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ABSTRACT

The response of the edge plasma to an applied voltage is analysed. When the
anomalous transport is ambipolar, the radial current is determined by
neoclassical fluxes. An equation is given for the neoclassical radial current
which is valid across the transition between the plateau and the collisional
viscous regimes. The current at first increases with the applied field, E, and then
decreases due either to the resonant velocity band being pushed to the tail of the
ion velocity distribution or to a decrease in viscous damping. Thus the same
current can be driven by two different electric fields, E1 or E>. This allows an
equilibrium field profile, where E changes abruptly from E; to E» at some
intermediate radius, while maintaining current continuity. It is shown
unambiguously that a continuous electric field profile becomes unstable when
the applied voltage exceeds a critical value, the instability being driven by
negative incremental resistivity. The profile then bifurcates to one with
discontinuous electric field.

Qualitatively, the predicted behaviour agrees well with that observed in
tokamaks where an H-mode has been induced using a biased electrode.
Quantitative comparisons are made with TEXTOR results, and the predictions
found to be in qualitative agreement with measurement. The implications for
spontaneous L-H transitions are discussed.



1. INTRODUCTION

The improved confinement regime, known as the H-mode, was first observed to
occur spontaneously in large divertor tokamaks [1 - 3] when the neutral beam
power exceeds a threshold value. It was later found that a similar plasma
behaviour can be produced in Ohmic-heated limiter plasmas by applying
sufficient voltage to a probe some centimeters inside the plasma [4 - 6]. In both
conditions the onset of the H-mode is characterised by a sharp reduction in the
Hg (or Do) radiation, indicating a large reduction in recycling, and the sudden
appearance of a strong radial electric field in the outer centimeter or so of the
plasma. In the probe-triggered H-mode the potential profile between probe and
limiter changes abruptly from a smooth variation to one where most of the
potential change is concentrated in a narrow edge region. In both cases the
strong radial electric field seems to occur simultaneously with the improved
confinement, before the pressure profile has changed significantly [7]. This
suggests that the change in field is the cause, rather than the effect, of the
improvement.

Several possible explanations have been proposed for the spontaneous H-mode
transition [e.g. 8 - 10]. Because it is difficult to evaluate the hot ion orbit loss
accurately and to measure the profiles of electric field and other parameters, it
has not been possible to make a definitive comparison between theory and
experiment. By contrast, the triggering of an H-mode by applying a voltage can
be done in a controlled way, and the lower edge temperature allows the electric
field and other profiles to be measured using Langmuir probes. The similarities
with the spontaneous L to H-mode transition suggest that the two processes
have much in common. This paper sets out to make a detailed prediction of the
plasma response to an applied voltage, and to compare this with measurement.
Comparison will be made with recent results from TEXTOR [5], because they
form the most complete set of published data. The related problem of the effect
of the electric field on the particle and energy confinement will not be discussed.

The behaviour of the radial electric field, Er, produced by an applied voltage is
attributed in Ref. [5] to a decrease in perpendicular conductivity towards the
plasma edge, due mainly to decreasing density. In the equation jr = oy Ey, 1jr is
constant between probe and limiter, so E; varies inversely as the conductivity oy.



It is not obvious how this can explain the sudden transition from smooth electric
field profile to one concentrated at the edge, especially as the change in field is
thought to precede the change in density profile.

This paper proposes a different explanation. As the radial electric field increases,
the neoclassical radial current at first increases linearly, and then passes through
a maximum before decreasing at higher fields. Beyond the maximum the
incremental resistivity is negative, which makes the electric field unstable to the
growth of a space charge perturbation. This instability evolves into a second
equilibrium profile, in which the current is everywhere continuous but the
electric field has a discontinuity. The bifurcation from a smooth radial variation
in electric field to a discontinuous one, when the voltage exceeds a threshold, is
qualitatively similar to the observed behavior in probe-triggered H-modes.

Section 2 discusses the neoclassical radial current over the transition from the
plateau to the viscous collisional regimes. The response of a uniform plasma to
an applied voltage is analysed in Section 3, where the instability in the electric
field profile, above a threshold voltage, is discussed. The evolution of this
instability is traced to a second equilibrium, where there is an abrupt
discontinuity in the radial electric field at some intermediate radius. The
analogous behaviour in the realistic case of an edge plasma with strong radial
variation in pressure is studied in Section 4. Section 5 makes a detailed
comparison of the predicted behavior with the TEXTOR measurements. The
relevance of this analysis to the spontaneous L to H transition is discussed briefly
in Section 6, and the conclusions are set out in Section 7. In several places where
the detailed analysis is not essential for the general understanding, it is relegated
to an appendix. These appendices include a summary of the derivation of the
neoclassical particle fluxes over the transition between plateau and viscous
collisional regimes, the stability of potential profiles and, when unstable, their
evolution to a new equilibrium.

2 RADIAL CURRENT IN A NEOCLASSICAL PLASMA

The current in the plateau regime will be described first, followed by its
generalisation to include collisional effects. The original neoclassical analysis of



Galeev and Sagdeev [12] for the plateau and banana regimes led to expressions
for the particle flux of the form
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where € = r/R is the inverse aspect ratio, p i= 1/2ij j / eB the Larmor radius, By

the poloidal magnetic field, vy = (2T;/ mj)1/ 2 js the thermal velocity, Uji the mean
velocity along the magnetic field, and the other notation is standard.

For a plasma without internal electrode, where neoclassical transport is the only
source or loss mechanism, or if the other loss mechanisms are ambipolar, quasi-
neutrality requires I'iN = I'eN. Since De = 0 (me/m;)1/2D;, this requires the first
bracket in the ion flux to cancel to this same order, giving the ambipolar electric
field

E, = %(% +7i %) +BgUj @)

where a dash denotes differentiation with aspect to the radius.

It has frequently been stated that neoclassical transport is automatically
ambipolar, enabling the electric field to be eliminated from Eq. (1). The
argument for this is based on the flux-surface-averaged momentum balance and
so, as discussed in Ref. [11], is valid only when there is no momentum source
other than neoclassical processes. In the present problem, anomalous
momentum loss must occur, as otherwise the jr Bg force would produce
acceleration in the toroidal direction. The radial electric field is now determined
by the voltage applied to the probe, and Eq. (1) determines the neoclassical
current produced by this E;. Even when the overall diffusion is dominated by



electrostatic turbulence, the radial current still equals the neoclassical current,
because the fluxes produced by electrostatic fluctuations are ambipolar.

