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Abstract

Active beam emission spectroscopy with high energy Li beams has been shown to be a
successful technique for determining electron density profiles of low and medium density plasma
edges of a tokamak. For high density plasma edges, however, the reconstruction algorithm
necessary to extract the electron density profile from the Li beam emission profile at 671nm
encounters a singularity point at which numerical instabilities can occur. This behaviour is
particularly pronounced for noisy input data. An "integral method" has been developed at JET to
replace the standard calculation method in the singularity region of the profile, and the "normal”
deconvolution method is then used for data in the high density region. Using this approach,
routine deconvolution of emission profiles extending from low density regions well into high
density regions of the plasma has been made possible. The sensitivity of the algorithm to noisy
input data and errors on input plasma parameters has been examined for typical conditions
expected at JET. The simulations show that even for unfavourable conditions electron density

profiles can be recovered with an overall accuracy better than 25%.

* CRPP Lausanne Switzerland



1. Introduction

Understanding plasma edge behaviour in a tokamak and substantiating
existing edge models require measuring a wide range of plasma parameters
(such as electron, ion and neutral densities, as well as their temperatures) with
good spatial resolution over the entire scrape-off region. Furthermore,
experimental evidence [1,2] suggests that plasma confinement is affected by
transport processes occurring on ms and sub-ms time-scales. The
implementation of edge diagnostic systems to supply such detailed information
on the edge on a routine basis is thus of high priority. Profiles of the electron
density and impurity concentrations will be measured at JET using an active Li
beam diagnostic [3]. Profiles of electron densities have been measured
successfully using beam-emission spectroscopy (BES) in plasmas of low
densities (below 1013 cm-3) [1, 4, 5, 6] and medium densities ( a few 1013
cm3) [7, 8, 9]. Using active charge-exchange radiation spectroscopy (CXRS)
impurity profiles [10] have been measured as well. However, at JET high
density plasmas with steep gradients near the last closed flux surface (LCFS)
are achieved, and the extension of the method to steep edge gradients is
required. For a successful application, the sensitivities of existing algorithms to
experimental noise and numerical instabilities at higher densities need to be
addressed. As the procedure used previously [5, 6] required great numerical
effort to deconvolute data from high density plasmas, the development of a fast
data analysis algorithm processing a large number of acquired profiles ( of
order 200 time slices ) per pulse on an intershot basis is needed. The
dependence of the deduced density profiles on other (in general insufficiently
well known) edge parameters has been reported [9] and this means that a high
degree of interaction of the evaluation code with other diagnostic data is
necessary. The concept of the diagnostic loop developed at JET [11] for the
active CXRS in the confined plasma region needs to be extended to the edge. A
new algorithm based on earlier work by one of us (Z.A.P.) at ASDEX [5] has
been developed at JET to cope with these demands.

2. The active beam method
Application of active beam emission spectroscopy for local plasma

parameter determination has proven to be a very attractive diagnostic technique
[7, 10, 11, 12] since it can provide continuous, high resolution measurements



and it does not perturb the plasma. Light emitted from an injected particle beam
( which is a direct indicator of the physical state of the beam ) is related back to
the plasma conditions along the beam trajectory. The relative order of transit
time of the beam atoms through the light collection volume, the emission state
lifetime and typical beam-plasma interaction times are critical in determining the
complexity of analysis required and spatial resolution obtained. Whereas for
many applications ( e.g. large collection volumes [11] ) the detected signal from
a particular volume indicates the processes ocurring in that same volume, the
light collected from a high-energy Li beam at one position is an integral of all the
processes along the beam trajectory preceding this position. To extract the
desired density information a non-local deconvolution technique must be applied
to the measured profile as a whole.

This deconvolution is characterised by several complications: a
mathematical singularity occurs in the analysis equation [7] ( occurring at
regions of high density typical for the JET plasma ); there is a lack of accurate
input information on beam current [13], temperature and impurity content of the
plasma [9]; and experimental data is noisy and of limited resolution. All these
factors cause distortion in the solution.

in this paper we discuss an algorithm developed to deal with the
numerical instabilities around the singularity point, thus allowing density
evaluation well into the higher density plasma region. We also investigate the
sensitivity of the algorithm to experimental factors.

