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ABSTRACT.

An analytical and numerical investigation is undertaken to study the effects of non- standard
orbit topology on stochastic ripple diffusion of high-energy ionsin tokamaks. Finite orbit-width
effects are demonstrated to |ead to large modifications of the threshold for the onset of stochastic
motion. Trapped particles moving along trajectories with turning points on theinside of thetorus
aremost severedly affected. In particular, orbits closeto the pinch orbit are very sensitiveto magnetic
field ripple, whereas orbits with bounce points close to the horizontal midplane are less easily
perturbed than suggested by small orbit-width theory. Applying the results to recent ripple
experiments on JET, wefind that the number of stochastically moving particlesisonly moderately
affected by these effects. The reason for this is the large ripple amplitude and the steepness of
ripple gradient over most of the plasma cross section.



1. Introduction

The possibility of a-particles being subject to stochastic ripple diffusion imposes a rather
severe restriction on the acceptable toroidal field ripple in a tokamak reactor [1]. It is
therefore important to test the validity of theoretical predictions by performing ripple
experiments in existing tokamaks. Recently, such experiments have been carried out on
JET [2] and TFTR [3]. When comparing the results of such experiments with theory one
has to take care. Because of their high energy and the low magnetic field (compared with
that in a reactor), many of the particles suffering stochastic ripple diffusion in the above
mentioned experiments do not follow the magnetic field lines. Instead, they move along
very wide, non-standard orbits, i.e. along orbits which are not adequately described by
the usual small banana-width approximation. However, much of the existing theory is
based on the assumption of small banana-width, and it is not evident that such theories

are applicable for non-standard orbits.

In the small banana-width limit, the theory of stochastic ripple diffusion is well
developed, see, e.g. Refs [1,4,5,6]. If the ripple amplitude exceeds some certain
threshold so that particle orbits become chaotic, very rapid losses of fusion-generated o-
particles and other fast ions occur. In this paper, we examine the influence of non-
standard orbit topology on the stochastization threshold. We find that there are two main
types of orbits for which this is important. First, for ions with non-standard orbits close
to the so-called pinch orbit [7], the stochastization threshold becomes very small. The
trapped ions which are subject to this effect have their turning points on -the high-field
side of the torns. Second, for trajectories with their turning points close to the horizontal
midplane, the stochastizétion threshold tends to be grossly underestimated by small
banana-width theory. As a result of these two effects, the threshold value resulting from
our and previous calculations differ by as much'as two orders of mdgnitudc in either
direction. We do not consider other ripple transport mechanisms, such as trapping in

local magnetic wells and collisional ripple diffusion.



Numerical simulations of stochastic ripple diffusion using particle-following codes were
reported in, e.g., Refs [8]-[9]. However, these deal with reactor-relevant cases, where
the banana width indeed is small, and are therefore not immediately applicable to present-
day tokamaks. Putvinskii has recently carried out simulations relevant to JET [10], but no

detailed analysis of orbit-wdith effects was made.

In the recent ripple experiments on JET, a fairly large ripple was created by using only 16
of the 32 available toroidai field coils [2]. Ripple effects on both neutral beam injected
ions and ions accelerated by ion cyclotron resonance heating (ICRH) were studied. In the
case of ICRH, hydrogen minority ions were heated at the second harmonic of the
cyclotron frequency to energies in the MeV range. Since the toroidal magnetic field was
kept low (1.4 T), most of the hot ions acquired non-standard orbits in these discharges. It
is therefore important for the interpretation of the ICRH ripple experiments on JET to
understand how ions with non-standard orbits are affected by the ripple. For this reason,

we have chosen to apply our results for JET-relevant cases.

The paper is organized as follows: In Section II, we solve the equations of motion
describing non-standard orbits; Section III deals with the motion near the bounce points,
where the interaction with the ripple takes place; the onset of stochasticity is discussed in
Section IV; numerical results are presented in Section V, finally, our conclusions are

given in Section VI.



II. Unperturbed motion

Magnetic field ripple primarily affects particle motion near turning points, i.e. where the
parallel velocity vy vanishes. Between turning points, particle orbits are virtually
unperturbed. For this reason, the ripple does not interact with passing particles, and
needs only to be taken into account near turning points when analysing trapped particle
motion. In this Section, we determine the motion of trapped particles unperturbed by
ripple, i.e. between turning points. The analysis is similar to that given in Ref.[11], but
different variables are employed, and it allows for an orbitary magnitude of the magnetic

shear, All finite orbit-width effects are retained.

