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Abstract

Tokamak plasmas present many interesting non linear aspects. The fishbone instability
is a good example of this kind of irregular and complex behavior. A simple heuristic non-
linear model has been developed to study the fishbone repetition cycle. The model consists
of two coupled non-linear differential equations, which describe the evolution of the mode
amplitude and the resonant fast ion density as a function of time. This model predicts
two forms of fishbones, i.e. short repetitive bursts as well as continuous oscillations. An
extended model includes the slowing down of fast ions, two types of loss mechanisms
(particle diffusion and ergodization of the fast ion orbits) and a periodic forcing term due
to other MHD events, such as ELM’s. This refined model allows more complex solutions
which qualitatively reflect the irregular behavior sometimes observed in JET experimental
data.

Introduction

Fishbones were first observed in the Princeton PDX tokamak in 1983 associated with
the loss of fast particles /1/. These MHD central modes are observed in auxiliary heated
JET discharges. They appear either in the form of repetitive bursts or as continuous
oscillations of the poloidal magnetic field, soft x-rays signals and other diagnostics /2,3/.
In this work a model for the non linear dynamics of this instability is developed and
compared with recent JET experimental data. The model consists of two coupled non
linear differential equations which describe the time evolution of MHD mode amplitude
and of the fast ions density in NBI heated discharges. The model gives a relation between
the amplitude and repetition time of the bursts, In addition, also the shape (i.e. burst vs
continuous oscillations) and the mode amplitude are related to one another.

Simple Model

A simple heuristic non-linear model has been developed to study the fishbone repe-
tition cycle /4,5/. In th_is model the two quantities that vary in time are the normalized

mode amplitude, A = J—g—:—l, and the density of resonant ions ny.
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Assuming that the fast ion magnetic drift frequency and thermal jon diamagnetic
frequency are comparable, we follow the analysis of Ref./5/, where the equation for the
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mode amplitude (1) is obtain from linear theory. The growth rate is proportional to the
density of resonant super-thermal ions and to the ideal stability parameter ynna. ¥, is
a damping term due to plasma resistivity. The equation for the density of the resonant
ions (2) is obtained assuming that the constant source of ions Sy, is provided by auxiliary

heating, 7z, is a loss rate and ngpip = ;-Z:ﬂ;no is the critical fast ion density threshold for

the excitation of the instability (a definition of ny can be found in /5/). We consider two
possibilities for the loss term proportional to A”: v = 1 corresponds to secular losses and
v = 2 corresponds to losses resulting from orbit stochasticity /6/. The numerical solution
of (1)-(2) is represented in Fig 1.
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Fig 1 represents a numerical solution of the model equations for normalized model
parameters {%é‘i = 15,1, = 15,5, = 1.5 and ypners = 1.5). A,t and ny are represented

in units normalized to the fized point (Ag = ,—Y-E—Sﬁh-_! =1, npo = nerie = 1). Realistic
physical dimensions will be given in the last section. The phase-space trajectories are
obtained for the initial conditions (ny, = 1,A = 1,1.6,3) tn Fig 1 (a) and the respective

time dependent solutions are shown in Fig 1 (b) (¢} (d).

The dynamical system has a fixed point, A = n—ii: , MR = Terit. Small pertur-

bations near the fixed point correspond to continuous oscillations Fig (1b), while large
trajectories in Fig (la) correspond to bursting solutions shown in Fig (1d). Fig (lc) ex-
hibits an intermediate case.



Introducing new variables an analytic solution for the phase-space trajectories can be
obtained.

'Ymhdnh (3, 4)
Tig

y=10gA 3 $=—7ﬂ+

The system of differential equations in new variables is:

Ymhd

Y=z ) §= (Sh — Yrncrite”™) (5,6)
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. . . — log “%—
Defining the new variable around the fixed point § = ——2&%ecit Ly and .

T= JgT“Sh, we get a simple equation (7) for this dynamical system:

§=T(1 - ) (1)

Upon integration of (7), we obtain an expression for an effective potential, which rules
the non-linear oscillator.