Previous discussions of the L to H-mode transition have frequently used a
momentum balance argument [8]. The first velocity moment of the kinetic
equation gives a momentum equation, in which kinetic effects such as Landau
damping are included in a generalised pressure tensor. Although the two
approaches are equivalent, evaluation of the particle flux by solving the kinetic
equations is physically clearer and, in this particular problem, the results are
easier to apply than those in terms of viscous stress and poloidal damping.

The electron contribution to the current may be neglected. The radial current in
response to an applied electric field can then be written as
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where x = Er/viBg, Xa = Ea/viBg, K =n1/2 €2/B, and pj = nT;. The origin of the
exponential factor is as follows. Neoclassical transport is predominantly due to
particles whose poloidal velocity is small, because their magnetic drift is radially
unidirectional for longer times. Since rd0/dt = (vBg-E;)/B, the resonant velocity
band is centered on v = E;/Bg. When this exceeds the thermal velocity, the
number of resonant particles falls off strongly. The maximum and minimum in jr
occur at Em where

Ep, = —;—[iW/ZV% B3 +E2 - Ea] (5)

Usually E,/vyBg ~T;/(eLvBg)=pig/Ln <<1 where pig is the ion Larmor
radius in the poloidal magnetic field, and Ly, is the density scale length. Then
Emn =%V, Bg / V2. The variation in current with E; is illustrated by curve (a) in

Fig. 1.

We now consider the limits of validity of the plateau analysis. In a complete
treatment, the neoclassical transport includes a contribution from resonant (or
trapped particles) and one from the collisional diffusion of the bulk plasma. In
the more usual condition, where Er = o [(dp/dr)/ne], the transition between the



1.0

0.5
i,
Kp;
0 |
c) b) a)
d
-0.2
e)
; ;
L I 1 | | 1 3
-6 -4 -2 0 2 4 6 8
E,
Ve,

Fig.1  The variation of the normalised neoclassical radial current with the
normalised radial electric field for Xa = - 0.6 and different collisionalities,

Y = qQR/Amfp.



collisional regime and the plateau regime where resonant particle effects are
dominant, occurs when Amfp, the mean free path, equals qR. For larger electric
fields, Er > Bgvy, because the contribution of the resonant particles is
exponentially reduced, the collisional contribution is dominant up to mean free
paths longer than qR.

The transition between the plateau and collisional regimes was studied by
Connor and Stringer [13], starting from the kinetic equation with a BGK collision
operator. A short summary of this analysis is given in Appendix A. It neglected
the velocity dependence of the collision operator but, since this paper is aimed at
physical understanding rather than exact numerical agreement, this velocity
dependence is not essential. The complete expression for the ion flux in Eq. (A7),
which includes the effect of the poloidal electric field Eg, is long. In the following
analysis, only the first term in this equation will be used. The other terms, which
result from Eg, from higher order vj moments arising from the curvature drift,
and from imposing conservation of particles and momentum during collisions,
make a comparable contribution, but do not change the asymptotic behavior of
the ion current. (The effect of Eg was neglected by Galeev and Sagdeev when
deriving Eq. (1), and in most other analyses.) The radial current can then be
written in a form analogous to Eq. (4).
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and vij; is the ion-ion collision frequency. In the following analysis Amfp is
defined as vyi/vii. Because vy = [2T;i/m;]1/2, this is 2 1/2 times the usual mean
free path. Im [Z(x,y)] is tabulated by Fried & Conté [15]. It equals n!/2 u(x,y)
where u(x,y) has been tabulated by Fedeeva & Terentev [16]. j’S, which is
proportional to the electron-ion collision frequency, is a generalisation of the



Pfirsch-Schliiter radial flux, valid for arbitrary electric field. It is numerically
small in all the applications of present interest and will be neglected.

It is obvious that when vj; = 0, Eq. (6) agrees with Eq. (4) for the plateau regime.
If, on the other hand, we take the large y limit [15] of Eq. (6) we obtain

jr 1/2 (X xa)_?' (7)

In the collisional limit where r vj; >> E;/B this becomes

: 2 ne p, _n_ _
k= 75 B vy (Er Ea) 8)

This is e times the ion diffusion rate when parallel ion viscosity is dominant and
the poloidal electric field is neglected [17]. Eq. (6) thus describes the smooth
transition from the plateau to the viscous regimes. When E; > v Bg, the
collisionality at which this transition occurs depends strongly on the radial
electric field, as illustrated in Fig. 3 of Ref. [13].

Fig. 1 shows how
(x=xa)=7r 172 Im[Z (xy) ] jr ©)

varies with x = E;/ vy Bg for several values of y = qR/Amfp. The value of x, =
Ea/vii Bg has been kept constant at -0.6. Fig. 1 illustrates the competition
between Landau and viscous damping, mentioned at the beginning of this
section. When 0 < qR/Amfp <1, the dissipation at moderate electric fields
(x £0.5) is dominated by Landau damping, producing a plateau-like particle
flux, while at larger electric fields collisional viscous damping may become
dominant. Increasing collisionality reduces the Landau damping, but increases
viscous damping when Er > rvjiB (see Eq. (7)). These two trends move the
maximum of jr to higher Er so that, when qR/Amsp >> 1, Eq. (5) is replaced by

Xm =Xa X [xa ty }1/2



3. RESPONSE OF A UNIFORM PLASMA TO AN APPLIED VOLTAGE

As may be seen from Eq. (), the local neoclassical radial conductivity depends
on local parameters. The radial variation in parameters will be taken into
account in Section 4, where the response of a model edge plasma is considered.
There the basic simplicity of the bifurcation process becomes rather obscured by
the effects of inhomogenity. The bifurcation may be understood more easily
when the radial variation in plasma parameters is ignored.

The boundary condition is | E; dr = V, where V is the voltage applied to the
probe and the integration is between the probe and limiter radii. To be specific,
we consider the case where V is positive and hence E; is outwards, though the
analysis is equally valid when V is negative. The conditions are that j; is related
to Er by Eq. (6), and that in a steady state, rjr must be constant to avoid build-up
of space charge (in this section the r factor will be ignored).

The most obvious solution has a uniform electric field, E; = V/s, where s is the
separation between the probe and limiter radii, and a current found by
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Fig. 2: Local current vs. electric field

substituting for E; in Eq. (6). It was previously assumed that, as V is increased,
the plasma current follows the variation shown in Fig. 1. for the appropriate



value of qR/ lmfp. Thus, jr at first increases linearly, reaches a maximum, and
subsequently decreases, as illustrated in Fig. 2. That this does not happen in
. practice can be seen by considering the stability of such an electric field to a
localised space charge perturbation when V > sEn, where En(y) is the electric
field at which the current reaches its maximum.