The magnetic field in a tokamak can be written [12]

1
=7x V X (y7V8 —yp Vo) M

where 0 and ¢ are poloidal and toroidal angles; and yr and yp are the corresponding
flux functions. B is dominated by the first term representing the toroidal field, which is
inversely proportional to the major radius R. The flux surfaces are assumed to be

elliptical, and are labelled by the minor radius coordinate
T -——-*\J X2 + 22/1(2 (2)

Here k is the ellipticity, z denotes the vertical coordinate, and x=R-R. is the horizontal
distance from the magnetic axis, situated at R=R.. The inverse aspect ratio €=r/R is, as

usual, taken to be small, and the safety factor q=dy1/dyp is approximately equal to

2nkBr

1= Typar (3)



since the toroidal flux through a flux surface is wT-=l<m'2B.

For describing particle orbits in the magnetic field thus defined, we need the following

three constants of motion
v=V2E/m (4)
A=HBRVE ~ 1 = (1-0) ¥R, —¥ | (5)
J=-py/mvR, =y —yR/R, (6)

derived from the kinetic energy E, the magnetic moment L, and the toroidal momentum

Pe- Here, v is the velocity, x=v|/v, ¥ is the normalized poloidal flux

V=0 yp / 2VR, D

and @, is the cyclotron frequency. The variable y, which will be used for describing the

radial position of the particle along the orbit, is related to the minor radius r by

2 W
=gt | o) av o

as follows from Eq.(3). For convenience, we shall in the following assume that q is a

linear function of ¥

QW) =qo + 1Y )

so that



2 vR,
W) =7 (2qo¥ + q; ). '
W = QAo+ uy )

The three constants of motion (4)-(6), together with (10) completely determine the shape
of the orbit. In fact, A and J define the horizontal and radial position of the bounce point
(x=0) of trapped particles, and relate x to  along the orbit; from Eqgs (5) and (6) we have
(to the lowest order in €)

R,

S _ T2

Combined with Eq.(2), this yields

2 Rc 2 R, 2
—zk(;” L= Pw) -—( 1_,) [+ ()1 =(1—_1-) WD)V (12

where Vy; are the roots of the quartic polynomial z2(y), indicating where the trajectory
crosses the equatorial plane z=0. They are most easily pictured in the (x,y)-plane, where
they are determined by the points of intersection between the curves (10) and (11) (with
R=x in the former equation), cf Refs [11,13,14]. For trapped particles, there are two real
roots W1 and W2 such that Wy <J <y, which by virtue of (6) implies that

ViiWz) < 0 <vylyy).

The drift velocity
A (57 R (VR

makes the trajectory deviate from the magnetic field lines, and causes y to vary in time

according to
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where we have used Egs (2), (8) and (12). This equation of motion (14), together with
the relations (9)-(11) which define the shape of the orbit, completely determine the
motion of a particle. In order to obtain the position of the particle as a function of time,
one must factorize the quartic polynomial zZ(y), Eq. (11), and solve the differential
equation (14). This is most easily accomplished in the limits of low and high energies. At
low energies, the orbit topology is well known: the banana indth is small in comparison
with r, and all y; are close to J. The high-energy limit has previously been discussed by
Stringer [15], Goloborod'ko et al. [16], and Porcelli et al. [17]. Because of the large drift
velocity (13), the banana width becomés very large Y>>V, so that in the equation for
Y1 we can consider the orbit as passing through the magnetic axis. This means that the
constant term in the polynomial (12) almost vanishes, A+J2=0, and the equation for

becomes

2 v _
V-4 + 4Py - o @Y+ 20)=0 5

At sufficiently hi gh energies, this equation is further simplified since y;>>J, and the two
middle terms in (15) drop out. If, in addition, the magnetic shear is small (q;y<<2qp),

the equation becomes trivial

k(l)cRc (1 6)

The bounce time is easily evaluated in this limit. As seen from Eqs (14) and (16), it

becomes
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quite independently of A and I.

In the following, we shall also need the angle A between two successive bounce points.

It is most easily obtained by integrating

= 3v/R; = (y=T) /R, | (18)

with respect to time using Eq.(14):

Wi

A(p=4j-
i

qy) =t dy
V= =3 (0, (19)

where i=1 for the outer branch of the orbit, and i=2 for the inner branch.

