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ABSTRACT. Two 3D Fokker-Planck codes which calculate distribution functions in
velocity and real space allowing for particle trapping, collisions, heating and radial trans-
port in axisymmetric tokamaks, are described. The first, BANDIT-3D, is mainly used for
calculating the influence of RF heating on the electron distribution and uses a two stage op-
erator splitting algorithm. The second, FPP-3D, is currently being developed and uses a two
cycle, six stage operator splitting algorithm to solve for neoclassical particle distributions.
These algorithms are found to be efficient and robust allowing solution of 3D Fokker-Planck

equations in modest CPU times on both a CRAY-2 supercomputer and high performance
workstations.

1 Introduction

Fokker-Planck codes are widely used in modelling the effects of radio-frequency (RF) and
other heating on electron and ion distribution functions in tokamaks and other fusion plas-
mas. Until recently, these codes have mainly solved the two dimensional Fokker-Planck
problem, solving for the distribution f as a function of two velocity space coordinates as well
as time [e.g. 1,2,3]. While these codes can model distortions in velocity space for a particular
spatial location (flux surface in a tokamak), spatial transport processes have been largely
ignored. This can be a serious shortcoming for modelling RF current drive in tokamaks
for example, since even modest levels of radial transport can broaden the driven current
profile significantly {4]. More recently however, three dimensional Fokker-Planck codes have
been written [5,6,7,8], which solve for f(v,8,r) (with v speed, # pitch-angle and r flux sur-
face radius), which include radial transport in the equation solved. These codes can solve
both kinetic and transport problems simultaneously, with the quantities determined by or-
dinary transport codes (density, temperature, current density, etc.) given by velocity space

moments of the calculated distribution function. In this paper we describe the numerical
methods used in two such codes.

The first code, BANDIT-3D [6], discussed in section 2, solves the 3D electron Fokker-Planck
equation for an arbitrarily shaped axisymmetric low collisionality tokamak, with the effects
of collisions, RF and Ohmic heating, radial transport through an ad hoc diffusion plus
convection term, and electron trapping all included. Details of the operators used to model
the various effects are given elsewhere [3,6,9]: here we concentrate on the numerical method
used to solve the equation. The code has recently been enhanced to allow treatment of



ion distributions for the study of ion cyclotron resonant heating (ICRH) and neutral beam
heating: this has required only minor changes to the numerical approach adopted.

The second code, FPP-3D, described in section 3, has been written and is currently being
tested. It solves a 3D Fokker-Planck equation for either ions or electrons with the radial
operator that due to neoclassical transport. A particularly important feature of the treatment
is that the transport (and other collisional) coefficients are calculated not as averages over
flux surfaces, but as averages over drift surfaces (i.e. trajectories). This means that situations
in which fast ion orbits do not closely follow flux surfaces (e.g. minority ions heated by ICRH
in JET [10]) can be modelled and the neoclassical effects associated with both their non-
Maxwellian distributions and their large orbit widths (e.g. transport and bootstrap currents)
can be treated. The derivation of the 3D Fokker-Planck equat:on will not be described here,
but has been submitted elsewhere [11].

2 BANDIT-3D

2.1 3D Electron Fokker-Planck Equation

BANDIT-3D solves the following bounce-averaged Fokker-Planck equation for the electron
distribution function f(8,,v,r;t), with 6, the pitch-angle on the outside of the flux surface

whose radius in the equatorial plane is r, and v the relativistic momentum divided by the
rest mass:
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In eq(1) 9(0,,7) = §(cos 0,/ cos B)ds/ § ds with § ds a field line integral for the flux surface of
radius r, restricted for trapped electrons to accessible values of s, # the pitch angle at field
line position s, and € = r/R, the inverse aspect ratio of the ﬂux surface. (For simplicity,
eq(1) is written for circular surfaces but generalises readily to the non-circular equilibria
treated by the code, which need not be up-down symmetric allowing study of single null X-
point plasmas for example.) Equation (1) is in the form of the divergence of a flux in phase
space to which several processes contribute. Electron-ion collisions are with background
ion Maxwellians giving mainly pitch-angle scattering ($%%). Electron-electron collisions,
which contribute to all the diffusion and convection coeflicients in velocity (6,,v) space, are
calculated from the non-linear collision operator using the method described by Killeen et
al. [3]. Ohmic heating contributes to the convective coefficients S%f and $*/.



