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The theory of marfe stability is generalised by using the equilibrium
temperature as the independent variable. The description incorporates
both perpendicular and parallel transport.

INTRODUCTION

The name marfe is given to the toroidally symmetric, but poloidally asymmetric,
band of impurity radiation observed in tokamaks. This phenomenon is the
result of an instability which arises when a local change in the radiated power,
brought about by a temperature perturbation, is greater that the compensatory
heat flow induced by the temperature change. [1, 2, 3]

The instability takes place in the outer region of the plasma where the
temperature is low and the impurity radiation is correspondingly high. Stability
depends not only on the temperature but also on the temperature profile in the
region where it is formed. The straightforward way of solving the problem is
first to obtain an equilibrium solution for the temperature in the presence of the
radiation for each particular case, and then to calculate its stability. We shall here
use a method which combines these processes and leads to a general but simple
stability diagram.

THEORY

2.1 Basic Equation

The analysis is based on the heat balance equation
V.KVT = nn; R(T) (1)

where, since the marfe instability occurs in a narrow layer near the edge of the
plasma, heat sources are neglected. The thermal conductivity has a value K|
parallel to the magnetic field and a value K| perpendicular to the field, n and n;
are the electron and impurity densities and R(T) is the radiation function. The
radiation function is peaked, becoming small at both low and high temperatures.
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Equilibrium

The equilibrium is taken to be a function only of the minor radial coordinate r
and since we are only concerned with a region near the edge of the plasma we
can write

K, '—;711 = nn; R(T) 2)

It will be assumed that the radial variation of the equilibrium values of n, and
K is sufficiently small that they can be regarded as constants.

We shall shortly need an expression for the equilibrium temperature gradient.
This can be obtained by multiplying equation (2) by dT/dr and integrating with
respect to r to obtain

K, (%)2 = K, (‘—;‘;)i -2nn,-;fR(r)arr 3)

where (dT/dr), is the temperature gradient on the high temperature side of the
radiation layer where the radiation has become negligible, and the limit in the
integral is correspondingly taken tobe T — .

23 Perturbation Equation

The linearised form of equation (1) is

77 ~ ~
K*% - KD T = nn.-{(%*%) R(T)+ R'(T)T"} : (4)

The parallel thermal conductivity K is proportional to T5/2. For the most
unstable mode T varies as cos 8 and the wave-number k; = 1/Roq where Ry is the
major radius of the plasma and q is the safety factor.

We use the equation for pressure balance along the magnetic field to write
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and assume that n;j = n so that

Equation (4) then becomes

d*T 2 2 d R(T)) .
K - K(T T=nnT"— T ,
s 2 u(T) ki nn; ﬂ(—fr

or, writing

o) = - 220

.
Ko Zr = (KD - oT)T (5)

Equation (5) is the marginal stability equation. That is, the thermal equilibria for
which the solutions of equation (5) satisfy the appropriate boundary conditions
are marginally stable and these equilibria establish the marfe stability boundary.

24 Coupling Transformation - Stability Equation

The independent variable in equation (5) is r and the coefficients involve the
equilibrium temperature T(r). The stability problem would be simplified if it
were possible to change the independent variable to T. This would mean that all
equilibria could be covered by solving the resulting equation for T.

The required transformation can be achieved by coupling the equilibrium
equations and the stability equation.

Thus using equations (2) and (3) in the relation

d’T _ (g)’ &’T | &’Tdl ©)
a* \dr) ar* * @’ dr



and substituting into equation (5) gives

2 o 27 =
[K ¢(%) —2nn,-£R(T)dI‘)% + nn,-R(T)% = (Ky(T) —nm; (1)) T - (7)

+

We now define the variables

A =&(£)2
* nn; \ dr /,
2
K
A =_I_( I )
I nn; TS/2

S(T) = ]:R(T)cﬂ‘
T

where we note that K;;/T5/2 is independent of temperature. Although Aj and Ay
are the natural parameters of the problem they are not dimensionless and their
dimensions are different. Using these definitions we can now re-write

equation (7) in its final form

(AL -2S)T"= - RT’+ (A T¥* - ¢) T (8)

where S, R and ¢ are all defined functions of T and the primes denote
differentiation with respect to T. Equation (8) is the required equation for
marginal marfe stability.