III. Motion near the bounce points

Having established the relevant features of unperturbed particle motion, we now turn our
attention to the interaction with the magnetic field ripple, taking place in the vicinity of the
bounce points. As is well known, the ripple causes a particle to take a verﬁcai step at the
turning point, conserving v and A, but not J. In this Section, we shall calculate the step
size AJ paying particular attention to the effects of finite Larmor radius and possible non-

localization of the resonance. The ripple field is taken to be of the form [6]

B= By [8,(x,2) sin N Vx + 8,(x,z) sin N¢ Vz + 8(x,z) cos No RVg] (20)



where Bg is the background magnetic field strength, and N>>1 is the number of toroidal
field coils. The corresponding vector potential can be written

A = AxVx + AZVZ‘ (21)

since a suitable gauge transformation can be applied to eliminate any toroidal component

of A From VxA = ﬁ it then follows

Ay o on oA, in N
5o ~ORBosinNe , —==- 8,RBg sin N¢ (22)

In the guiding-centre approximation, the particle motion is described by the Lagrangian

(18]

1

2 €
L=-2—mv" +€V'A -uB

(23)

Because of the presence of magnetic field ripple breaking toroidal symmetry, the toroidal

momentumn pg=dL/d¢ is not conserved, and varies in time according to

. =La0=my, v-2BB) e A 9B
Py =0L/dp=my; v 50 +o v Bq)wua(p 24

Integrated over time in the vicinity of a bounce point, this gives the radial step taken by a
particle due to the influence of the ripple. The dominant contribution comes from the last

term, giving

Ap,=HNB ja ,z) sin Nodt
Pe =HNBy | 0(x,z) sin N 25)



If N is large, and 8(x,z) is approximately constant over the extent of the bou'ncc'point (to
be defined below), this integral can be evaluated by means of the stationary-phase

method. We then find

Ap, = p,BBm/ ZKN/I.(i)bl sin Ng,+or/4) , o= i‘bﬁibbl (26)

where =@y is the location of the bounce point, and ¢, is the toroidal acceleration there.

The latter is obtained by differentiating Eq.(18) with respect to time and using (14)

k
2qR2 . 2N

Combining the last two expressions and dividing by -mvR,, we then get the jump in J

taken by the particle at the bounce point

5 ( quszc

172
) sin (N@,+on/4) 28

This result can be found in most earlier studies of ripple diffusion, e.g. Refs [1,4,6]. In
deriving it, 2 number of approximations have been made: The ripple amplitude & has been
assumed to be sufficiently small so that the unperturbed value of cpb (27) can be used,
corrections for finite & can be found in Refs [4,6] (These are mainly important for bounce
points near the horizontal plane z=(.). Furthermore, the first two terms in (24) have been
disregarded, and, most importantly, the variation in 8(x,z) near the bounce point has
been neglected. Let us investigate these approximations more closely. Wé start by
justifying the neglect of the two first terms in Eq.(24). The first one is readily seen to be

small since

10



B Bp 2
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(29)

where fip is the poloidal component of ﬁ, and hence

mvuy-a (B/B)/0¢p~ mvyv-B N&/B << ydB/d¢ (30)
The second term in (24) can, by using (22), be written

v g—‘; = @ (x5, —28,) sin N¢ -

Here, the horizontal and vertical velocities x and z can be expressed in terms of ¢

. v .
x=v; Vx= % (VosVyip) Vi = gz/gk

z= vy Vz—vg= okx/q —vg (32)

where we have used the unperturbed orbit equations (1), (2), (3), and (6). Combining
(31) and (32), we then have
2A 9R, 25,

. . P
Ev' a_(p = ma, l:vdRcax - --a——- (kax + X ):1 sin Ng (33)

In this expression, the first term can immediately be compared with -uaB/é(p in (24), and
is found to be small. The second term makes nb contribution to Apy, since it is a total
derivative with respect to time, provided the factor (kxd,+z8,/k) is constant in the region
of interaction near the bounce point. Thus, Eq.(33) representing the second term in (24)
is negligible, at least as long as the interaction is well localized, an assumption we already
have made use of in (26). Let us therefore estimate the extent of the interaction region.

From (26), we see that the time during which the interaction takes place is roughly

11



At =-\/ 2/N I.(i)bl. Substituting here the value of (pb from (27), and using (32) gives an

estimate of the distance travelled by the particle whilst interacting with the ripple

Ax =mz/qkN

Az = kx/qN — p / TqkR/Nz (34)

where p=v/@, is the Larmor radius. Eq.(34) defines the extent of the bounce point with
respect to ripple interact.ion. Clearly Ax<<r, and for relevant JET parameters we also
have Az<<r over most of the plasma cross-section. However, in order for the interaction
to be well localized, the ripple amplitude 8 must also be approximately constant over the
interaction region. This condition is oniy marginally satisfied in JET when 16 toroidal-
field coils are used. When the interaction is not localized, the picture becomes more
complicated. Then, the integral (25) defining the modification of the orbit due to the
presence of ripple must be evaluated along the entire trajectory, taking into account the
detailed variation of &(x,z) along it. This is, however, beyond the scope of the present

analysis.