The code has a range of options for modelling RF (Electron Cyclotron Resonance, Lower
Hybrid and low frequency Fast Wave) heating {9,12]: these are all based on quasilinear
diffusion theories and give velocity space diffusion. One of these options, in which the RF
diffusion coefficients are calculated from ray tracing data, is available for both ECRH and LH
and merits a more detailed discussion. The launched RF spectrum is modelled by a bundle
of rays (typically up to 50) which are each followed (perhaps for many reflections) by solving
the ray tracing equations [e.g 13}, and at each step on each ray parameters such as the wave
polarisation, kjj and Ak are stored. Then, following an approach due to Harvey [14], RF
diffusion coefficients are constructed in velocity space for each flux surface radius from these
ray data. The Fokker-Planck calculation proceeds and as the distribution changes the RF
diffusion coefficients at each ray step are adjusted to be consistent with a calculation of the
damping along each ray.

Since there is no single accepted mechanism for the anomalously high radial transport of
electrons observed in tokamaks, the radial diffusivity (D, = 57") and pinch speed (V, = §7¥)
are not based on a particular model but are input by the user. They may be functions of all
four variables (6,,v,r;t) although a convenient choice often used gives D, and V, ounly radial
* dependence with D,(dn/dr) + V,n = 0: this maintains a constant (in time) density profile.

2.2 BANDIT-3D: Numerical Method

The numerical method for solving eq(1) is summarised in this section: a more detailed
description is given in reference [6]. A conservative, finite difference, two-stage operator
splitting algorithm [5,15] is used to time advance the distribution at each point on a (usually,
but not necessarily, uniform) (., v,r) mesh. (A fully implicit method, while giving a steady
state solution after only one time-step if collisions are not updated, would have prohibitive
memory and CPU requirements.) The finite differencing is centred except for the convective
term involving S%/ f which is partially upwinded for better treatment of the exponential
drop of f with increasing v for Maxwellians [16]. In the first stage of the splitting algorithm,
the velocity space (6, and v) components of eq(1) are advanced together: this advancement
is implicit and therefore stable for arbitrary time-step At, allowing large At if only the
steady state solution is required. The resulting matrix equations (one for each value of r)
are solved by Gaussian elimination. Then in the second stage of the operator splitting,
the radial transport operator is advanced implicitly: since there are no mixed (r,8,) and
(ryv) derivatives in eq(1) this stage requires only a (very rapid) tridiagonal inversion. This
means that 3D time dependent solutions require similar CPU times to 2D time dependent
calculations (which of course omit transport) for the same number of flux surfaces, although

steady-state calculations are generally quicker for the 2D problem. For rapid calculation of

steady state solutions, an algorithm which uses the average of two previous distributions as
input to the time-advancement has been found useful [6].

The boundary conditions used are (i) zero flux at v =0, 8, = 0 = 7 and r = 0; (ii) either
zero flux or the “runaway” boundary condition discussed by Karney [1] at large v (typically
~ 10vs with vy, the characteristic thermal speed (27, /me)';' at the centre); (iii) a fixed
in time, usually Maxwellian, distribution at » = a with a the minor radjus. Generally, the
initial distribution is taken to be Maxwellian with specified density and temperature profiles.
There are two classes of electron that must be represented by f (#,,v,7): those trapped in
the non-uniform magnetic field of the tokamak (with 0yp < 8, < 7 — 0yp) and those not,
the passing electrons. To model these correctly, we ensure both that f is continuous at the

3



trapped/passing boundaries (TPBs), and that the net fiux of particles entering the TPB from
the trapped and co- and counter-passing regions is zero. This is done in'the first stage of the
splitting by inserting, at the co- and counter-TPBs, two extra 6, points at each radius, and
using the appropriate flux-conservation equation [3]. For further details of how the TPBs
are treated in a conservative manner see reference [6].

Velocity space moments of f(f,,v,r) yield the profiles ne(r), To(r) and j(r) (for example,
ne(r) = 2n(1 + €} [5° v’dv f§ g(0,,r)sinb, f(6,,v,7) db, for circular flux surfaces). In ad-
dition, Electron Cyclotron Emission and Bremsstrahlung spectra may be calculated from
the 3D distributions calculated allowing further comparison with experimental data. The
sequence of calculations in a typical BANDIT-3D run is as follows.

1. Set up stage including specification of (optionally non-circular) equilibrium, calculation
of mesh parameters, etc., initialisation of collision and transport operators.