Typically, a monoenergetic beam of neutral lithium atoms of 30 to
100keV energy and intensity of 0.5-10 mA current equivalent is injected
perpendicularly into the plasma edge. The Li I 2S-2P (6708 A ) resonance
emission is recorded by optical imaging of the beam trajectory. Fig. 1 shows a
conceptual picture of the experiment as under construction on JET. The beam
enters the plasma at a height of 2m above the midplane, and encounters the
LCFS at approximately 1.9m above the midplane. The radial profile of emission
is collected over a distance of 20cm with a resolution of 5mm. This emission is
dependent on the atomic processes of excitation and ionization of the lithium
atoms (see section 5 below). In this paper we will assume that the cross-sections
of these processes are sufficiently well known, and concern ourselves only with
the algorithm of recovering the density distribution along the Li beam trajectory
from the measured light intensity of 25-2P transition.



Tlhan rotn A imbimme Adanaribhiimme blha mbdamnin hamms oAl e ddmbimmn amm A
ine raie equations gescrioing tneé atomic peam ievei-popuiations can ove
written as:
d n
n.
_1 .
at = E (ne-nj-ocij + nj'Kij) (1)

where ng is the electron density, and n;j are the atomic level population densities
of the lithium atoms. The mono-energetic lithium beam travels through the
plasma at velocity vy, so the time-dependent variable can be transferred to the
spatially-dependent variable ( x denotes the beam penetration distance) :

dn; dn. dx dn;

anj _an; ax _ - an

dt ~dx dt - Vb dx (2)
giving:

dn; _ K 3

ax = 2(Nenja + nyk;) (3)

These equations yield spatial distributions of nj(x), if ajj(x), kij(x) and ne(x) are
known. This procedure we will call forward calculation of the rate equations; it
has been used to simulate the expected emission profiles for typical JET
plasmas.

3. Evaluation algorithm
3.1. "Normal" solution

In an experiment the value of na(x) (n2=2P level population density) is
inferred from the measured emission profile and the rest of nj(x) and ne(x) are
unknown. To evaluate ne(x) a reverse calculation to the procedure described
above is required. Equation (3) can be written in the form:

dd& =Ne(x) - 2(njag) + 2(njky) ?
X =1 =

from which the exact expression for ng(x) can be calculated:
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An important practical simplification is obtained by introducing the relative

population densities (-'%):

(6)

obviating the need for the absolute values of nj(x). In particular, na(x) itself has

. . " . \
the form of a logarithmic derivative which can be replaced by Vd—hpé‘; where Vph
p

is the detector signal.

Using eq. (6), ne(x) can be calculated only if all ﬁ’ﬁ)- are known. In

2(x)
general, this is not the case, except at the beam's point of entry into the plasma,
where to a good approximation all nj(x); j>1 can be set to zero, i.e. the beam
consists of ground-state atoms only. In practice, however, the first point
observed on the emission profile is at some interior point x, in the plasma, where
the boundary condition nq(xg) + n2(xg) = Npeam is More appropriate. Then, the

nﬂXQ!

cati
atio n2(xo)

can be obtained reliably from the two-level approximation:

n1(x(L) - Nbeam _ 4 7
na(xg) na(xp) ")

and npeam Needs to be known. A similar boundary condition may be invoked at
some point in the plasma, where all neutral Li has been ionised, and from this
the beam intensity may be obtained if no singularity point is encountered in the
profile range [7]. However, for most high density emission profiles obtained, the
singularity point position lies within the experimental range and a much more



accurate value for the beam intensity can be inferred from the numerically stable
behaviour of the algorithm at the singularity point.

The following numerical procedure is adopted to calculate ne(x). The rate
equations (3) are solved using the Runge-Kutta method with ne(x) as calcuiated

ni{x
no(X) ° If the

measured signal is ideal (no noise and a very large number of input Vpp(x)
points) the procedure works well (see Fig.2 in which the beam enters the plasma
from the right). Simulated emission profiles are presented in this figure
(calculated using equations (3) with a given neg(x)) together with the ne(x)
inferred using eq. (6). In equations (5) and (6) both the numerator and
denominator become zero simultaneously at some density and temperature.
Physically, this corresponds to a state in the transient development of n, where
the electron collision losses from level 2 are exactly balanced by electron
collision gains. Since all electron collision rates are proportional to ng, this
condition is purely a function of the temperature ( neglecting impurity ion and
proton collisions ) - no information on electron density can be gained at this
spatial location. This condition is examined further in the analytical
considerations in the Appendix. It occurs at moderate densities of 2-3x1013cm-3,
and for many low density tokamaks the emission profiles do not include the
singularity point in their range. For higher densities, as expected in the JET
plasma edge, this singularity point occurs in the middle of the interpretation
region.

