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ABSTRACT.

Test particle transport in two dimensional turbulence over spatial scales much longer than the
correlation length has been studied numerically, addressing the dependence of the diffusion features
on a convenient dimensionless parameter, the Kubo number. A scaling argument isintroduced to
discussthe difference between the numerical resultsand the predictions of current analytic theories.



The study of the motion of tracer particles (test particles) in two-dimensional turbu-
lence is of immediate interest in various branches of applied physics, such as the physics of
magnetically confined plasmas, where impurity ions naturally occur, and geophysical fluid

dynamics.

So far, most of the analytical as well as numerical investigation has been devoted to the
test particle behavior in power-law spectra such as those occuring in the inertial ranges[1-
3]. The aim of this class of studies has been to analyze the statistics of particle motion
over distances not greater than the correlation length of the background turbulence. The
reason of limiting the study to the inertial range lies in the fact that the scale of energy
injection of many turbulent systems is of the same order of the system size. However, the
correlation length of background turbulence occuring in some important applications, as

magnetic plasma confinement, is much smaller than the system size.

Previous numerical work addressing this "large distance regime” employed a model
velocity field constructed with very few Fourier components[4-6]. The results of those
works are considered rather special, because the spatial structure is not chaotic. The
aim of this letter is to present the results of extensive numerical simulations, employing
a model of the velocity field which is random in both space and time. These results will
be expressed in terms of just one convenient dimensionless control parameter, the Kubo
number K = v7./A.[7-8], which is formed with the size (the r.m.s. value) of the velocity
field v and with the correlation length A, and the correlation time 7. as suitable spatial
and time scales. In the following, units such that A ~ 1 and v ~ 1 will be used. Then K
is a dimensionless measure of the correlation time. The numerical results and the related
discussion will mainly concern the statistics of the particle displacements, and especially
the average squared displacement <r2 (r, K )>, as a function of K and of the elapsed time
7. Here the average is taken over the ensemble of particles and over the particle history as

well.

Whereas little can be said a priori on the functional form of {r? (7, K)) for small values



of 7, for long enough 7 > 7., a general argument based on the central limit theorem[9-10]
leads to the conclusion that, since the advecting field changes beyond recognition after a

correlation time 7 ~ 7., ordinary diffusion sets in:
r¥(r)~ D (K)r T>T .

Various analytical approximation to the diffusivity D(K) are available. For K <« 1,
quasilinear theory gives the proper scaling. In this regime, a given particle experiences
a completely changed velocity field after a time of order of the Eulerian correlation time
Tc, before having the time to travel across a characteristic length A.. Then the particle
correlation time 7, (Lagrangian correlation time) is of order of the Eulerian correlation
time. In the chosen units, the step size of the random walk process is ér ~ 7. ~ K,
while the clock is 7, ~ 7. ~ K. Then the quasilinear diffusivity is proportional to K:

unasilinear ~ K.

In the opposite limit K >> 1 the situation is more complicated. Indeed a generic frozen
two dimensional incompressible velocity field (K = 0o), although spatially disordered, does
not lead to diffusion. The reason is that in such a field particles move along the lines of
constant stream function, which are closed with probability 1 in the generic case.

When a slow variation in time is introduced, as when K > 1 but not infinite, the particle
motion, which is Hamiltonian in the (x,y) phase space, is still strongly constrained by the
existence of adiabatic invariants. Then the actual trajectory of a given particle most of
the time departs slowly from a closed trajectory of the frozen system. Quasilinear theory
grossly overestimates the actual diffusivity in this limit because it assumes that the particle

displacement is ér ~ v, > A[11].

In general, one can define the asymptotic exponent a such that:
DK) ~ K*©* , K>»1. (1)

An upper bound to the actual diffusivity is obtained assuming that the Lagrangian cor-

relation time is of order of the time required to travel across a characteristic length A.:



Tp & A¢/v ~ 1. The step-size of the diffusion process is then ér ~ v7, ~ 1. The resulting
diffusivity tends to a constant D ~ 1, which is also the result from Markovian closure
theory[12]. In a similar way, a lower bound is obtained assuming that the Lagrangian and
Eulerian correlation times are of the same order 7, & 7. ~ K and that, since frozen tra-
jectories are closed and typically of size A., the step-size is §r &~ A ~ 1. Then D ~ 1/K,

and « is constrained in the interval 0 < a < 1.