Suppose a small positive space charge occurs around some intermediate radius
r = a-d. This produces a small increase in E; as we cross the space charge, as
illustrated in Fig. 3. Since JE; dr must be unchanged, Eris decreased slightly

JGO2.T29%
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Radius

Fig. 3: Electric field and current profiles resulting from a localised space charge around r = a-d.

over r < a-d, and increased over r > a-d. This causes jr to increase over r < a-d,
and to decrease over r > a-d. This produces an increase in the space charge near
r = a-d, and hence an exponential growth in the electric field jump. The
instability is driven by the negative incremental resistance when E > Em. When
E < En a similar argument shows, of course, that the constant Er profile is stable.
(If the momentum equation were used instead of Eq. (1), rotational instability
occurs when vg > Er/B because the poloidal flow damping decreases as the
magnitude of this flow increases).

The evolution of an unstable E; profile is examined in Appendix B. Only a brief

description will be given here. The radial ranges a-s < r < a-d-8 and
a-d+8 <r < a, will be denoted by subscripts 1 and 2 respectively, where & is the
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half-width of the space charge distribution. At some value of the space charge,
E; is pushed below En, in Fig. 2. The space charge continues to build up because
j1 is still greater than j, but now j; decreases with time. Because the slope of the
current response is steeper when E < Ep, than when E > Ep, j1 decreases more
rapidly than jp, and eventually they reach equality, as illustrated by points A and
B on Fig. 2. The build-up of space charge then ceases. As discussed in Appendix
B, the space charge distribution, which has been becoming narrower during the
build-up, may continue to narrow until it reaches a lower limit imposed by ion
Larmor radius effects. The transition from Ej to E; is then so abrupt that it can
be regarded as discontinuous. The discontinuous electric field profile satisfies
the equilibrium conditions. Thus [E dr = V has been satisfied during the
evolution, and now j(r) is everywhere constant.

When V > sEp,, the constant E; equilibrium is unstable to an initial space charge
perturbation at any radius between the probe and limiter radii. Consistent with
this, discontinuous equilibria can exist with discontinuity anywhere within this
range. The stability of this second equilibrium is not as obvious as for the
constant electric field profile. It is analysed in Appendix C where it is found, not
surprisingly, that it is stable to a change in the field discontinuity when E > Ep,,
and unstable when E < E;,. However, when E > Ej, the discontinuous field
profile is found to be unstable to the growth of a charge perturbation located
between the discontinuity and the limiter. While such a perturbation evolves
into a new electric field discontinuity, the original discontinuity at r = a-d dies
away. Thus it would seem that the only completely stable profile has a
discontinuity close to the limiter. In practice the foregoing analysis is probably
not valid within some distance b from the limiter, where neutrals, impurities,
and ion orbit loss current are important. In this case the stable electric field
profile when V > sEp, has a discontinuity at r = a-b.

Thus if the voltage applied to the probe is increased from zero, the predicted
response is as follows: So long as V < sEn, the electric field is constant over the
radial zone between the probe and limiter. When V exceeds sEy, we expect a
bifurcation, as the electric field suddenly changes to a discontinuous equilibrium,
where E; is constant over each of two regions, changing discontinuously between
them. The discontinuity is expected to be located one poloidal Larmor radius or
more from the limiter radius. While V < sEn, the radial current increases steadily
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with voltage. At the instant of bifurcation the current drops abruptly to a lower
value, and then decreases with further increase in voltage.

4. RESPONSE OF AN INHOMOGENOUS PLASMA

We now include in the model the variation in plasma parameters across the edge
region, and examine the analogues of the continuous and discontinuous electric
field profiles found in the homogenous plasma. Fig. 4 illustrates the variation of
rjr/Kpi with x for specified values of y and x5, as given by Eq. (9) (i.e. one of

e
Kp
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Fig. 4 Typical variation of normalised current with electric field

the curves in Fig. 1). rjr must be constant across the annulus between the probe
and limiter radii. If rjr is specified, and pi(r) is known, then rj;/Kp;j is a known
function of r. The corresponding values of x, which can be read from this figure
or calculated from Eq. (9), then give E; as a function of r. Integrating E; over r
gives the applied voltage. If the voltage is specified a priori, the value of rjr can
be adjusted until [ dr E; takes the specified value.

In the usual condition where pj(r) decreases monotonically between the probe

and limiter radii, rjr/Kpj increases with radius, reaching its maximum value

1jr/Kpa at the limiter. The variation of K = n1/2 €% /B is relatively weak
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compared with pj, and will not be explicitly considered. Let us start with a low
applied voltage. The resulting current is also relatively low, and the variation in
rjr/Kpi could correspond to the section AB on Fig. 4. (A corresponds to the
probe radius and B to the limiter radius). As the voltage is increased, the range
in x must move to higher values, i.e. point B moves further up the curve. At
some critical voltage V. the upper limit of the x range reaches xm, i.e. B reaches
the current maximum. For higher voltages a continuous electric field
equilibrium is impossible, because the point B cannot move on to the descending
portion of the response curve, since rjr/Kpj must increase monotonically
between probe and limiter. Hence we must change to a discontinuous field
profile.

A discontinuous field equilibrium is illustrated by the sequence ACDF on Fig. 4.
As radius increases from r = a-s, the representative point moves up the positive
slope with increasing rjr/Kpj. At some radius, r = a-d, E; jumps across to the
decreasing section. There is no change in current in this jump. As p; decreases
further with increasing radius, the point moves up the negative slope section,
reaching F when r = a. The total voltage is larger than is possible with a
continuous equilibrium, because of the contribution from the high field side. As
voltage increases, the current decreases because the field in the outer region is
pushed further out on the tail of Fig. 4.

As an example, we consider a simple linear pressure profile over the edge region,
pi = pa [1 + g(a-r)/s]. Typical values for these parameters during the probe
experiment on TEXTOR [5] are p, = 3.1013 eVem3, g = 6, s = 6 cm. The electron
temperature varied only weakly over the edge plasma in these experiments [5]
and so T; will be taken as constant. For this example the collisionality is taken as
qR/ Kmfp = 1. Fig. 5 shows, for g = s, where s is the probe-limiter spacing in cm,
how the normalised current, rj;/Kpa varies with the position of the discontinuity
for specified values of the normalised voltage, a = V/vy Bgs. For each value of o
there is now a limited range of d/s within which the equilibrium conditions can
be satisfied. The maximum value of rjr/Kpj for these parameters is 0.35. At each
o, the maximum value of d/s corresponds to rj/Kpj reaching this value atr = a,
i.e. to point E in Fig. 4 reaching the current maximum. The critical value of a,
above which a continuous field profile is impossible, is 0.22.