2.5  Stability Diagram

Equation (8) has been solved numerically to obtain the relationship between A
and A} at marginal stability. The results obtained for carbon impurity using a
coronal model for R(T) [4] are shown in Fig. 1. The coronal model is applied
over the temperature range of the principal radiation peak, 3eV < T < 30eV, and
is extended below 3eV and above 30eV using an exponential decay. The
boundary condition on the higher temperature side is T— 0. The general
boundary condition at T = 0is T + ¢ T’ = 0. Within the framework of the present
theory the appropriate physical boundary condition appears to be that there is no
perturbed heat flow across the boundary so that T'(0) = 0, and Fig. 1 gives the
results for this case. More generally it is possible that the mixed boundary
condition is applicable, the value of ¢ depending on the physical conditions. For
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calculation for the limiting case T = 0 has also been carried out and the results are
given in Fig. 2.
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Fig. 1. étability diagram in the (A1, Ap) plane showing the stability boundary for
the boundary condition T/(0) = 0 together with the radiation contraction stability
boundary A} = 2 S(0).

A,

(m¥*s-'eV?)

=11
5x10 STABLE

A - 2S (0)=0

o 1 1
0 5x10-7 10-%

A, (m¥s~! eV-5?)

Fig. 2. Stability diagram for the limiting case T (0) = 0.

The stability diagram has three regions, the region above the critical A1 being
stable to marfes. Below this line marfes become unstable but the unstable region
is bounded below at the line A = 2 5(0). The physical significance of this line is
clear from equation (3), which can be written

2
K (Y _ 4y, -2
nn; \ dr ,



We see that A; = 2 S(0) corresponds to dT/dr = 0 at the edge of the plasma and
consequently to 100% radiated power. This is the condition for plasma
detachment and is therefore an approximate necessary condition for a radiation
contraction disruption. Thus, in the appropriate circumstances, a decrease in A |,
caused say by an increase in nn;, can lead first to a marfe and subsequently to a
disruption.

ANALYSIS

Some insight into the solutions can be obtained by examining equation (8). This
equation presents a standard eigenvalue problem, the solutions giving the
required eigen-relationship A (A)) when the appropriate boundary conditions
are satisfied. The achievement of an eigen-solution depends upon the right
hand side providing a sufficient negative contribution to T”. We shall now
analyse the behaviour by considering three regimes of A. First we shall consider
large Aj for which the marfe is stable, then we derive an approximate expression
for the critical value, Ay, at which instability becomes possible, and finally we
calculate the behaviour in the limit Ay — 0. It should be noted that, for a given
magnetic configuration decreasing A means increasing nn;.

i) Large A

In the limit A|| — o= the positive term involving Ajdominates. It is reasonable to
assume that the radiation function R is zero at very small temperatures and
then, despite the T5/2 dependence of the parallel conduction term, there will be
stability for all A as Ajj— .

ii) A=A

As A is reduced a critical value, A, is reached below which instability is
possible. The instability first appears at A; = 2 S(0) corresponding to the
condition dT/dr = 0 at the edge of the plasma and to the smallest possible value
of Aj. For A > Ajc the plasma is stable to marfes for all A;.

The essential functional dependence of Ajc can be obtained by writing
equation (8) in the approximate form

-

(A, -28,)7"= (AT, - 8, -3 05(T - T, ') T o)



where the subscript m refers to the value at the temperature, for T,, , for which
¢ is a maximum, and ¢ has been expanded about this temperature. Equation (9)
can now be written

d*T O — AT, 52 5 | =
(A.L -2Sm) (—I¢m)

where

Equation (10) is Schrédinger's equation for the harmonic oscillator and the
lowest eigenvalue is given by

¢m - AIITmS/2
(AL -28,)"*(-Lor

)1/2 =

so that the critical value Ajc at which A = 25(0) is given by

Aie = 737(0m ~ (50)-5)" (-7)")

This result is of course only approximate. It does however show how the range
of unstable Aj increases with increasing amplitude of the radiation term ¢,, and
decreasing T,, . Since ¢y, is negative and S(0) > S, , the final term shows the
destablising effect of a broader ¢ function as characterised by ¢y, .

The onset of instability at AL = 25(0) can be understood by recalling that, from
equation (3), the condition Ay = 25(0) corresponds to a small equilibrium
temperature gradient. The effect of this is to extend the width of the region over
which the radiation terms are significant. This in turn increases the
characteristic length involved in the perpendicular thermal conduction,
reducing the perpendicular heat flow and allowing instability. The effect is
illustrated in Fig. 3. where cases with large and small equilibrium temperature
gradients are shown.



Figure 3 Illustrating the dependence of the radiation layer on the temperature
gradient. a) Small equilibrium temperature gradient, for which the radiation
function R(T) gives a broad radiation layer. b) Larger equilibrium temperature
gradient giving a narrower radiation function and hence greater stabilising
perpendicular thermal conduction.

iii)  Small Ay

For the boundary condition T/(0) = 0 the nature of the solution at low Ay is quite
different from that for T(0) = 0. Whereas in the case T(0) = 0 a change of T’ of the
order of T/Tm is required across the radiation layer, for T'(0) = 0 only a very

small change in T’ is required. The functional behaviour can be derived
analytically as follows.