The difficulty in estimating « with simple arguments lies in the fact that, whereas most
of the particles are constrained to almost closed trajectories of size a of order a ~ A, ~ 1
for long times of order 7. ~ K, a smaller number is allowed much longer excursions
or > 1 with much shorter correlation times. Over a long time, any given particle would
experience long periods of small displacements (effective trapping) and shorter period of
long excursions, where most of the contribution to the average diffusivity comes from. This

is clearly exhibited in Fig. 1, where a typical trajectory obtained at K = 102 is shown.

Substantial progress in understanding the statistics of long trajectories has been made
in Ref. [14], where an analytic argument suggests & = 3/10. The value obtained in the
present numerical simulations, a = 0.2 £ 0.04, is quite close to [14] but nevertheless sig-
nificantly different (of about seven standard deviations). This result and related findings

are discussed below.

Numerical results

Our model can be summarized as follows. The position Z of a test particle in two-

dimensional turbulence obeys the equation of motion

() )
= TR @

where, assuming incompressible flow, the velocity field ¥(Z,t) can be derived by a suitable

stream function ®(Z,t): #(%,t) = v x [®(F,¢)2]). It must be noted that in magnetized



plasmas the relevant velocity is the velocity of guiding centers whose effective stream
function is a linear combination of the electrostatic potential ¢ and the component of
the fluctuating vector potential parallel to the magnetic field fiuz ® = c$/B + v"/i"/ B,
where v)| is the velocity of the particle along the magnetic field lines. In addition, the time
dependence of ® is the one seen by a particle moving along the field line with velocity
v)- Thus, a suitable choice of @ in Eq. 2 allows to treat a large class of physical problems

including the motion of particles in stochastic magnetic fields[15].

Here we choose to express the stream function as the sum of a large number N,, = 64

of standing waves:

®(Zt) = Y ag(tycos(k-&+ag) ,
E

where the wavevectors k and the phases a ; are randomly chosen with Gaussian probability
distribution function of given variance 1/, and uniform distribution over 2x, respectively.
In order to model a spatially random field, no triangularity relations (of the type one would
have in periodic domain) are enforced between wavevector triads. Therefore when Ny, > 3 a
snapshot of a generic stream function is described by a quasiperiodic surface. By preventing
recurrency phenomena over the scale of interest, the large number of waves ensures that
the resulting velocity field is effectively disordered. Temporal randomness is implemented
by specifying that the amplitudes ag(t) are independent, numerically generated, random

functions of time with prescribed correlation time 7. and r.m.s. amplitude A:

{t— II
< a;(t)a,—c-,(t') > = A%e” = 52,;;,

This constitutes a difference from previous work, where time dependence is mostly pre-
scribed as a deterministic function, usually a given oscillation[16].

Normalizations are chosen such that v =1 and A = 1, and 7. = K. Then, the motion
of a large number N, = 1024 of particles is followed by integrating Eq.2 with a simplectic
algorithm. A systematic study of the diffusion features is carried out, varying the Kubo

number between K = 1. x 10~2 and K = 1. x 10%.

Fig. 2 shows a typical plot of the (7'2(7')> at K = 1. x 10* The diffusivity is obtained



from the slope of this type of curves for large values of 7. The main result of this work is
presented in Fig. 3 where the diffusivity is plotted against the Kubo number, and compared
with analytic theories. As expected, quasilinear theory holds only in the limit K < 1.
Closure theory does better, but it still fails to pin down the correct asymptotic exponent

of the diffusivity a = 0.2 & 0.04 for K > 1.