13
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Fig.5:  Variation of the normalised current with position of the discontinuity, for the normalised voltages
specified (o= V/v,Bg s)
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Thus, in an inhomogenous plasma, bifurcation to a discontinuous electric field
profile occurs when the applied voltage exceeds a critical value, which in the
above example is given by o = 0.22. When the voltage is slightly larger than
critical, the discontinuity must occur close to the limiter radius, the width of the
allowed range increasing with the applied voltage.

5. COMPARISON WITH TEXTOR RESULTS

In TEXTOR a voltage was applied to a carbon electrode situated between 6 cm
and 4.5 cm inside the limiter radius [5]. The floating potential and plasma
parameters were measured by a double Langmuir probe, whose radial resolution
is 1 mm. Fig. 6, reproduced from Ref. 5, shows the radial variation in the floating
potential over 1.5 cm inside the limiter radius at 46 cm. The voltage of the probe
relative to the limiter, VE, is shown on each curve. When I VE| < 450 volts the
floating potential increased (or decreased) fairly uniformly between the electrode
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Fig. 6: Radial profile of the floating potential in TEXTOR for different voltage
applied to an electrode located between r = 40 cmand 41.5 cm
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and limiter. An abrupt change in profile shape occurs when VE exceeds about
450 volts. . Nearly all the voltage drop now occurs within about 1 cm from the
limiter, where the total electric field can reach 1kV/cm. For the remaining
4 - 5 cm to the electrode radius, the electric field is an order of magnitude less.

Simultaneously with the change in profile shape, the plasma showed most of the
characteristics of an L to H transition. There was a marked reduction in the Dg
radiation, and the particle confinement time increased by factors of 2 to 4
(although the energy confinement time increased by only 15% to 30%). The
profile change was accompanied by an abrupt reduction in the current between
probe and limiter [5] as shown in Fig. 7.
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Fig.7:  Variation of electrode current I with electrode voltage in TEXTOR
for different conditions identified in the inset [5].

The abrupt change in the potential profile when the applied voltage exceeds a
threshold, shown in Fig. 6, agrees very well qualitatively with the bifurcation
predicted in Sections 3 and 4. We now make some quantitative comparisons.
Typical parameters for the deuterium edge plasma during the experiments in
TEXTOR are ne = 2.1012 ¢cm3, Te = 40eV, B = 2.35 T, € = 0.26, q = 7. This makes
vii = 1-2.10%/sec and qR/ Amfp = 2.6. To allow for a low impurity content, this
will be increased to qR/Amfp = 4. We first estimate the threshold voltage. At
threshold rjr/Kpj reaches its maximum value of 0.35 at r = a. Its value at other
radii is then 0.35 p(a)/p(r). The values of x at different radii can be taken from
the appropriate curve in Fig. 1, and E; then integrated over radius. Using
TEXTOR parameters, and again approximating p(r) by p(a)[1+ a-r], where a-r is
in cm., leads to a threshold voltage of 93 V. (In this calculation, x, varied from
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08 atr = ato 0.4 at r = a-d.) We now compare this with the uniform plasma

model of Sec. 3, where the current maximum occurs at xm = 3.8 (see Fig. 1). This

corresponds to an electric field Er = 3.8.10-2 v; Bg (where v is in m/sec and Bg in

Tesla), giving a threshold voltage of about 1 kV.

To see the reason for this large
difference in thresholds, consider
the non-uniform plasma at an
applied voltage just below
threshold. Then in Fig. 4 point B,
which corresponds tor = a, is close
to the current maximum at x = Xm.
One centimeter into the plasma,
pi(r) = 2 pi(a), and hence rj/Kp; is
one half its maximum value. The
corresponding value of x, and hence
Er, is much less than Ep,, as may be
seen from Fig. 1. This is illustrated
in Fig. 8, which shows the radial
variation in E; in (a) a uniform and
(b) a non-uniform plasma, in both
cases just below threshold. In the

o 4002 7299

r{cm)

Fig. 8: Radial variation in electric field for (a) uniform

plasma, (b) non-uniform plasma, (c) non-uniform
plasma with ion orbit loss

non-uniform plasma the electric field reaches the critical value at one point only,

and everywhere else is well below critical. Obviously [ E; dr is much less than

for a uniform plasma, where E; is everywhere at the critical value.

The predicted rapid radial variation in Er near the limiter radius is not seen

experimentally in Fig. 6. This casts doubt on the assumption that rj; is constant

there. Variation in rjr could result from fast ion orbit loss. Those ions which

become trapped within about one poloidal Larmor radius, pig, from the limiter

radius have orbits which penetrate into the limiter shadow. The loss of such fast

ions as they strike the limiter gives rise to an ion current. The condition that rj;

must be constant refers to the total current, so any ion orbit loss current must be

balanced by a reduction in the neoclassical current, referred to in future as er.
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Since it is difficult to evaluate the ion orbit loss current accurately, the convenient
assumption will be made that rjN is constant over a-d < r < a-pjg, while rjN/Kp;
is constant within a distance pjg from the limiter radius. In the TEXTOR edge
plasma, pjg is about 1 cm, so this implies that the ion orbit loss current increases
from zero at 1 cm into the plasma to about half the total current atr =a. Curve ¢
in Fig. 8 shows the radial variation in E; just below threshold resulting from this
assumption. Integrating this between electrode and limiter radii gives the
threshold voltage for bifurcation to be 400 V. This is close to the experimental
value, of about 450 V.

The predicted electric field profile after bifurcation depends on the position of
the discontinuity which is not determined by the foregoing analysis. Assigning
the experimental value d = 1 cm, the predicted jump in E; when Vg =500 V is
from 100 V/cm to 330 V/cm, while when VE = 750 V the predicted jump is from
37 V/cm to 670 V/em. These fields are all within 50% of the experimental values
which, in view of the assumptions, is perhaps as good as can be expected.

Fig. 9 shows the variation in the predicted electrode current with the applied
voltage, for positive voltages. The calculated curve is similar in shape to the
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Fig. 9: Variation in predicted plasma current with applied voltage., y = 4,x, = 0.4 10 0.8.

experimental current dependence in Fig. 7, but its magnitude is only about one
third of the measured current. This discrepancy might be due to the neglect of
some terms in going from Eq. (A7) to Eq. (6). The neglect of these terms does not
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change qualitatively the ion current dependence, but could introduce a
discrepancy factor of order unity.

We now consider the plasma response to a negative applied voltage. From Eq.
(4), the only dependence of the plasma conductivity on the sign of the electric
field is through the (x-x3) factor. For the density and temperature profiles
measured in TEXTOR, the ambipolar electric field, Eq. (3), is expected to vary
between -30V/am at r = a and -20V/cm at the probe radius. Thus the effective
conductivity is less when Er is negative than when it is positive, as shown in
Fig. 1.