Above, we have used the guiding-centre approximation, neglecting any finite-Larmor-
radius variation of magnetic field quantities. However, because of the low magnetic field
strength (B=1.4 T) at JET when only 16 toroidal-field coils are in use, a typical Larmor
radius is quite large, p=10 cm for a 1 MeV proton. In fact, over the diameter 2p, the
ripple amplitude & varies by a factor of about 3, cf Fig.2. This calls for.a more exact
analysis of the ripple-induced perturbation of particle orbits. For this purpose, let us

consider the exact Lagrange function, governing charged particle motion

e
rnv2 +-=v-A

L=t
TS | (35)

12



where v now denotes the full velocity of the particle, not that of the guiding centre. The
toroidal momentum pg, corresponding to this Lagrangian coincides to all orders in p/R

with that of the guiding centre used above [18], and varies, of course, in time as

0A
Pp =9dL/0p= % (Vy+va+vy 5o 36)

where vy, refers to the Larmor rotation. Averaging its contribution to p,, over a cyclotron

period, and using Stoke's theorem, we find

[ BA e a J
SV = A-dl=
<C L 8(p> 2nc LTy a(p (37)

where B denotes the average value of B inside the Larmor circle. Thus, if the Larmor-
circle average ripple 8 is used instead of that at the guiding centre, all expressions derived

above are still valid.

IV. Onset of stochasticity

Eq.(19) in Section II above describes the motion (in the toroidal direction) of particles
between bounce points, and Eq.(28) the orbit modification at the turning points. The
combination of these results results in a well-known set of finite difference equations
[1,4,6] describing the evolution of particle uajec?orics on long time-scales. If the ripple
amplitude is large enough, the vertical steps taken at successive bounce points become
decorrelated, randomizing the motion and leading to diffusive loss of the particles. The
onset of stochastic motion cannot be accurately predicted by present-day theory,‘ but is

known to occur approximately when the following inequality is satisfied

vy=NAJdA@)y/al > 1 (38)

13



for any single step of the mapping [1,4,6,19]. Since AJ is proportional to the ripple
amplitude, this yields a critical ripple amplitude at the bounce point, 8¢, above which

stochastic ripple diffusion sets in.

In the small banana-width limit (i.e. at low energies), A@ can be calculated analytically. It

is equal to {6]

25/2 ?.v K 2 d
Ap =1 2q8, + ——;2 4 {E(x) - —é-‘cl + _&f_.a.;l [E(K) ~ K(x) cosz%}} (39)

ke v

where the first (usually dominant) term comes from bounce motion following the
magnetic field line, and the other arises because of toroidal precession. 0y, is the poloidal
angle of the bounce point, k=sin 6/2, and E and K are complete elliptic integrals. The
second term in (39) vanishes in the zero orbit-width limit; in this case the combination of

Eqs (38) and (39) results in the following critical ripple amplitude

£ 3/2 k
Ocrie = ( ®Nq ) p dqg/dr (40)

first derived by Goldston, White and Boozer in Ref.[1]. The factor k accounting for the

ellipticity was introduced by Kolesnichenko and Yakovenko [4].

V. Numerical results

When the orbit width is large, no simple analytic expression exists for A@, and the full
orbit expression (FOE) (19) must be integrated nu’incrically. In this Section, we illustrate
the resulting stochastization threshold, and make a comparison with the corresponding

small banana width expression (SBWE) which follows from Eq.(39). As mentioned in

14



the introduction, we use parameters relevant to the recent ripple experiments on JET,

summarized in Table 1,

In Fig. 1a, the critical ripple amplitudes 8¢y required for stochastization of a 1 MeV
hydrogen ion obtained from the FOE and the SBWE are shown. The (negative logarithm
of the) critical ripple is plotted as a function of the vertical position of the trapped ion
turning point z,, (where vj=0), while the horizontal turning point position is kept
constant, X;p = -0.4 m. Fig.1b shows where the inner and outer branches of the orbit
intersect the horizontal midplane z=0. As expected, the results from the FOE and the
SBWE agree at large turning point radii, where the orbit width is smaller than the distance
from the magnetic axis and the small banana-width approximation holds. However, near
the midplane the deviation between the results becomes significant. The reason for this is
that the SBWE for d(A@)dJ as obtained by differentiating Eq.(39) with respect to J
diverges as z,;;—(0. This leads to an underestimate of the stochastization threshold in the
small banana-width approximation. The difference between 8y as obtained by the FOE
and the SBWE exceeds an order of magnitude for z,;;<0.13 m Another significant
difference occurs around ztp=0.3 m Here, the orbits, which are non-standard, are close
to the pinch orbit [7] where a sudden transition in orbit topology takes place. As
illustrated in Fig.1b, the point where the inner branch of the orbit intersects the midplane
moves abruptly from the high-field side of the torus to the low-field side. Figs 2a and 2b
illustrate this phenomenon by depicting one orbit just before the transition and one
immediately after, i.e.at a slightly larger value of zy,. The "potato™ orbit [17] of Fig.2a
transforms into the "fat banana" of Fig.2b. Note that both these orbits are ﬁapped in the
toroidal direction; vy changes sign not at the tip of the banana, but at the point furthest to
the left along the orbit. Stochastization is, naturally, easily achieved in the neighbourhood
of the transition region; in fact §.,;,—0 at the pinch orbit. It is interesting to note that Scri
is significantly affected in fairly large region; for 0.25 m < z; < 0.4 m the difference