In order to assess the validity of the analytic predictions, special care has been taken in
the evaluation of the error on the asymptotic exponents, which is due to the finite statistics
(finite number of particles as well as sampling errors in the generation of the velocity field).
The difficulty lies in the fact that the error on the value of (r%(r)) is correlated with the
error on the value of (r?(7')). Thus, although standard error analysis can be generalized
to deal with correlated errors, the very fact that the statistics of such errors is not known
prevents one from a reliable estimate of the propagated error on the diffusivity if the
latter is obtained by an arbitrary linear regression of the (‘rz(r» curve. This difficulty is
overcome by estimating the diffusivity from a value of the squared displacement measured
at a large enough elapsed time 7g that the statistics can be considered Gaussian.

Then the standard deviation of the squared displacement is
6r3(1g) = (1 /T)?(1/N,)!/? (r*(1g)), where T is the total elapsed time (the length of

the simulation).

The deviation from Gaussianity is measured by a kurtosis-like quantity
k= (ri(r))/ (r2(r)>2 — 2. The general behavior for K > 1 is such that x peaks a certain
time Tpeak € K, whereas it is already approaching zero at a much later time 7¢ ~ K.
This behavior is exhibited in Fig. 4, where & is plotted for a run at K = 102. As shown
later, Tpeak is af order of the correlation time of long trajectories, while a complete loss of
memory of the past history occurs only after that a much longer Eulerian decorrelation

time K has elapsed.

In Fig. 5 the probability distribution function (p.d.f.) of the (radial) displacements

from the initial position is shown at different times. The displacement is normalized to



the actual value of <r2(7')>. At Tpeak the p.d.f. has a long tail, while at later times 7 ~ K

it approaches the normalized Gaussian distribution P(r) = 2re="".

Discussion; scaling argument

The features of particle dynamics leading to Eq.1 are clarified by introducing a scal-
ing argument. Consider for the moment a frozen field. In the generic case, trajectories
coincides with the lines of constant stream function and are closed with probability 1 in
such a configuration. Then one can classify the various trajectories according to their size
a, which is defined as the diameter of the smallest circle enclosing the trajectory.

For long enough trajectories, a > 1, the absence of a characteristic length suggests a
power law for the probability distribution function of orbits of size between a and a + da:
p(a) ~ a~#. Moreover, though obviously differentiable on the small scale, such long orbits
are effectively fractal[14] when measured with a ruler of intermediate length ! such that:
1 € | € a. Then the trajectory length scales as L(a) ~ a%, where d < 2 is the fractal
dimension. The time necessary to complete a given orbit is also Tcomp ~ a®. On a shorter

timescale, the particle displacement from the starting point scales like ér ~ t1/4,

When the velocity field is allowed to fluctuate on a long time scale K > 1, the state
of a particle at a given time can still be labelled according to the size of the orbit the
particle would follow if the field where frozen at that time. However, fluctuations allow
transitions between orbits of different size. For long trajectories, the orbit lifetime, which

is the typical time a given particle spends on an orbit of size a, is assumed to scale like

T, ~ Ka= /7.

The various regimes of particle motion are sketched in Fig. 6. Of special importance
are the crossover times and scales 737 ~ K~9/(4+1/¥) and Ap ~ K—1/(4+1/%)  Particles on
small size orbits a < Aps are able to complete their orbit before decorrelation intervenes.

Larger orbits are decorrelated before their completion time.



For long enough times, 7 > K, the diffusivity can be estimated by summing over the

contributions of the various trajectories of different sizes. For a < Az, the step size of the
diffusive process is just the orbit size, ér(a) ~ a, while the clock of the process is the orbit
lifetime 6t(a) ~ Ka~'/. Then the contribution to the diffusivity from orbits of size a is
D(a) ~ ér*(a)/6t(a) ~ K~1a?+1/v.
Similarly, when a > Ay, 6r(a) ~ 72/ and §t(a) ~ 7p yield D(a) ~ K?/d-1q—(2/d-1)/v
Then the dominant contribution to the diffusivity comes from orbits of size Aps if the
probability distribution function of orbit sizes is not too steep: D(a) ~ (A%, /mm)p(Am)Am.
This leads to the scaling exponent of the diffusivity:

e @
For times smaller than K, nondiffusive contributions come from particles living on short
orbits with long decorrelation times: a < (7/K)™”. One can recognize that, when 7 <
7 < K, the dominant contribution to the squared displacement is still linear in 7 with
scaling exponent of the diffusivity given in Eq.(3).