The electrode properties can be more important in determining the current. As
pointed out by Weynants et al. [5], when the applied voltage in TEXTOR is
negative, the current to the electrode must consist of ions collected from the
surrounding plasma, since the electrode is not emissive. This ion absorption is
balanced by an inward neoclassical ion flow. After the current reaches the ion
saturation current, any further voltage increase produces an ion deficiency
around the electrode. The electric field outside this sheath region is that required
by Eqg. (6) to drive the ion saturation current through the plasma. The remainder
of the applied voltage appears as the potential drop across the region of ion
deficiency, as illustrated by curve (a)

s Radius, r a

in Fig. 10. The local plasma current

Oy

required to balance the ion saturation
current at the electrode is everywhere
below the maximum neoclassical
current, and hence there is no
bifurcation. In TEXTOR steady H-
modes were not observed in Ohmic
plasmas with negative applied
voltage. However, a negative H-mode

Floating potential

could occur when neutral beam
injection (NBI) was added, and a pure
Ohmic H-mode persisted after NBI

was switched off [5]. Fig. 10: ng;r}f}lgg Profiles (a) without NBI and (b)

Ve
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The explanation could be as follows. NBI increases the fast ion orbit loss current
in the outer edge. Thus the inward ion neoclassical current there must increase
to balance this current as well as supplying the current to the electrode. Let us
suppose that this combined current exceeds the maximum neoclassical current.
Since the inward neoclassical current cannot balance the orbit loss, an ion
deficiency builds up leading to a rapid increase in the inward electric field near
the plasma edge, with a consequent reduction in the potential increase across the
electrode sheath. The former effect reduces the ion orbit loss current, due for
example to orbit shrinking [18], while the latter reduces the current flow to the
electrode. The negative charge build up ceases when the sum of these two
currents falls below the maximum that can be balanced by the neoclassical
current. During this transitional phase E; becomes large over the outer edge
plasma, and consequently when the new equilibrium is established E; > Ep,, i.e.
the equilibrium is a discontinuous one. Curve (b) in Fig. 10 illustrates such a
potential profile.

Finally we consider what happens when NBI is switched off. The inward
neoclassical ion flux suddenly drops to that required to supply the electrode
current. But since E > Eny, in the outer edge plasma, decreasing current requires
an increase in the electric field there (see, for example, Fig. 4). There is a
balancing decrease in E; over the inner edge plasma, and the electrode current
may drop below its saturation value. The electric field, however, is still
discontinuous, and the plasma should retain the characteristics of an H-mode.
The above sequence of equilibria agrees qualitatively with the behaviour of the
potential profiles and electrode current at negative voltage in Fig. 6 and 7.
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6. RELEVANCE TO SPONTANEOUS L TO H TRANSITIONS

The strong inward radial electric fields observed in spontaneous H-modes are
larger [7] than the ambipolar value in Eq. (3), and so the neoclassical ion flux,
given by Eq. (6), is inwards. This implies the presence of a non-ambipolar ion
loss mechanism, the neoclassical current being required to prevent the build-up
of negative space charge. Shaing and co-workers [8] and Itoh and Itoh [9]
propose the loss of trapped ions whose orbits enter the divertor or strike a
limiter. This gives rise to an outward ion current, which starts from zero at
about one banana width inside the plasma boundary and increases towards the
boundary. Shaing's mechanism will now be outlined and, where it is not
consistent with the foregoing analysis, modifications will be proposed, and some
extensions made.

Shaing and co-workers [8] derived their equilibrium by balancing the torque
exerted by the escaping trapped ions against the viscous damping of the poloidal
rotation. Because we find the equivalent description in terms of ambipolar
currents easier to apply and more physically transparent, we re-express
Shaing et al's. argument in these terms, using the foregoing analytic results.
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The argument is best
illustrated by Fig. 11 which is a
modification of one given by
Shaing and Crume [8]. The

dashed lines show the current i 2
carried out of the plasma by —:::t—”:/l\ -
those trapped ions whose \\//
orbits enter the divertor or

limiter shadow, using Shaing T iL,_‘-NJ '.L %
and Crume's [8] formula with _ —— _'\\’\\\
o = 0.25. The solid lines show \

the neoclassical ion current, as W
given by Eq. (6), with its sign e o —
changed. The plasma /,____.]_'__\ It
collisionality parameter, —A{//-\ \\
qR/lmfp, decreases from 2 \ ~
figures (a) to (b) to (c). The = ;
ambipolar electric field, e I /G T e §

defined by jN(Ep) + jL(E;) = 0,

where jL(Er) is the orbit loss Fig. 11:Variation in the neoclassical and ion orbit loss currents
current, is given by the inter- with x = Er[ViBg . 4R/ Amfy, decreases from figs. (a) to (c).
section of the curves. Fig. 11(a) represents an L-mode plasma. Only one
ambipolar field is possible, which is less then vy Bg. In Fig. 11(b) there are three
possible ambipolar fields, but the middle one can be shown to be unstable, using
an argument like that in Appendix C. As the plasma evolves from condition (a)
to condition (b), the electric field may be expected to continue at the lowest
ambipolar value of |E;I. When the plasma moves into condition (c) this
intersection disappears near the boundary and the electric field is forced to jump
to the further ambipolar value. This discontinuous jump in E; is identified with
the observed sudden appearance of a strong electric field and transition to
H-mode confinement. Unlike the plasma with applied voltage, considered in
Section 3, the equilibrium with E; > Epy, i.e. on the decreasing part of the jvs x
curve, is now stable against a space charge perturbation.

Shaing et al. [8] attribute the transition between Fig. 11 (a), (b) and (c) to a
reduction in the neoclassical ion current, due to a decrease in collisional viscosity
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with increasing temperature. In conditions where H-modes occur
experimentally, the edge plasma is in the plateau or collisional viscous regimes.
As may be seen from Fig. 1, the neoclassical radial ion current does not decrease
there with decreasing collisionality. In fact, the peak current increases weakly,
while the extremum occurs at lower values of |E;l. A more plausible
explanation for the evolution from case (a) to case (c) is the increase in density of
trapped ions as the edge temperature increases, leading to an increase in the ion
orbit loss current.