at the previous substep from equation (6) and known Vph(x) and

The mathematical singular point causes problems in numerical
calculations, especially when one considers a real experimental case with noise
and other imperfections. The first unavoidable source of error is the finite
number of experimental points. The required integration step is of the order of
0.01 cm and the experimental resolution is at least 10 times larger. The second
imperfection occurs with the conversion of measured Vpp(x) to na(x). The
emission collected at 670.8 nm will include plasma background radiation and
noise, which can be minimised by proper experimental procedures.
Nevertheless, the remaining noise will cause numerical instabilities near the
singularity. The ideal case of only one singular point is now replaced by a
trajectory range which cannot be analysed in a "normal" way as the results of the
calculation within this range are liable to gross errors. Slight deviations from
precise values of nj(x) alter the position where the numerator and denominator



cross zero. As a result, the calculated value of ng(x) becomes either negative or
extremely large.

3.2. "Integral"” solution

There are several ways to solve the singularity problem in the numerical
solution. The most straightforward method [4, 5] uses the forward calculation
near the singularity and assumes linear neg(x) dependence between experimental
points. The calculation is repeated with different slopes of ne(x) and the result
for which the calculated np(x) from the rate equation agrees best with the
experimental value is selected as a solution. The two disadvantages with this
method are firstly that it is slow, and secondly that the solution defined this way
is not unique. Near the singularity two possible branches of solution exist : one
with increasing and the other with decreasing density. A decrease in the level
population na(x) can be due either to reduced coupling to the ground state
caused by a rapid decrease in ne(x), or to an enhanced ionisation attenuation of
the overall level populations caused by a moderate increase of ne(x). Linear
extrapolation of ne(x) to the next experimental point beyond the singularity
position would give sufficiently close agreement with the measured na(x) for
positive as well as negative gradients to make a distinction between the two
impossible. In conventional evaluations it is postulated that the density cannot
decrease near the singularity point and a reasonable solution is obtained in most
cases.

Here, we propose a different approach which is not based on an iterative
method in the singularity region. Equation (4) can be integrated, giving

X X
120 = [ne(x)- X (njagy)ax+ | 3 (njkaj) dck(2) (®)
z = zZF

where z is the position at which the switch-over from the normal to the integral
method is made. After integration by parts and rearranging one gets

Xdn, Y n xn
n2(x) + a%‘ijz(nj -azj)dxdy - j Z(nj 'kzj)dx—nz(Z)
ne(x) = 2Ll = €
JZ(HJ -azj)dX
zj=1



In this last equation, the denominator is an integral of the denominator of
equation (5), and thus does not go to zero at the singularity point. However, this

dne(x)

solution requires knowledge of —4—2 . In almost all points dx  can be

supplied from the previous integratlon step in the same way as the population
densities nj , and thus the ambiguity in the sign of the slope may be avoided.
However, near the singularity, such a procedure creates an unstable solution.
This is understandable since at the singularity point the population density no(s)
must be independent of ng and is determined solely by impurity concentrations
and plasma temperature. Instead, in the new proposed method we supply

dne(x)
dx

by caiculating it independently at the approximate position of the

singularity point. As this is a non-iterative approach, it also speeds up the
deconvolution procedure.
3.3. Position and density at singularity

For a simple two-level system equation (5) becomes:

) %- Na(x)-Koo 0
ne(X)_”1(X)'<’=’21+”2(><)'~'f‘22 o)

At the singularity position both numerator and denominator are zero.
Using the numerator, this condition yields the singularity position s:

28, (o) kaz (1)

As long as ko2 is known this equation can be solved easily as na(x) is directly
related to the measured emission.

The corresponding equation for a large number of levels is as follows:

nls) Z(nj(s> - (12)



This cannot be solved without first solving the system of differential equations
X) value except the input vaiue na(x) is known. in our aigorithm
approximate this solution by assuming constant ratios of all —4(—1 between

the last point calculated in the "normal" way and the singularity. The results
show that this assumption is valid in most cases.