2. If required, calculate ray trajectories for ECRH or LH heating and store ray data.
3. Initialise diffusive coefficients arising from RF heating.

4. Advance distribution one time-step in two stages.

5. Calculate density, temperature and current profiles as velocity space integrals of f.

6. If maximum number of time-steps has been reached or a convergence criterion satisfied
then optionally calculate ECE and Bremsstrahlung spectra and plot profiles and distri-
butions. Otherwise repeat steps 4 and 5, recalculating collision operator and updating
RF diffusion coefficients if required.

BANDIT-3D runs on a CRAY-2 mainframe and Unix workstations. On the CRAY-2 it takes

~ 5 CPU minutes for a (80,100,20) (4,,v,r) mesh for 20 time-steps (although often less than
10 steps are required to reach steady state) although runs with ray tracing can take longer.
The code is often run with smaller meshes on an IBM-6000 RISC workstation, requiring ~
15 CPU minutes for 20 time-steps and a (40,80,20) mesh. For big meshes the time taken is
determined by the Gaussian eliminator and scales as N N,N, per time-step. The eliminator
requires a large array for the velocity space step matrix inversion (~ 3Nj N, words) and so
dominates the memory requirements of large problems (although these are still within the
capabilities of modern large memory workstations for all but the biggest problems).

2.3 BANDIT-3D: Examples of Use

The principle use of BANDIT-3D is to study the influence of radial transport on kinetic effects
in tokamaks. As an illustration, Figure 1 shows calculated profiles for planned experiments
in the COMPASS-D tokamak in which the effects of localised ECRH current drive (ECCD)
on m/n = 2/1 MHD activity will be studied. A number of authors (e.g. [17]) have suggested
that localised current drive close to a rational surface might be used to suppress tearing
activity in tokamaks, and indeed the use of ECCD for this purpose has been proposed
for ITER. In Figure 1, a combined ray tracing/Fokker-Planck calculation shows that, if
radial transport effects are neglected (and BANDIT-3D is run as a 2D Fokker-Planck code
for several flux surfaces), very localised current profiles are calculated. However if a level
of transport comparable to the bulk thermal conductivity and independent of 6, and v is
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Figure 1 Absorption profile (Pys,(r)) and driven current profiles (67(r)) with and without transport
for planned 60GHz X mode second harmonic ECCD mode stabilisation experiments in COMPASS-
D (R, =0.56m, ¢ = 0.2m, k = 1.5, B, = 0.82T) . All profiles are normalised to their peak values.
Parabolic density and temperature profiles (n.(0) = 1.7 x 10°m™2, n(a) = 0.17 x 10°m™3,
"Teo = 1.5keV) and Z, 15 = 2 were assumed. The power was launched from the outside equatorial
plane at an angle 13° to the major radius, and absorption was to the high field side of the magnetic
axis. With transport (r.(r)D,(r) = 5 x 10®m=25~1) §;(r) is significantly broader than without,
although the calculated ECCD efficiency (0.06A/W) is the same for both cases.
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Figure 2 Profiles predicted by BANDIT-3D for an ECCD discharge in CLEO (R, = 0.9m, a =
0.13m, B, = 1T). 150kW of 60GHz X mode second harmonic ECRH power drove ~ 4kA of the
plasma current (10kA) with the remainder driven by the loop Voltage (0.15V). n.(r) and To(r) are
normalised to 6 X 10'°m~2 and 1.3keV. The absorbed power is normalised to 5.0MW m~3 and j (r)

to 5.8MA m~2. The radial transport chosen (n.(r)D.(r) = 1.5(1 + 3(r/a)?) x 10¥°m~15~1, with V,

taken to maintain a given n.(r)) gave both the correct total current and the observed temperature



assumed, the driven current profile §5(r) is broadened significantly, even though the total
current driven is little changed. The resulting efficiency and current profile width should
still be adequate for mode control experiments, however.

In these calculations, the radial transport was chosen to maintain the given density profile,
and the collisions were not energy conserving and so kept the temperature profile close to
that specified. It is possible however to run with the full particle, momentum and energy con-
serving collision operator in which case BANDIT-3D runs as a combined kinetic/transport
code and the temperature profile evolves to give a consistent balance between the heating
and transport terms. For example, Figure 2 shows the calculated plasma profiles for ECCD
experiments on the CLEO tokamak in which radial transport was deduced to play an im-
portant role. The temperature and current profiles were consistent with experiment showing
that the level of radial transport chosen could account for both the observed temperature
profile and the observed driven current, which was less than that predicted by theories which
neglected radial transport. For more details of this simulation see reference [9].