For small A, the solution has a slow decay for temperatures just above those at
which R is significant, the right-hand side of equation (8) being proportional to
Ay, and so T'/T is small. Since the boundary condition is T'(0) = 0, this means
that throughout the whole region where R is significant we have T'/T small.
Thus, using A; >> 2 S, the equation in the radiation regime is

A_LT” = -¢T
and hence

= T
T = _T J ¢ dT
A o
so that the solution just beyond the radiation regime satisfies

r__a (1)
T A,
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where c; is a constant. At higher temperatures R is small, and equation (8)
becomes

T” = __lhl_T5/2 T
Ai
or

Q

T 5/2 &
= x'*T 12
—2'[ (12)

2/9
X = _é."_ T -
A.L

The solution of equation (12)is T = T(x)

where

so that

o [A" )2’9 dT(x)/ dx
L -

= 13

Ay T(x) 13)

For Ay — 0 we have x = 0, and so
df(x)/dx _ (dT(})/dx] - ¢
T(x) T(x)  Jiso

where ¢ is a constant, and equation (13) becomes

=, 2/9

T (A_) . 14)

T Ay

The eigenvalue relationship between A and Ajis now obtained by matching the
solutions for T'/T given by equations (11) and (14). This gives the asymptotic
dependence of A on A for the boundary condition T'(0) = 0

This relationship has also been demonstrated numerically.



The physical reason why the T'(0) = 0 boundary condition gives a greater range of
instability than T(0) = 0 is that it reduces the stabilising perpendicular heat flows
at the lower temperature side of the marfe.

Numerical values

Although there is considerable uncertainty concerning both A; and R(T), it is of
interest to investigate numerical values for tokamak conditions. The
uncertainty relating to R(T) can be reduced by writing A; and Ajin terms of the
radiated power fraction P defined by

p= P
P

n

We also allow variation of the temperature of maximum R by introducing the
transformation R(T) — R(§T). Thus, using the definition of A to eliminate nn;
from equation (3) we obtain the radiating layer and the power coming out of the
layer.

)
EAy

and using the power balance relation

we obtain the required equation for A}

S(0)
= 2V 15
1l éF(l {,P) ( )
Then, since
Ay k"2a

Ay KJ.(dr/d’)i
where o is the constant (K|;/T>/2), we obtain the required equation for A

Ay = k? aA? S(0)x, -

PIFI-31P)e 1o

10



where ny; = K and A is the area, 4n2a R, of the plasma surface. Using equations
(15) and (16) it is now possible to display the stability diagram of Fig. 1 in terms of
the radiation fraction P and the variable n/P;, 2 (1- P).

We consider an example based on the JET plasma, taking R = 3m, a = 1.4m,

kj = 0.1 corresponding to q =3, K| =3n.m-1s'1and a = 1.29 x 1022 m-15-1 eV-5/2,
and use the coronal carbon radiation model. Although the applicability of this
model is uncertain, it at least displays the qualitative features of the marfe
stability boundary. Fig. 4 shows the dependence of the marfe stability boundary
on the value of T at which the radiation function peaks, the variation being
achieved through €. Instability occurs above the curves. It can be seen from the
figure that the solution is weakly double-valued at high radiated power fractions.
This feature is sensitive to the form of R(T) near T = 0. Since the behaviour of
R(T) at very low temperatures is not known we have not explored this effect in
detail. .

100,

14eV

B(%)

L
1078 102 10-* 1

n(m)10'*
P, 2(MW) P(1-P/2)

Fig. 4. Marginal marfe stability threshold (for T'(0) = 0) for various peak radiation
temperatures and a typical operating trajectory (P;; =10 MW, n =5 x 1018 m-3).
Marfes are unstable above their respective boundaries.

Given operating conditions, as determined by P;;, and n, are represented by a line
in Fig. 4. For example the line for Pj, = 10 MW and n = 5 x 1018 m-3 is shown. It
is seen that along this line marfes become unstable at reasonable radiation
temperatures and that the radiated power fraction to trigger a marfe instability
increases with peak radiation temperature. The dominant effect which causes
the rapid change in marfe stability with peak radiation temperature is the T>/2
dependence of K. We have also examined the effect of displacing the peak
radiation temperature using the transformation R(T) = R (T - To) and find
qualitatively similar results. '
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Summary

We have presented a generalised approach to the phenomenon of marfe formation.
The equilibrium and stability problems are coupled to remove the space variable and to
obtain a single equation in which the independent variable is the equilibrium
temperature and the dependent variable is the perturbed temperature. The solution of
this equation gives-a general stability diagram which displays the relationship of marfe
stability and the condition for thermal detachment which is approximately the density
limit disruption boundary.
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