To calculate the density ng(s) the first equation of system (3) can be used.

dnz(s)

As na(s) and dx are already known, we can use them to eliminate the

unknown na(s) from the first eaquation of svstem (3} assuming that the
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coefficients a; are not varying with x in this region. After mathematical
transformation one gets for the two-level system:

(13)

which can be extended to a multi-level system by assuming as before constant
ratios of exited states. Hence

C1 +nzB

= 14
"e(s) noa 1C1 -nCs a

where:
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3.4. Numerical procedure of ne(x) evaluation

We model the beam as a 5-level system, i.e. in eq.(3) n=5. Using less
levels causes significant errors in the predicted level population n, ( see fig. 3 ).
The use of more levels ( including the 4s-4f levels ) does not improve the
accuracy of the method significantly [7, 8]. As initial boundary condition we
assume that all of the nj(0)=0 for j>2. The population density (nq+ny) is
calculated from the incident beam intensity. This measured intensity can be
verified by cross calibration of the diagnostic system with independent density
measurements (Thomson scattering, Langmuir probes). With this assumption
at the starting point xq:

N1(xp)+N2(Xg)=Nbeam=constant (15)

one obtains

n1(X0) _ nbeam 1
na(xg) na(xp)

and from (10) one can calculate

1 » dn2(x0)
Na (X ) dX T2
ne(xo) = ff o) (16)
—beam _q(3,. 13
l:nZ(XO) j| 21 22

Integration is then started at this point. The integration step length in the
Runge-Kutta method used to solve (3) is much smaller than the distance
between the experimental points, so the measured ny(x) curve needs to be
interpolated. Various methods of interpolation were tested, and the best results
were obtained using a parabolic approximation. After each substep of the
Runge-Kutta integration the density is calculated using the "normal" method (5).
When the value of the denominator falls below 10-8 the system switches to the
“integral" method (9). The population ny(0) in this equation is taken from nz(xg)

10



dne(x)

and dx is calculated from the position and density at the singularity position

and the last value of the "normal" calculation. The advantage over the method
used previously is that a single calculation replaces the iterative method, and
the linear approximation of ne(x) is used only in one of the terms of (9) (i.e. the
derivative of ne(x)). The rest of the equation still uses the non-linear
dependence of ne(x). The system reverts to the "normal" solution after crossing
the singularity. Figure 4 shows examples of such calculations for profiles
consisting of 25 experimental points in 10 cm distance. The profiles were
selected to correspond to ‘"expected’ JET scrape-off layer profiles, with
additional humps of a Gaussian shape in two different locations. With these
simulated ideal signals the reconstruction of ne(x) is very good indeed. Only
small discrepancies occur near the hump and the singularity, related to the fact
that the small number of points introduce an inaccuracy in the calculation
(compare with Fig.2 which has a large number of points). Larger discrepancies
occur where the hump is at the location of the singularity.

The process of deconvolution is sensitive to the incident npeam
specification [7]. If the electron density is low the sensitivity is not large, except
near the singularity (see Fig. 5). If all the other parameters ajj(x) are known, this
behaviour can be used to provide a more accurate determination of npeam than
can be obtained from beam intensity measurements. Alternatively, if ne near or
behind the singularity is known, any other unknown input parameter to the
algorithm in this region can be deduced ( such as Zgff ).

4. Range of density profiles selected for performmance testing

We can define three different ranges of electron densities according to
difficulties in deconvolution. In the following the electron density profiles are to
be characterised by the density ne, reached at a position 10cm into the plasma
( with approximately exponential decay to the outside). The simplest and least
sensitive to noise is the low density range. This is the range for which the na(x)
level population does not reach a maximum within the first 10cm of beam
penetration. It corresponds approximately to neo= 1013 em-3 and the "normal"
calculation method is sufficient. A high density range can be defined as a
density for which the na(x) signal is the same at the end of the 10cm
experimental range as at the starting point. It corresponds to approximately
Neo = 1014 cm-3. In this range it is also not difficult to deconvolute the density,

11



since the singularity region is relatively small. Although there are larger errors in
deconvolution near the singularity, the solution recovers very quickly. Between
these two extremes of density gradients deconvolution is more difficult, the worst
being cases where the singularity is close to the end of the experimental range.
This occurs for densities neo= 2-4 x1013 cm-3,

The "typical" profile chosen for testing the performance of the algorithm is
a profile which corresponds to a calculated scrape-off layer profile in JET with a
divertor configuration. The beam is injected into a plasma edge at a position 2m
above the midplane and reaches the LCFS at about 1.9m above the midplane.
The density profile rises exponentially with exponent 0.417cm-! and at the LCFS
levels off to an internal density profile approximated here by a third-order
polynomial. A smaill distortion of the profile using a hump of Gaussian form is
added at various positions. Additional tests were done with low density and high
density profiles. Figure 2 shows some of the profiles used for the test.