3 FPP-3D

The neoclassical theory of plasma transport has generally been restricted to particle distri-
butions close to Maxwellian and to particles slow enough that their trajectories closely follow
flux surfaces. We have developed a code FPP-31} which solves for either the electron or ion
distribution function, which need not be close to Maxwellian, without the assumption of tra-
jectories close to flux surfaces and using the full collision operator which yields neoclassical
radial transport. In tokamak experiments, fast ions appear to slow down and be transported
classically [e.g. 18], justifying the study of neoclassical transport of non-Maxwellian fast
ions, in particular of alpha particles and ICRH generated hot ions, allowed by FPP-3D.

The equation sdlved, a full derivation of which is described elsewhere {11], is

a o3 3 of 0z, Oz, Oy
w5 .{%a_ y A (o B U+ (2G| )

Te p=1,2,3 mik,B Iz
(Derivation of operators for other effects (for example, additional heating and magnetic
ripple) using the method described in [11] is underway: the resulting equations will be of
the same form as eq(5) and amenable to the numerical algorithm discussed here.) In eq(5)
the distribution f is a function of time and three constants of the unperturbed motion = =
(21, T3, %3) = (8o, Vo, 7o), Where 8, is the pitch-angle on the outermost point of the trajectory
(outside leg of the banana orbit for trapped particles), v, is the generalised speed including
the electrostatic potential (1/v% + ¢@), and r, is the flux surface radius at the point on
the trajectory where the magnetic field is maximum (banana tip for trapped particles). The
coeflicients afg’” and bg are from collisions with particle species 3, v, and 7, are a characteristic
speed and collision time and v; ( = 1...3) are Cartesian velocity space coordinates. Locally,
collisions change only velocity space coordinates v;, however transformation to the constants
of motion system z,, leads to a flux in both the velocity-space-like variables 8, and v, and in
the real space variable r,. Angular brackets {...) represent a Jacobian weighted trajectory -
- (not flux surface) average over poloidal angle [11].

Equation (5) is of the same basic structure as eq(1) and, we use a conservative finite dif-



ference scheme and boundary conditions at the extrema of 8,, v, and r, similar to those in
BANDIT-3D. Alse, f is continuous at the trapped/passing boundary (TPB) as in BANDIT-
3D. However, solution of this equation requires a more sophisticated algorithm than that
used in BANDIT-3D in several respects. Firstly, calculation of the collisional coefficients in
eq(5) requires evaluation of a four dimensional integral (3 velocity space coordinates plus
poloidal angle, without the assumption of constant flux surface radius) for each set of three

constants of the motion (8,,v,,,). This is reduced to O(NN®) operations by using gyroangle-

independence and a Legendre expansion for the distribution functions [cf. 3]. Secondly, the
TPB condition, while still a flux conservation equation [11], is much more complicated than
for BANDIT-3D, and a non-uniform 6, mesh with points either side of, but not actually
at, the TPB for each radial point is found more suitable than the grid used in BANDIT-
3D. Thirdly, the presence of mixed (,,7,} and (v,,7,) derivatives requires a more involved
time-advancement algorithm which is now described.

A two cycle, six stage operator splitting scheme is employed. This has attractive stability
properties for positive definite linear problems [19], and is second order accurate in time,
although for weakly non-linear problems which may not be positive definite, as here, these
properties have not been rigorously proved. With 1,2,3 representing 6,, v, and r, respec-
tively, we approximate eq(5) as

3f
ot = Af
with
A = An 4+ A 4+ Az + Ay + Agg + Aoz + Am + Axz + Az

Here the 9 component, for example, of the divergence of the flux in eq(5) is split into Ay
and Ags (the mixed derivative parts} and Ay, (the remainder). We then split A into three
operators, A = A; + Ay + A3, where

Ay = mAn + pohyn + A + Ay

= (1 —p2)As2 + pahas + Az + As
Ay = (L=p)An + (1—p3)Ass + A + Ag
WJth pr weights, typically 0.5. The two cycle algorithm for advancement from the (n-1)th
to the (n+41)th time step proceeds as follows:
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with A; implicitness weights, 7 = ¢,, — £,_, and f*, which affects the collisional coefficients
in A%, from the explicit step

f'n — fn—l + TA(tn__l,fnbl)fn_l

At each stage a 2D implicit (or semi-implicit) operator is inverted by Gaussian elimination
of a sparse banded matrix. Thus the mixed (and other) derivatives are always advanced
implicitly allowing large time-steps while maintaining stability. For the first stage this al-
gorithm requires O(N, N, (Ng,)?) operations (the bandwidth is O(N,,)). The CPU time
for time advancement is dominated by the first and last stages because for other stages the
bandwidth of the matrix is O(N,,) and usually N, < N, < N,,.

