , bn = (1/2 - n) bn—l . (24C)

Including only the first two terms in (21b) and (23) we find the following simple expres-
sion for the normalized cutoff density:

1 3 /5 1
e~ 1Fy5(C) [1 T (5 RGN C)] ' (25)

II can be determined from expression (25) for the R-cutoff, the O-mode cutoff and
large parts of the L—cutoff with adequate precision for most applications involving fusion
plasmas (see discussion in Section 4).

For large values of ¢ (¢ 2 1000, dependent on machine precision) expressions (23) and
(25), and the recursive relation between the Dnestrovskii functions, lead to numerical
cancellation errors (small differences between large numbers need to be evaluated). An
alternative simplified expression for G may be derived which is valid for medium to
large values of ¢ (¢ 2 100) thus covering the range where the simplified expressions
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(23) and (25) failed and giving a comfortable overlap in regions of validity with these
expressions. Starting from (22b) and making use of the asymptotic expressions for the
Dnestrovskii functions, we find

N
G =97 Y caga(¥lu™ + O (") (26)

n=0

where the coefficients ¢, and g.(z)) are given by the recursive relations

o = 1 cn=—(3/24+n)cpr (27a)

go =1,  ga=v¢"lgoytan ; (27b)

and a, is obtained from the recursion relation (24a).

For convenience we give here the first four terms in the expansion (26):

5 3 35 3 3
— -1 I -1 — -1 i -2 = -1 e -2
G =4 [1 2(¢ 4)“ T (¢ ke +32)” (28)
__EE "3_§ -2 _3__ -1 __1_) —3]
8 (¢ ¥V tgY tg)H |t

If we include only the first two terms in (21b) and (26) we find the following expression
for the normalized cutoff density:

5
Oey+opt . (29)

Expression (29) for II is attractively simple. Unfortunately its range of validity has
significant limitations which particularly affect its use for the R—cutoff (see discussion
in Section 4). A similar approximation was proposed by MAzzZUcATO (1992):

Try+ (1457)" 21 (30)



4 SUMMARY AND DISCUSSION OF NUMERICAL PERFORMANCE

In the previous section a number of expressions have been given for the normalized
cutoff density, II. These include a fully relativistic expression and approximations of
varying complexity and validity.

Expression (17) is fully relativistic and is thus valid for any temperature. The main
drawback of this expression is that it requires the evaluation of an infinite integral. This
integral is, however, well behaved and sufficient accuracy can generally be obtained by
straightforward summation over less that 100 terms.

If the temperature is limited to values well below the rest mass energy of an electron
(m.c? = 511 keV) asymptotic expansions in the inverse temperature parameter, u, are
useful. In this regime II is conveniently split into two factors, K and G. K depends
only on g and presents no difficulties. G on the other hand depends on both u and (
or alternatively on u and .

The most general expansion presented here is given by expression (22b) for G, together
with (21b) for K. This expansion is a good approximation for T, < 200 keV. For the
range of parameters covered in Figure 1 and including three terms in the expansion (i.e.
N = 2) this expansion predicts II correctly to more than five significant figures. Its
principal drawback is that it requires the evaluation of several Dnestrovskii functions.
At moderate values of ¢ (¢ £ 1000, dependent on machine precision) these may however
be determined recursively, leaving only Fy/5(¢) to be determined by its series expansion
or by 1ts continued fraction representation.

At moderate to small values of ¢ the expansion (23) may be used together with (21b).
Within its limitations (¢ < 1000), which covers the range of parameters explored in
Figure 1, this expansion yields the same accuracy as the general expansion (22b) for
identical N. Its main drawback is that it requires the evaluation of F5/;({) and that its
validity is limited to moderate values of (, which principally affects its usefulness for

the L—cutoff.

Expression (25) 1s the simplest expression given here which is valid for moderate to
small values of {. In the parameter range covered in Figure 1 it computes II correctly
to three or more significant figures. Its relative simplicity combined with reasonable
accuracy makes it ideal for use in computational data analysis involving the R—cutoff
(e.g. X-mode reflectometry). Its main drawback is that it also requires F5/,(¢) and has
limited validity for the L—cutoff.

At moderate to large values of ¢ (¢ & 100) the expansion (26) or the explicit form
(28) may be used together with (21b). This expansion is useful for the L—cutoff and, at
T, < 20 keV, also for the O-mode cutoff. As illustrated in Figure 2 (a), its usefulness for
the R—cutoff is limited. The attraction of this expansion is that it involves no special
functions. Since this may encourage wide use it is important to note its limitations.
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The greatest range of validity is achieved with N = 8. Larger values of N results in
divergence of the approximation from the true value at larger values of . Note that
the term O(x~") in expression (26) implies that the expansion is convergent for a given
value of N and u — oo, but it does not imply convergence for a given value of ¢ and
N — oco.

The simplest expression for II given here is (29). This expression is useful for the L—
cutoff and the O-mode cutoff at T, < 20 keV. Its accuracy is illustrated in Figure 2
(b). While this expression is attractive for its simplicity it is important to note its
limitations which significantly affect its usefulness for the R-cutoff. The expression
(30) yields results very similar to (29), the two estimates of AIl differing by 0.0025 at
T, = 15keV.

The weakly relativistic expression for the normalized cutoff density, which is identical to
the first term in the fully relativistic expansion (20), (21b) and (22b) with N =0, is of
particular interest because of the wide use of the weakly relativistic approximation to the
dielectric tensor. The weakly relativistic predictions for the normalized cutoff density
are plotted in Figure 2 (c¢) together with the fully relativistic predictions. This plot
confirms that the weakly relativistic approximation is acceptable for most applications

for T, < 20 keV.
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Figure 1: Relativistic increase in cutoff density normalized by cold O-mode
cutoff density, AIl = II -1, as a function of 1 = 1 —s§2. R—-cutoft:
0 < ¥ < 1. O-mode cutoff: 1p = 1. L-cutoff: 1 < 9.
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Figure 2: Relativistic increase in cutoff density normalized by cold O-mode
cutoff density, AIl = II — 3, as a function of ). The full curves
are calculated with the fully relativistic expression (17) while the
broken curves are calculated using a range of approximations. (a)
Broken curves calculated with the asymptotic expansion (21b) for
K and (26) for G, with N = 2, 3 and 8. This approximation
has its greatest range of validity for N = 8 (see text). (b) Broken
curves calculated with the simple approximation, (29). (c¢) Broken
curves calculated with the weakly relativistic expression, which is
equivalent to expressions (21b) and (22b) with N = 0.