5. The coefficients in the rate equations

All of the above considerations assume that the coefficients ajj(x) and
kij(x) are known. Unfortunately, the coefficients ajj(x) are functions of electron
and ion temperatures, and concentrations of impurity ions (Zeff), which vary
strongly across the scrape-off layer. As the respective profiles are not well
known, and need to be specified to the analysis code as input, the sensitivity of
the method to the assumptions made has to be tested.

Beam excitation and attenuation has to be calculated taking spontaneous
emission, electron, proton and impurity ion collisions into account. The collision
processes included are excitation and de-excitation, direct ionisation and charge
exchange. The large number of cross-sections coupling the 5 atomic levels have
been obtained from various sources. All electron and proton collision cross-
sections have been taken from a preliminary version [14] of a compilation of
preferred data [15]. Charge exchange cross-sections for impurity ion collisions
have been estimated using a simple scaling formula by Janev [16]. The fit
parameters necessary for this scaling formula have been calculated by
comparison with data compiled by Aumayr and Winter [17]. For excitation and
ionisation collisions with impurity ions a simple g2-scaling law has been used
[18]. A detailed experimental programme to obtain more accurate atomic cross-
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section data is currently underway at the FOM-KVI, Groningen. Comparisons of
the behaviour of our 5-level code using this composite set of atomic data and
simplified fit formulae [1, 5, 6] show good agreement as far as sensitivities to
noise, temperature and Zg¢f are concerned.

In order to include proton and ion collisions in the coefficients ajj(x) and
kij(x), the plasma dilution is modelled using the input specification of the density
profiles of two impurity species ( carbon and beryllium), as well as an average
charge profile for both species. The diluted proton density Np is calculated by
the following approximation based on the plasma's quasi-neutrality ( nc , nge
are the total impurity densities of all charge states q):

2
Q¢ rms NC 3 cée,rms ‘NBe

Np ~Ng — (17)

6 4
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Here Ajj refers to the Einstein coefficients. The corresponding Zegf is
estimated at the end of the run for comparative purposes using the results for
electron density :

Np n 2 n

Zeﬁz—p+—c'q0ms+ﬁ'c’éems (20)
Ne Ng , Ne ’

6. Performance tests of the reverse calculation

6.1. Sensitivity to signal noise

Experimental data contain statistical noise as well as detector noise,
depending on the magnitude of the signal and the type of detector used. In this
section we will discuss a method to reduce the effect of noise on the accuracy of
the reverse method, and discuss the levels of noise. The noisy signals were
simulated using the geometry of the JET Li beam system and performance
figures of a CCD detector. An incident Li beam of 1 mA equivalent neutral
current and 2cm FWHM has been assumed throughout. The total noise level
expected (read-out noise and electron statistical noise) is typically +2.5%
deviation from the undisturbed signal, except for the low density wing of the
signal profile where it becomes larger than +5%. There may be additional noise
from the plasma continuum radiation, which has to be subtracted from the total
radiation to give the net signal for evaluation. To see the effect of larger noise
levels, calculations with 10% and 15% noise level were also done.

Deconvolution of simulated data (2.5% noise) without any noise reduction
techniques is shown in Fig. 6. The first 6-7cm of the profile ( ne(x) < 2x1013em3)
are insensitive to noise. At larger distances or higher densities the deviations
due to noise become significant, at noise levels higher than 2.5% the signais
could not be deconvoluted without additional noise-suppression techniques.

Several noise-reduction techniques have been tested, including
polynomial fits to the measured emission profiles, Fourier transform spectral
methods and weighted smoothing [19] . The weighted smoothing method based
on least-sum square fitting of a parabola to several neighbouring experimental
points (in our case 7 points, 3 on each side of the experimental point) was found

14



to be the most efficient for profiles of less than 100 experimental points. The
results shown in this paper are based on this technique.