The above discussion ignores the radial variation across the edge region. Fig. 11
can also be used to illustrate the changing conditions as the radius approaches
the separatrix. The ion orbit loss current curve increases in magnitude from zero
at distances from the boundary greater than an orbit width, reaching its
maximum at the boundary. Over the same radial range, the neoclassical
current curve decreases in magnitude with the pressure. Fig. 12 shows how the
ambipolar electric

fields vary with radius over the edge a)
region. Fig. 12(a) corresponds to an L-

mode. On the left of the sketch, the E
plasma is in the condition illustrated

in Fig.11(a). As the ion orbit loss ////
current increases with radius it enters  as G a
condition 11(b). Since there is no
mechanism for generating a jump in

b)

electric field, it stays on the lowest ¢
branch. Fig. 12(b) corresponds to an
edge temperature above the threshold
for the L-H transition. Close to the
boundary the only ambipolar electric

§
¥
a

a-s r

. . Fig. 12: Variation of ambipolar electric field with
field lies on the upper branch, § radius for (a) an L—rr;:ode, (b) an H-mode

necessitating a jump from the lower to the upper branch. The only qualitative
discrepancy between the above sequence and the experimental behavior is that
the jump in electric field is expected to occur from A to B in Fig. 12(b). At the
onset of the H-mode, the width of the high field region then starts from zero and
increases steadily with increasing temperature. Experimentally, however, the
high field region has a finite width at the onset of the H-mode, and this width



does not change much as the parameters exceed threshold. The equilibrium
conditions are satisfied by a jump anywhere between CD and AB. A jump near
CD would remove the above discrepancy but, within the present model, there is
no reason to expect this jump anywhere but at AB. Possibly some other physics,
such as impurity effects, prevents a jump in E; too close to the boundary.

7. CONCLUSION

1. The processes leading to an L-H bifurcation in the edge plasma may be
described either in terms of current balance, where the ion current is
derived directly from the kinetic equation, or in terms of momentum
balance based on the velocity moment of this equation. The former
approach is preferred here. This allows the use of earlier results for the
smooth transition in the neoclassical ion current as collisionality changes
from the plateau to the collisional regimes. A large radial electric field
reduces Landau damping as the resonant velocity is pushed on to the
Maxwellian tail. The transition from plateau to ion viscous neoclassical
behavior then occurs at a collisionality lower than the usual criterion kmfp
=qR.

2. Detailed predictions are made for the electric field and plasma current
produced by applying a voltage to an internal electrode. A bifurcation is
predicted when the applied voltage exceeds a well-defined threshold. The
origin of this bifurcation is easily understood when the radial variation in
plasma parameters is ignored. The neoclassical ion current reaches a
maximum at a specific radial electric field Em, and decreases for higher
fields. The negative incremental resistivity leads to an instability in which
a localized charge perturbation grows exponentially. It continues to grow
and becomes more sharply localized, until a second equilibrium is
reached. In this equilibrium there is a discontinuity in the electric field,
from Ej to Ej, at the location of the initial perturbation, such that j(E1) =
j(E2). Simultaneously there is an abrupt decrease in the current. This
behavior agrees qualitatively with what is observed in CCT, [4], TEXTOR
[5] and TUMAN 3 [6]. In our model the discontinuity is completely stable
only when it is close to the limiter radius, but other effects may limit how
close it can occur.
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To make realistic predictions, the radial parameter variation should be
included. For a stationary equilibrium the plasma radial current must be
constant across the edge plasma. For a specified applied voltage and
pressure profile, this dictates the radial variation in E;. Now bifurcation
first occurs when the electric field at the boundary reaches Em. For higher
applied voltages the only possible equilibrium has an electric field
discontinuity.

A first estimate of the voltage at which bifurcation should occur in
TEXTOR yields a value about one fifth of that observed [5]. Its value is
dominated by the variation very close to the plasma boundary. The ion
orbit loss current, due to trapped ions which do not return to the plasma
because their orbits intersect the limiter or divertor, is likely to be
important within one poloidal Larmor radius from the boundary. Since
the total ion current must be constant, the neoclassical ion current is
reduced as the boundary is approached. Choosing as an example an ion
orbit loss current, which at the boundary reaches half the total current,
gives the threshold voltage for bifurcation close to that observed. The
predicted jump in electric field at the discontinuity is consistent with
measurement.

The predicted variation in plasma current with applied voltage is similar
to that measured in TEXTOR. However, the magnitude of the predicted
current is only about one third of the measured value.

The above comparisons are with measurements made when the applied
voltage is positive. The marked difference in plasma response when the
applied voltage is negative arises because the electrode is not emissive.
Hence the current which a negative electrode can draw from the plasma is
limited by the ion saturation current. The electric field in the plasma is
that required to drive a neoclassical current of this magnitude, the
remainder of the voltage appearing as a sheath potential at the probe. The
electric field in the plasma is everywhere less then Ep,, so there is no
bifurcation. It was found that an H-mode can be created in TEXTOR by
adding NBI to a plasma with negative applied voltage, and that the
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H-mode persisted after the NBI is switched off [5]. This behaviour can be
explained qualitatively in terms of the foregoing analysis.

Although the spontaneous L to H mode transition is not considered in
detail, much of the analysis is also applicable to this problem, and the
implications are discussed qualitatively. The explanation for bifurcation
proposed by Shaing and co-workers [8] is still generally valid, though
some modifications are needed. In particular, as the temperature
increases, the decrease in the ion neoclassical current seems less
important than the increase in the ion orbit loss current. The argument is
extended to include the radial variation in these currents. The high
electric field region is predicted to be very thin immediately after
bifurcation and to increase steadily as the edge temperature rises beyond
threshold. This is contrary to the experiment, where the width of the high
field region at the H-mode onset is comparable to the poloidal Larmor
radius and changes little as the parameters increase beyond threshold.
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APPENDIX A

GENERALISED NEOCLASSICAL ANALYSIS FOR THE PLATEAU AND
COLLISIONAL REGIMES

The derivation of Eq. (6) for the neoclassical ion current, valid in both the plateau
and collisional viscous regimes, and the effect of poloidal electric field on it, will
now be briefly outlined. The analysis starts in Ref. [14] with the drift equation

for the guiding centre distribution function f(r, 0, vy, vi) with a BGK collision

operator [19],

ofi dv ofi dv? n; 2qyv
V. VIt ] i ) 1l —_ . . qk Vi £ Al
(—) )] + ovy dt + avi dt %V)k{ﬁ) o + v%- 0]} (A1)

where Vj is the guiding centre velocity, vi is the collision frequency of the jth
species on the kth species, and qx = a3 v vy is the poloidally varying part of
the mean parallel velocity of the kth species. Subscript zero denotes the flux-
surface-averaged parameter, and subscript 1 denotes the o(e) poloidal variation.
The collision operator conserves particles and momentum, but not energy. The
neglect of temperature perturbation in the collision operator is equivalent to
assuming large parallel thermal conductivity. The zero order distribution
function is assumed to be locally Maxwellian, and is written in the form.

fo; (r, viI, V_ZL) = —12- exp (—vi /v%)Foj(r,v")
v
Fy = [no(r)/n%vtj] exp (—v||2 /v%).