However, for even shorter times 1 < 7 < 7y, the dominant contribution is nondiffusive

and comes from a fraction p(a)a of particles with a ~ 71/¢. This gives:

<r2(r)> ~ 7 7=§—:—;—H- , l<rt<1p .

The anomalous portion of the displacement law is apparent in Fig. 2b.

Similarly one can compute the contributions to the Kurtosis x. Since the fourth
moment of the displacement grows initially like 7', with 4/ = (5 ~ u)/d, x grows like

o

77,0 = (u — 1)/d until Tpeax ~ 7ar when it reaches its peak value Kpeak ~ K% with

6 = (g — 1)/(d + 1/v). Then it decreases like 7=° with exponent o' = y(p — 1).

To summarize, four regimes of the displacement law are found for K >> 1: a ballistic
regime for 7 < 1, a subdiffusive regime for 1 < 7 < 7p, a Fick-type regime with non-
Gaussian statistics for 7y < 7 < K, and a proper diffusive regime with Gaussian statistics

for v > K.



Ref. [14] employes results from percolation theory[17] to obtain d = 7/4, 4 = 2 and
v = 4/3. In order to assess the validity of these results, d and p are evaluated numerically
by following the particle motion in a frozen velocity field (K = oo). The distribution
function of the orbit size is shown in Fig. 7. The measured exponent g = 1.97 is obtained
by fitting the data of the distribution function of the orbit size with a > 10. Similarly
the fractal dimension d = 1.88 is estimated from the longest trajectories in the sample.
These results for the ”static” exponents are in good agreement with Ref. [14] and one can

attribute the difference to statistical errors.

Although the discrepancy in the value of a between Ref. [14] and our numerical results
could be attributed to (subdominant) corrections to the asymptotic scaling (1), there is
a body of evidence that the difference must be traced to the estimate of the ”dynamic”
exponent v of orbits lifetimes. Indeed a value of v around 0.5 is needed to match the
observed scaling law of the diffusivity. Unfortunately, there is no easy way to measure v
directly. An indirect estimate must necessarily rely on one of the above scaling relations. A
possibility would be to use the exponent of the Kurtosis peaking time, which is a measure
of the crossover time 7ps, as given in Fig. 8. In Tab.1 the equivalent choice is made to take
the numerical value of « as reference and to assume the values of d and p from Ref. [14]
as exact this yields v = 1/2. The comparison between the ”expected” exponents obtained
in this way and those obtained from Ref. [14] on the basis of the scaling argument shows
that the first choice gives a better agreement with numerical findings for all the measured

exponents.

As a final remark we note that the result of closure theory (a = 0) is recovered
from Eq. 3 in the limit ¥ — 0. One can then observe from Fig. 6 that the Lagrangian
decorrelation time becomes 7, ~ 1. In this approximation, the diffusion process is a random
walk with unit step-size and correlation time. The statistics of the displacement becomes
Gaussian already at 7 ~ 1 and the intermediate power law range of the displacement law

is not obtained.
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Source Exponent (a) (b) (c)

diffusivity D ~ K~ a=(d+u-3)/(d+1/v) | 02 0.2 0.3

Toeak ~ Ta ~ KP B=d/(d+1/v) 054 | 047 | 0.70
(r?(r)) ~77 , T <TM y=(3-p)/d 0.74 0.57 0.57
(rA(r)y ~ 77 T <TM v =(5—p)/d 1.85 | 1.71 | 171
kurtosis k ~ 7% , T < TN o=(u-1)/d 0.36 0.57 0.57
kurtosis kK ~ 777 | 7 > 1y o' =v(p—1) 0.54 0.50 1.33
kurtosis peak kpeak ~ K° §=(u—-1)/(d+1/v) 0.23 | 0.27 | 0.40

Tab. 1 Summary of the scaling exponents. Numerical results (a). Scaling argument em-

ploying u = 2,d = 1.75, v = 0.5 (b). Same with v = 4/3 as given in Ref. [14] (c).
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