For noise levels of less than 2.5% the improvements using this technique
are only minimal, as shown in Fig. 6. It should be noted that a hump at 4 cm
was also somewhat smoothed, but it can still be distinguished clearly from a
simple exponential curve. The improvements obtained by the noise-reduction
algorithm becomes apparent at noise levels higher than 2.5%, and for profiles
extending up to 20cm into the plasma. For 10% noise level, the density profile
cannot be reconstructed without smoothing the data first. As is seen from Fig. 6,
the low density outboard profile is recovered very well. Deconvolution of higher
density inboard sections of the profile is dependent on the noise distribution, in
particular the signal distortion near the singularity. Generally, the main features
of the profile are still recovered except in the last 2 cm where the smoothing
does not occur. For comparison, the deconvolution of a signal with 12% noise
over a 20cm range is shown in Fig. 7. The smoothing technique has been
applied. Using an experimental resolution of 5mm the input density profile is
reproduced very well over 16 cm. At this point the population levels have
attenuated to below 1% of the incident beam density and the denominator in (6)
is very small, leading to inaccuracy in the normal deconvoiution procedure. The

dne(x)

dx
calculated from previous points. In practice this part of the data will have
enhanced error bars as nz(x) becomes smaller than 1% of its maximum value
and comparable to noise levels.

method employed is therefore switched to the "integral" solution with

6.2. Sensitivity to electron and ion temperatures

The sensitivity of the rate coefficients to electron temperature is small
since the beam energy ( of the order of 30 to 60 keV) is much larger than the
local electron temperatures in the edge region. Changing the electron
temperature by 50% does not change the solution outside the singularity region
in the low density part of the profile. It effects deconvolution near the singularity
and thus causes distortions inboard the singularity. Figure 8 shows profiles
deconvoluted at the exact temperature and at temperatures 150% of the
temperature profile used to simulate the input signal. The corresponding error in
the density profile is of the order of 10% and thus acceptable. These differences

15



can be compensated for by small changes (of the order of 2%) in the incident
beam intensity npeam. Similar errors are obtained with respect to the ion
temperatures. Since the solution in the singularity region is sensitive to changes
of any parameter affecting the ajj(x) coefficients, profiles deconvoluted with high
accuracy using the "integral" method will still exhibit the largest error bar at the
singularity.

6.3. Effect of impurity concentration and Zeg

impurity concentrations (or Zeff) play a more important role than
temperature in calculating the electron density profile. The charge exchange
cross-sections are strong functions of the impurity ion Z, whose concentration
and charge states vary along the beam trajectory. To test the sensitivity of ng(x)
to impurity concentrations we considered two impurities, beryllium and carbon, in
the plasma. The calculation, as in the case of the temperature-dependence
tests, is done by simulating the beam emission with prescribed profiles of
impurity densities and charge states. The density distributions are then changed
in the reverse calculation. In Fig. 9 a comparison is shown for a case when the
carbon densities are multiplied by factor of 0.8, 1.2, 1.3 and 1.5 over the entire
profile. From the graph one can see that a 30% change in the impurity
concentration causes significant error near the singularity and a change by 50%
prevents the deconvolution program crossing the singularity region.

Fortunately this extreme sensitivity exists near the singularity only. Near
the plasma edge, where the impurity distribution is least known, the sensitivity is
also least. In Fig. 10 both impurity concentrations at the edge were changed by
a factor of 4 and near the singularity the impurity density profiles were changed
so as to give a similar Zess . The resultant deconvolution is aimost perfect. To
reinforce this point, further tests were done adding only carbon uniformly as well
as non-uniformly over the profile (Fig.11). A better reproduction of the original
density profile is achieved despite of large changes in the impurity concentration
at the edge if the same Zetf near the singularity is maintained. In the cases
shown (Figs. 10 and 11), the plasma edge contains 30% impurities in the
forward calculation and is almost entirely composed of impurities in the reverse
calculation ( a mixture of beryllium and carbon in Fig. 10 and only carbon in
Fig. 11). This corresponds to Zeff changes from 1.6 to 3.8 for Fig. 10 and from
1.4 t0 4.6 for Fig. 11.
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This high sensitivity to Zeff changes near the singularity can in turn be
used to advantage to measure Zegr if the density near this region is
independently known. Large differences between Zefs in the plasma and that in
the calculation will be signaled by a calculated electron density decreasing to
zero (as in Fig. 9) or increasing to unrealistically high values in the singularity
region.