Vers = 1“(-?"”*{i - i) (8)

v

the system of equations can be put in the Hamiltonian form:

22 v
H=T+Vv , T=% | v=TMg _yg (9,10,11)
14

and using the original variables (3),(4) we get an equation for the trajectories as
function of the parameter H in phase-space:
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Perturbed Model

The simple model does not allow for the irregular behavior observed in most of the
experimental data. However, a small perturbation of the simple model is sufficient in order
to account for this irregular behavior. We propose the following modified model:

oA m 7]
- = —TA+ Timhd npA Zh Sk — YLneritAY — Anyp, + QCos(wt) (13,14)
ot g ot

In the equation for the evolution of the fast ion population, we have added a slowing
down term proportional to A, and a sinusoidal forcing tern: with amplitude  and frequency
w. This forcing term is suggested by the experimental evidence of the modulation of the fast
particle distribution function by other MHD events. This point is discussed further in the
last Section. The solution of these equations is characterized by two regimes: a transient
solution and a time asymptotic solution. The transient solution gives an irregular behavior
as shown in Fig 2.
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Fuig 2 Transients solution of the perturbed model using normalized units. Phase-space
trajectories shown in fig 2 (a) and time dependent solutions shown in fig 2 (b)
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Fig 8 Time asymptotic solution of the perturbed model using normalized units.

Fig 4 Phase-space Poincaré section for a perturbed model resonant solution using
normalized units.

The time asymptotic solution gives stable orbits which can become very complex.
An example is the double orbit solution in phase-space shown in (Fig 3). If the forcing
frequency is close to the repetition frequency of fishbones pertaining to the simple model,
an island grows in the Poincaré section of the phase-space giving the complex resonant
behavior shown in Fig 4. '

Experimental data

The experimental observations of fishbones presented hereafter were obtained during
the 1991/92 JET campaign with the magnetic pick-up coils. Fig 5 shows an example of
fishbone bursts developing into continuous oscillations. The simple model predicts both
behaviors. The observed transition from one behavior into the other can only be explained
by the perturbed model.
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Fig 5 Fishbone bursts developing into continuous oscillations.

Fig 6 Small oscillations in amplitude around the continuous oscillations.

T

Small oscillations in amplitude around the continuous oscillations, which are predicted
by the simple model are also seen in the experimental data (Fig 6). Large amplitude
bursts can be fitted using the non-linear simple model. It is not possible to infer all
parameters in the model by fitting to the experimental results, because we do not have
direct information about the resonant ion population. However, it is possible to estimate
some of the parameters from the fitting shown in Fig 7, which has been obtained using
v=2and I' =102 (see equation 7).
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Fig 7 Fit using the simple non-linear model with v = 2 and T’ = 10%s™?

This value of T is consistent with the parameters y,pq = 10%s~1, S), & 10125-1em ™3
and ng =~ 101 em™3. This value of S, can be obtained in a 10 MW NBI heated JET
discharge for a plasma volume of the order of 100m?3.

Usually fishbones appear either as a long continuous oscillation or as several periodic
bursts, however Fig 8 shows a discharge where both behaviors appear in a very short
period of time. During this period the ELM repetition time is very close to the fishbone
cycle period. This gives a strong evidence that a resonant interaction between the fishbone
dynamics and other MHD events in the plasma, such as Edge Localized Modes (ELM’s),
might be behind this behavior, as described by the perturbed model.
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Fig 8 An exzample where both fishbone behaviors appear in a very short period of time.
The much faster events observed in this plot are Edge Localized Modes (ELM’s)
Fig 9 Period doubling in the fishbone cycle.

The dynamics of the island solution is similar to some experimental observations, with
bursts turning into continuous oscillations and continuous oscillations turning into bursts
periodically (Fig 8). Most of the experimental data show irregular burst behavior. Fig 9
shows period doubling in the fishbone cycle. The refined model allows similar solutions
(Fig 3), but the mechanism and the condition for bifurcation in the non-linear osciilator
has not yet been understood.

Conclusions

Quantitative and qualitative results in a complex subject, such as the interaction be-
tween supra-thermal ions and MHD modes, can be obtained studying the dynamics of
fishbone instability using simple heuristic arguments. From the analysis using the simple
model, it is clear that continuous oscillations and fishbone bursts observed in some exper-
imental results are two different aspects of the same phenomena. The time scale of the
instability is obtained from the simple model fitting to the experiment T’ & 10°s72 (see
equation 7). Period doubling and irregular behavior are observed giving strong evidence
of a non-linear dynamics.
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