This algorithm has proved robust with steady state solutions obtained in modest numbers
of full time-steps (typically ~ 20). FPP-3D runs on both a CRAY-2 and an IBM-6000
RISC workstation. CPU times and memory requirements depend greatly on the mesh size
employed and tend to be dominated by the initial calculation of the collisional coefficients,
with later updating of coefficients more rapid. Large work arrays required for the calculation
of these coefficients are written to and read from disk to reduce memory requirements. A
typical CRAY-2 run with (Ng,, N, N,,) = (60,80,20) takes ~ 5 minutes of CPU time,
whereas on the workstation a (30,22,5) grid takes ~ 15 minutes. The code is presently being
tested by comparing calculated currents and particle and energy fluxes with those derived
analytically for distributions close to Maxwellian and for trajectories close to flux surfaces
[20]. A simplified version of eq(5), containing only the neoclassical radial diffusion coefficient,
has already been solved numerically [21], with results consistent with analytic results and
with 2D calculations.

One use of FPP-3D will be to compare neoclassical fluxes with the collisional coefficients
calculated as flux surface averages and as trajectory averages. Figure 3 shows JD,, the
product of the Jacobian and the radial diffusivity for hydrogen ions with energies < 10MeV
in a circular JET-sized plasma with R = 3m, ¢ = 1.2m, B, = 2T and Ip = 1MA, conditions
appropriate to minority ICRH experiments. The ions collide with electron and Deuterium
Maxwellians (parabolic n(r) with n, = 10®m~® and parabolic squared T(r) with 7, =
10keV). Contouring is as a function of v, and 8, for r, = 0.4a for averaging over surfaces
(Figure 3(a)) and over trajectories (Figure 3(b)). Since the radial diffusivity varies ~ 1 [vo
and the Jacobian varies ~ vZ, JD,, increases ~ linearly with speed v,. It is almost zero
for passing particles except those close to the TPB and peaks at the TPB in Figure 3, both
properties as expected for neoclassical transport. Both the magnitude and v,, 8, variation
differ for the two cases showing the importance of averaging over trajectories rather than
flux surfaces when calculating transport coefficients for fast ions.

4 Summary

The two codes described-in this paper, BANDIT-3D and FPP-3D, allow solution of a wide
range of kinetic and transport problems in non-circular tokamaks. A variety of heating
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Figure 3(a) The product of the Jacobian and the neoclassical radial diffusion coefficient (JD,.)
calculated as a flux surface average and plotted against speed and pitch-angle for r = 0.4¢ for
Hydrogen ions in a circular JET-sized plasma (R = 3m, ¢ = 1.2m, B, = 2T, Ip = 1MA). The
maximum speed corresponds to an energy of 10MeV and the values of 8, at the trapped/passing
boundary (TPB) are indicated. The ions collide with background electrons and Deuterium ions
(parabolic n(r) with #, = 10°°m~2 and parabolic squared T(r) with 7, = 10keV), conditions
appropriate to minority ICRH experiments in JET.
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Figure 3(b) As Figure 3(a) but with JD,, calculated as a trajectory average, showing the impor-
tance of averaging over drift orbits for fast ions. Note that JD,, is symmetric, for a given v, in the
trapped region, but asymmetric in the passing regions unlike Figure 3(a)

.



options is available in the BANDIT-3D code, including for ECRH and LH the option of a
self-consistent ray tracing/Fokker-Planck /transport calculation.’ The FPP-3D code includes
the full neoclassical collision/transport operator, without the assumption that drift orbits
are close to flux surfaces: this should prove particularly useful in the study of fast ions (es-
pecially alpha particles) in next generation tokamaks such as ITER. The conservative, finite
difference algorithms used, which give consistent treatment of the trapped/passing bound-
ary, have proved robust and efficient and allow solution on both CRAY supercomputers and
high performance workstations in modest CPU times. ‘
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