7. Conclusions

We have described a technique of density evaluation from the 2S-2P
emission of a lithium beam injected into the plasma. The method is not very
sensitive to errors in temperature or impurity (Zeff) profiles in the low density
parts of the edge, and a technique similar to that previously used on ASDEX [4,
5] can be employed. To extend the evaluation technique to the high density
region a singularity region needs to be crossed. The integral method of
deconvolution proposed provides an exact non-iterative method for this region.
At plasma positions on both sides of the singularity region, the normal evaluation
technique can be applied for density reconstruction.

The noise-reduction technique used here allows evaluation of noisy
signals. In general, no difficulty in deconvolution is encountered in regions
where the electron density is below approximately 1x1013cm-3 or above 4x
1013cm-3. Between these two regions, there is a singularity region (the exact
position also depends on the density gradient and Zgff) where the solution is
very sensitive to small errors in the input data, such as noise, errors in Zeff ,
temperature or incident lithium beam intensity. In extended regions of constant
or almost constant electron density a sensitivity to small levels of noise similar to
that near the singularity point is observed. Nevertheless, the electron density
was seen to be recovered with an overall error not exceeding 25%.

If additional information on the electron density at any single point in the
evaluation region is available, as for example from probe measurements or
LIDAR measurements, the sensitivity of the evaluation method at the singularity
region can be employed to estimate, for example, Zefr. For some cases a very
crude estimate can already be obtained by the requirement that the algorithm
stays stable at the singularity point, with no further density calibration point.
Apart from applying the BES method to the Li beam at JET, an active CXRS
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measurement of the dominant edge impurity ion will be performed as weli, to
provide the necessary input data for the BES analysis code.
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Appendix : Analytical considerations

In this section, the analytical solution to the deconvolution problem is
derived for the special case of a 2-level system with constant coefficients, and
the existence of the singularity as well as the behaviour of the solution near this
point are examined.

For a simple two level system equation (3) can be transferred to a
second-order linear homogeneous differential equation:

d"ny 1 dng |dn

—{Na(@41+a99) + Koo + ——8& |22

ax? e(@11+32) Tk ne dx | dx
Koo dn

_|:n§(a12321 —a99811) +Ne(Kq2a24 —k22311)~_r.12_2___d_)(9_:| ny =0 (A1)
e

With constant coefficients (i.e. for constant density and temperature) this
equation can be solved analytically giving:

n2(x)=C [exp(c1x)-exp(a2x)] (A2)

where C is a constant related to the injected beam density npeam and a1 and a2
are two solutions of a quadratic equation:
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2 2
o —afne(as1 +az)+kap]- [”8(812321 —aqqaz2) +Ne(azK12 —aq1k2 )] =0

(A3)

The analytical solution (A2) is very similar to the numerical solution for the 5-
level system with constant density but changing temperature. They are both
characterised by a rapid increase of ny(x) followed by a slow decay. For the 5-
level system, the rate of increase is similar, whereas the decay rate is much
faster than for the 2-level system. This is to be expected, since the populating of
higher lying levels is larger at large distances x. It is interesting to note that for
the case of constant density and temperature there is no singularity in either the
2-level or the 5-level system. This is apparent when considering the population
ratio nao(x)/nq(x) , which becomes

= —Ng-ap1-|(Ne-ap2 +kop) +

areplan) ~azemlad]’ 0
explayx) - exp(agx)

For large values of x this function converges to an asymptotic value of

R, - na(x) _ —Ng - @21 (A5)

”1(X) (e - azo +kop) +a.

where o< denotes the smaller of the two decay lengths |aq|,|ap]. As discussed
above, the singularity occurs at s when the gains and losses through electron
collisions balance exactly :

a
ny(s)-agy +no(s)-ax =0 = R¢= () = —3—2 (AB)

For a multi-level system, the populations nq and no dominate and the above
value of ratio R will still be approximately valid. For a simple two-level system,
and to a good approximation for a multi-level system, the ratio ny(x) / nq(x)
starts at the initial boundary condition and converges to R, from below. If R, is
smaller than R then there is no singularity along the entire trajectory. As a9,
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koo, and o< are negative coefficients, no singularity will occur in the 2-level
case for any value of constant electron density. The singularity condition
corresponds to the asymptotic limit of electron collision processes dominating
over all other population processes.