The analysis, although straightforward, becomes very lengthy. To illustrate the
method, the first step will now be shown. The zero order particle velocity
consists of the electric drift, vy = - Ero/B, and the velocity v) along the magnetic

field. The first order acceleration terms are [20].

dvy 1
4 R v.V) (e:®; + uB
dt mjVn ( )< ) 1 )
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dv_zL

1 dvi (vo +8vy)
vi dt

(v.V)B= (

1
= = in 8
5 sin

where ©=Bg/B, B = B, (1- € cos 8), and ®1(r, 6) is the poloidal variation in

electrostatic potential. The first equation follows from
1

\7 =[(§ - ® - uB)Z/ m]-]/z, where £ is the particle energy and the second

from conservation of the magnetic moment, p = mjvf_ /2B. Linearising Eq.

(Al)in e gives

e® 2 2
+|:_]_ & - l (% V_ZLG _ V0V||)sin9] 2V|| fO]_ (Vo+ Vll) sin® Vi fo'

ML 29kVi
=— Yvy i - | L+ D), (A2)

Now write sin 6 = [exp (i6) - exp (-i6)]/2i, and f};, njj, @1, and gk in the form fj; =

fi+ + f;-, where fj4 and fj. vary as exp (i6) and exp (-i0) respectively. The equation
for fj+ is

(vo— irv; + 8v||) fiy = —2% (vo + Unj)(vi + 2v|%) fo5 exp(i0)

(A3)
e;:d n; 2i
1 . + v r

where Vj = Vji + Vje, and Upj = (Tj/nye;B) dnj/ dr is the diamagnetic velocity of the
jth species. Integrating fi+ over velocity gives an equation for n;;.
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(Vo + Un])

Dy _ _ o Vo™ ¥nj) 2 .
e € 2@ [22 + (1 +2z ) Z(z)]exp (i6)
+ [[ Un] _ Z] Z(Z) —1:|ej¢l+
v4® g (A%)
ll'Vl nj+

RICED vqe [t + 22() zv"‘ it

where zj = xj + iyj= - vo/vtj © + irvj/ vy ©, and the subscript j is omitted from z;
in Eq (A4). The function Z(z) is defined in Eq. (6) and tabulated in Ref. [15, 16).
It is related to the function I(z) used in Ref. [13] by I(z) = 1 + zZ(z). The parallel
velocities qx+ may be eliminated using the continuity equation {13],

Oqk+ = - Vo (Nk4/np) + Unk (ex®14+/Tk) - € (vp + Uny) exp (i6),

giving a relation between n;; and ®y,.

Most neoclassical analyses neglect the poloidal variation in the electrostatic
potential. e®1/T = o (e pjo/Ln), where Ly, is the density scale length, and since
pio/Ln<< 1 is assumed, its effect was neglected compared with other O(e ) terms
[21]. However, the O(e) terms cancel, due to the high mobility of ions and
electrons along the magnetic field, leaving residual terms of order epjp/Ln, i-e.
comparable or less than the ®1(r, 8) terms [22]. For example, in the standard
neoclassical equilibrium v, + Upj < Unj, and hence the first term in Eq. (A4) for
the ions is less than € Uyi/Vi® = €pip/Ln. In the corresponding electron
equation, the first term is of order € peg/Ln, and so the (usually neglected)
second term is dominant. Hence @14 should be retained. It is determined by the
quasi-neutrality equation, nj, = nes. Finally the mean particle flux is found by
integrating the local flux over a magnetic surface

jde jdv" j ndv l(fo) + fll)

I
?.an
(A5)

[S j(v" + vl/2) sin 6 + 8;)_;][14. € cose]
)
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After rather lengthy analysis an expression of the following form was obtained
for I'j [13].

ho=ne e (o
where
20T, (vo + Upi) Al
rg = S50 0T iz D
' 2reB vy x(F2 + Lz)
(A7)
U U ? U ’
[g(1+ “e}\lé— nE (1+1)| + g(1+—“—e—)AIe ,
Vo Vo Vo
1+ z; Z;
Aj = A+ iA) = — — , 2 = Zz),
T+ iy; Zy + 2i x5 ¥5 2§ Z;
g =1+ 1+ 27 + 20, T =T /T

F+iL = 1(1+ Upy/vo)Aj + (1 + Upe/vp)Ae.

l"iB contains only terms proportional to vei. In the strong collisional limit it goes
into the Pfirsch-Schliiter flux for an arbitrary radial electric field. It is much less
than I'” in conditions typical of H-mode edge plasmas. I contains second

order terms in the collision frequency, and is smaller than the other two except at
very high collisionality.

In the collisionless limit the ImZ(z) term in I‘i‘JL gives the plateau flux of Egs. (1)
and (4), as discussed in Sec. 2. As collisionality increases, this term takes the
character of ion collisional viscosity, Im Z (z) ~ y/(x2 + y2). In the calculations
described in this paper, only the Im Z(z) term is retained. This function is well
tabulated [15, 16] allowing rapid calculation over the parameter range of interest.
The other terms in Eq. (A7) result from the inclusion of ®(r, 8), and from the
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collisional terms included in Eq. (A1) to conserve particles and momentum.
Some of them are of the same order as ImZ(z). They have the same asymptotic
behaviour as ImZ(z) and thus may affect the magnitude of the ion current, by an
0(1) factor, but do not change the overall behavior nor the position of the
maximum in I5. Since the aim of this paper is to elucidate the underlying
mechanism of the probe-triggered L-H transition and its parameter dependence,
analytic detail is sacrificed for clarify.
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APPENDIX B
EVOLUTION OF AN UNSTABLE POTENTIAL PROFILE

As discussed in Sec. 3, in a uniform plasma with a radially constant radial
electric field, Er = V/s, a space charge perturbation grows exponentially with
time if V > sE, where Ep, is the field at which the current maximum occurs. The
evolution of a small positive space charge distribution p(r, t), localised around
some intermediate radius r = a-d, will now be considered. Values of parameters
within the two ranges a-s <r < a-d-6 and a-d+d <r < a, where & is the half-width
of the charge distribution, will be denoted by subscripts 1 and 2 respectively.

The charge continuity equation, combined with Poisson's equation, gives

- .__0 9E__4n 9
d=ViEE = e %P

Since E > Em, 0j/0E < O initially, and p(r,t) grows exponentially. Because
a-d+%

€ (Ex —Ep)=4n Jp dr, E1 must decrease and E; increase with time. Soon Ej
a-d-3

is pushed below Ep, as illustrated in Fig. B1(a). Over that part of the space

charge where E < Ep, dj/0E > 0 locally, and so p (r,t) locally decreases with time.