between the FOE and the SBWE is at least a factor of two. It should be pointed out that it

15



is the behaviour of the inner branch of the orbit that determines the stochastization

threshold in this region.

Fig. 3 shows the same as Fig. 1, but with xtp=-0.2 m. The main difference as compared
to the case when x;=-0.4 m is that no pinch orbit exists when Xip=-0.2 m. Instead, the
transition from potato shaped orbits to banana orbits is relatively smooth, see Fig.3b.
Nevertheless, stochastization is still fairly easily achieved in the transition region, where
Ocrir 18 decreased by about an order of magnitude. Fig.4 is again the same plot as Fig.1
but with turning points on the low-field side, xtp=0.1 m. Here, the potato-banana
transition is undramatic, and the difference in 8y obtained from the FOE and the SBWE

is only significant near the midplane (for reasons stated above).

A scan in energy for x,,=-0.4 m and z,=0.2 m is given in Fig.5. Fig.5a shows Ocrir, and
Fig.5b indicates where the trajectories intersect the midplane. As can be seen, the
deviation between the full-orbit and the small banana-width results is quite significant
even for relatively modest energies, i.e. for 100-200 keV. Again, a large difference is
seen around the transition region between potato-shaped and banana-shaped orbits, and
Oc;i—0 at the pinch orbit. For higher energies, the curves from the FOE and the SBWE
diverge. The reason for this is mainly that the toroidal precession scales differently for

non-standard and banana orbits.

The level surfaces of the ripple amplitude in JET when 16 toroidal field coils are in use
are shown in Fig.6, and in Fig.7 the corresponding level surfaces of the s'tochastization
parameter v, Eq.(38), for a 1 MeV hydrogen ion are indicated. Particles having their
turning points outside the curve y=1 suffer stochastic ripple diffusion. In spite of the
large differences in .y reported above, the level curves from the FOE do not differ
much from those of the SBWE. There is a difference near the midplane, where the FOE
shows a narrow non-stochastic region for x,p<-0.2 m. Furthermore, the FOE predicts a

somewhat smailer non-stochastic region than the SBWE does close the the prompt-loss

16



boundary around xp=-0.4 m, z;p = 0.4 m. The reason for the small differences is that the
ripple amplitude is large in in the regions where the significant discrepancies in 8cp
described above appear. In other words, most of the regions of interest are stochastic
anyway. In addition, the ripple gradients are large, so that large differences in ¢y only

lead to moderate differences in the number of stochastically moving particles.

17



VI. Conclusions

In summary, we have found that the non-standard orbit topology of high-energy ions
leads to significant (order-of-magnitude) modifications of the Goldston-White-Boozer
stochastization threshold [1,4,5,6] for JET-relevant parameters. Particles following orbits
with turning points on the high-field side of the torus are most severly affected. In
particular, trajectories close to the pinch orbit are very sensitive to the presence of
magnitic field ripple. Because of the steepness of the ripple gradient and the largeness Vof
the ripple amplitude, the number of particles suffering stochastic ripple diffusion is only

moderately affected by large orbit-width effects.

Some other finite orbit-width effects may also be of importance. The diffusion coefficient
for ripple-diffusing particles is inversely proportional to the bounce time, whose value is
determined by Eq.(17) rather than by the standard expression. If the ripple-particle
resonance is not well localized as discussed in Section III, the step size taken by the
particles at the turning points will be affected. This will, of course, also affect the

diffusion coefficient.
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major radius, R

magnetic field at the axis, By

safety factor at the axis, qq

safety factor at the boundary, g,

ellipticity, k

3.0 [m]

1.4 [T}

0.8

3.0

1.4

Table 1: Parameters relevant to the JET ripple experiment.
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