In the case of spatially varying density and temperature, the asymptotic
population ratio Ry is no longer applicable, and the singularity position ratio Rg
is now a function of distance. The population ratio at a particular point on the
beam trajectory is determined by the preceding plasma conditions, whereas the
singularity ratio R is a function of local plasma conditions. It is now possible for
the ratio no/nq to exceed R¢ . A necessary ( but not sufficient ) condition at this
point is given by the requirement that the numerator of eq. (10) becomes zero:

dn
d—x2 = —|k22|n2 = Ny = Cexp(—|k22|x) (A7)

showing that at least for the 2-level case, as indeed also for most multi-level
solutions, the singularity will always occur at a position beyond the emission
profile maximum. Substituting this into eq. (13) yields for the density at the
singularity

Ne,crit = K12821 + k20827 (A8)
ay1822 — 312821

As the coefficients aj; are functions of atomic rates, beam energy, plasma
temperature and impu?ity content, this electron density cannot be determined a
priori, but estimates show that it typically lies near ng ¢rjt=2x1013cm-3. Whether
a singularity will occur at this density is then determined by the prevalent
population density ratios, which are a consequence of the preceding plasma
conditions as well as the injected beam state distribution.

For numerical reasons, the integral method introduced above must be
applied over a range of x values where the denominator in equation (6) falls
below a critical value Rg. The introduction of such a threshold effectively lowers
the singularity criterion R to become
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ay4
Ro=—221 (A9)
" lagy|+Rs

As a result, the integral method has to be used even for cases where the
exact singularity point is not reached. It is interesting that numerically one can
revert back to the normal method of deconvoiution beyond the singularity for
values of the denominator which are much smaller than Rg. In practice, the
integral method is typically applied over a region where the denominator is

n
—RS/1OO < _Z1nja2j < Rs (A10)
j:
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To spectrometers

Li-beam Observation

periscope

|

Height above
midplane (m)

1

1.5

Fig. 1 The Li beam injection system at JET. An observation periscope is
employed to monitor the emitted radiation from a 20cm section of the beam
trajectory in the upper scrape-off-layer. The height above midplane indicated is
used as x-axis coordinate in subsequent figures.
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Fig. 2 Typical results for two similar density profiles ( fig. 2a and 2c ) with
humps at different places. Figures 2 b and d show the corresponding resonance
emission profiles. The beam enters the plasma at 2m above the midplane. The
emission profiles ( expressed as 2p population density ) shown as solid lines are
the result of the forward calculation using the density profiles shown in solid
lines as input. The reverse calculation applied to these emission profiles yields
the density profiles shown as dotted lines, which in turn would result in the
emission profiles shown as dotted lines in a forward caiculation. The profiles are
calculated and deconvoluted with 5000 points.
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Fig. 3 Calculated np(x) profiles using 4 and 5-level systems in the forward
calculation.
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Fig. 4 Deconvolution of the same profiles as in Fig. 2, but with 25 experimental
data points in 10 cm.
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Fig. 5 Effect of errors in injected beam intensity for density profiles of different
separatrix density.
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Fig. 6 Deconvolution of the same profiles as in Fig. 2 , with 25 experimental
points, and +2.5% statistical noise on the emission profiles. The two shaded
bands show the range in which the deconvolved density profiles lie for different
noisy profiles. The wide band shows the error range for deconvolved raw data,
the narrow band shows the improvement obtained by introducing the noise
reduction technique [19].
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Fig. 7 Deconvolution of an emission profiles with +15% statistical noise over a
20cm range, with 40 experimental points. The noise reduction technique [19] has
been used. The solid curve and the shaded region show the true density profile
and its +25% error region. The dotted curve corresponds to the reconstructed
electron density profile from an emission profile with limited experimental spatial
resolution, but no noise. The various symbols correspond to reconstructed
densities from emission profiles with different noise distributions. The results are
seen to give the electron density profile with an error within the 25% margin.
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Fig. 8 Sensitivity of deconvolution to electron temperature. The emission profile
was deconvolved at the correct temperature, and +50% in temperature.
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Fig. 9 A case of impurity density change between forward and reverse
calculation by a constant multiplier. a) density profiles with different
concentration of carbon impurities in forward and reversed calculations. b)
corresponding concentrations of carbon.
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Fig. 10 A case where both impurities are drastically changed at the plasma edge
but Zetf remains almost the same near the singularity region. a) density profiles,
b) corresponding concentrations of carbon and beryllium. c) Zef calculated from
these concentrations.
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Fig. 11 A case of single carbon impurity largely changed at the plasma edge but
with the same and a slightly different Zefs near the singularity. a) density profiles,
b) corresponding concentrations of carbon, c) Zeff calculated from these
concentrations.