This reduces the width of the space charge distribution. As a result of this local

reduction in p (r,t), the region where E = E; in Fig. B1(a) extends further to the

right, thus increasing the radius where E = E,. Thus the left-hand boundary of

the space charge moves to larger r, causing the distribution to become narrower

as it grows in height.

As E changes radially from Ej to Ep, the local current, j(E), must follow the
variation in Fig. 2, passing through a maximum where E = Er,. As discussed in
Sec. 3, the instability continues until j; becomes equal to jp, when the growth of
the total space charge ceases. However, the space charge distribution may
continue to narrow, and the transition from E; to Ez becomes more abrupt, until
the width becomes limited by ion Larmor radius effects. Trapped particle orbits
do not impose a larger lower limit on the contraction, as they do in the plasma
radial sheath [18]. This is because a particle ceases to be trapped when it crosses

34



the space charge layer. Trapped particles have Ivy - Er/Bgl <el/2 Vi, and so,
when there is a sudden large change in E,, particles which are trapped on one
side of the transition become passing particles on the other side. After the space
charge width reaches its lower limit, the electric field profile is in a second
equilibrium which, as shown in Appendix C, is stable.

E
1 S

Radius

Fig. B1: Variation in (a) space charge and electric field and (b) current in the vicinity of r = ad.
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APPENDIX C
STABILITY OF THE DISCONTINUOUS ELECTRIC FIELD PROFILE

The stability of the bifurcated electric field profile in a uniform plasma, as
illustrated by points A and B in Fig. 2, will now be studied. Such an equilibrium
has a space charge ¢ = | pdr = g5 (E2-E1) /4rlocalised close to a surfacer = a-d. To
simplify the argument, the small radial width of the space charge distribution
will be neglected, and the jump in electric field treated as discontinuous.

Consider the effect of a small decrease in the surface charge 6. 8E1 and 8E, the
changes in E1 and E; respectively, must satisfy 8E1 (s-d) + 8E; d=0, with 8E;
positive and 8E7 negative. The currents across r = a-d are no longer equal, giving

Q.

g2 =51-52=(3% ) 8813} ) 32

[(2),04(2), c-o] &

If H = [(dj/JE)1 d + (9j/9E); (s-d)] is positive, G increases with time, returning the
profile to its equilibrium. If H is negative, the space charge decreases and the

(C1)

field profile moves further away from equilibrium. The same stability criterion
applies, of course, when the initial perturbation in surface charge is positive.

The effect of surface space charge on j; and jp, the current flows on either side of
the discontinuity isshown in Fig. Cl1. The jump in radial electric field,
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Jvke

AE=E,-E,

Fig. C1 Variation in j1 and j7 with increasing surface space charge
o=¢y AE/dmat r = a-d, for V > sEp,.

AE = Ey-Eq = 4n6/¢€,. is chosen as the independent variable, rather than 6. Then
E; =[V-dAE}/s and Ep = [V + (s-d) AE]/s, where V is the applied voltage. For
each value of AE, j1 = j(E;) and j2 = j(Ep) are given by the plasma current
response, illustrated in Fig. 2. AE = 0 corresponds to a continuous electric field
equilibrium, where j; = j» =j(V/s). When V > s Ep, j, decreases with increasing
AE, while j, at first increases and then decreases rapidly. The second intersection
of these two curves corresponds to the discontinuous equilibrium. At all other

values of AE the profile is transient, since the current is not constant across r = a-
d.

The difference in slopes between the j1 (AE) and j; (AE) curves is

dij _ dp _(dji) _dE; (djp ) dE,
d(AE) d(AE) —\dE; ) d(AE) \dE, Jd(AE)

=_g(ﬁ) _s_—g(ﬂ) -_H
s\ oE E, s \ 0E E, s

Near the intersection at AE = 0, the j; gradient is positive and the j; gradient is
negative, so obviously dj1/d(AE) - dj2/XAE) is positive, i.e. H is negative
confirming that a constant field profile is unstable. At the intersection

(C2)
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corresponding to the discontinuous equilibrium, both gradients are negative, but
the j gradient is steeper. Hence 0j1/3(AE) - dj2/9d(AE) is negative, and the profile
is stable. When V < sEp, the shape of the j1 and j» curves is interchanged. The
continuous profile is then stable, and the discontinuous profile unstable.

We will now examine whether the discontinuous field profile is stable against
the growth of a space charge perturbation localised at a different radius. Starting
with a profile in which the radial field jumps from Ej to E; at r = a-d, we first
introduce a small positive surface charge at some radius r = a-f, where f < d. This
surface charge gives rise to a small jump in E; at r = a-f. The values of
parameters within the radial range a-s < r < a-d (the original region 1) will now
be denoted by subscript 3, those in a-d < r < a-f by subscript 4, and ina-f<r<a
by subscript 5. The total potential is unchanged, i.e.

(s-d) (E3-E1) + (d-f) (E4-E2) + f (E5- E) = 0 (C3)
Since the surface charge already at r = a-d is not changed initially, immediately
after the perturbation E4- E3 = E2 - E1. If we write E3 = E; - AE (so AE is

positive), then E4 = E> - AE and Es = E + AE (s-f) /f.

Now consider whether the perturbation charge at r = a-f initially grows or
decays. This depends on the sign of

L j . j —f j

Ja=is=)2- (5%)2 AE-j; - (ga]g)z %AE=—(%)2 $AE (C4)
where (dj/9JE); is the gradient of the j vs. E curve at E = Ej. Since E3 is on the
decreasing section of the curve, j - j5 is positive, and so the surface charge at

r = a-f grows with time. Next consider whether the finite surface charge already
at r = a-d increases or decreases. This depends on

j3=ija= [—(—a%)l +(§%)2]AE

Since (dj/dE)1 is positive, and (dj/dE); is negative, j3 - j4 is negative and so the
original surface charge at r = a-d decreases.
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Applying the same reasoning when f > d, i.e. when the charge perturbation is
located between the probe and the field discontinuity, shows that such a
perturbation decays with time. Thus a discontinuous equilibrium electric field is
unstable to the growth of a surface charge at any larger radius, but not at smaller
radii. Extrapolation of the initial behaviour leads one to expect that the initial
surface charge at r = a-d decays, to be replaced by a surface charge and field
discontinuity at r = a-f. A strict application of this conclusion implies that when
V > sEm the only completely stable field profile is one with a discontinuity at
r=a. The corresponding equilibrium has very low current, with most of the
voltage drop occurring over a vanishing narrow edge layer where the electric
field is very large. In practice the foregoing argument is likely to become invalid
within some distance b from the boundary due, for example, to impurities and
neutrals or to the orbit loss current. The only stable profile then has a field
discontinuity at r = a-b.
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