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ABSTRACT.

The MHD spectrum of circular cross-section tokamak plasmas with small aspect ratio is
studied for low mode numbers. Particular attention isgiven tothe continuous part of the ideal
MHD spectrum of such plasmas. Poloidal mode coupling in finite aspect ratio tokamaksyields
gaps in the Alfven continuum. Globa Alfven modes arefound with afrequency inside these
gaps. By interactionwith the continuum branchesthe global Alfven modes experience clamping
viaphase-mixing. This clamping iscomputed in resistive MHD. asymptotically small resistivity
the clamping isfinite and independent of n.



1. Introduction

The gross macroscopic properties of a plasma concerning equilibrium and stability
are well described by the theory of magnetohydrodynamics (MHD). In tokamak discharges
the plasma evolves through a sequence of MHD equilibria, where the maximum pressure
is limited by the stability-, or beta-, limit given by ideal MHD. Non-ideal effects, such as
resistivity or viscosity, allow development of slower and weaker instabilities and introduce
finite damping in the system.

Additional plasma heating in the form of neutral beam injection or ion cyclotron
resonance heating can introduce a strong anisotropy in the plasma pressure. A major
effect of energetic ions generated by this heating is the destabilisation of marginally stable
ideal MHD modes leading to a burst-like loss of these energetic particles. A prominent
example of such an event is the fishbone instability. On the other hand, the interaction
of energetic ions and a global MHD mode can lead to enhanced stability. The m =1
mode has been studied extensively. For more details we refer to a recent review by Porcelli
(1991).

Additional heating is not the only mechanism to generate energetic particles. The
fusion of tritium and deuterium ions produces high-energy a- particles. The confinement
of these fusion born a-particles is essential for ignition and hence for the efficiency of
generating energy by controlled fusion. It should be added that, strictly speaking, ignition
is not required to generate energy. A driven system with high @ is viable. It has been
argued by Fu and van Dam (1989a ; 1989b) and Cheng (1990 ; 1991) that these a-
particles can destabilise global Alfvén modes and, hence, are lost by the particle-wave
resonance. On the other hand, global Alfvén modes experience finite damping in such
tokamak plasmas. Since the energetic particles are expected to excite global Alfvén waves,
the corresponding energy can also get absorbed through the same physical mechanism
which accounts for Alfvén wave heating. In order to find out whether the destabilisation
of the global Alfvén waves by the a-particles dominates the damping of these modes by
phase-mixing, or vice versa, it is essential to obtain a deeper insight in the Alfvén spectrum
of toroidal systems. Therefore, the ideal MHD continuous spectrum needs to be determined
for such plasmas and the global Alfvén modes need to be studied in detail. In the present

paper, we discuss the results of our investigations of the poloidal mode coupling in the ideal
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MHD continuous spectrum, the interaction of the global Alfvén modes with the continuum
modes, and the resulting damping of these modes by phase-mixing. The interaction of the
energetic particles with the MHD modes is left for a subsequent paper, where the energetic
contribution to the change in the potential energy, 6Wj,, is evaluated in a perturbative
way.

It is recalled that the MHD instabilities emerge from the Alfvén branch of the MHD
spectrum. The branch of fast magneto-acoustic waves has a strongly stabilizing influ-
ence and does, therefore, not couple to unstable MHD modes. The pressure effects which
determine the slow magneto-acoustic modes, also do not contribute to the phenomena
considered here. We begin the discussion of the Alfvén subspectrum with analytical ar-
guments. Quantitative solutions in toroidal axisymmetric systems are obtained with the
normal mode code CASTOR, which solves for the entire spectrum of dissipative MHD
(Kerner et al. 1991).

In inhomogeneous systems with cylindrical symmetry, where all equilibrium quantities
depend only on the radial coordinate r, singularities occur in the ideal MHD equations if
the frequency w matches the local Alfvén frequency, i.e.

w=war) = 20 = B gy 4m), (1)

NN

where the perturbed quantities have the form

fl(T,t) — f1(7-") 6)\1 eim0+inkz’ (2)

with A = w, k is the wave vector of the perturbation, k= (0, 2+, nk), with poloidal and
toroidal wave numbers m and n, k = 27 /L defines a periodicity length for modelling a
tokamak of aspect ratio e~! = —a}i = 2%, with a the minor radius of the plasma. These
singular solutions define the Alfvén continuum. The corresponding eigenfunctions have
a logarithmic singularity with a jump contribution at the singular surface in the radial
component of the velocity field vy = rv, which results from the analytic continuation of
the logarithmic term through the singular point. The poloidal component is basically the
radial derivative of vy, i.e. vy = ivg = —vj/m for m # 0, and thus has a 1/(r — ry)-
singularity and a é-function contribution. By applying a superposition of these continuum

solutions, the mechanism of Alfvén wave heating can be explained in the ideal MHD

picture. Here a ’'collective’ mode is excited by an external antenna which couples to the
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shear Alfvén continuum modes. As a result, the energy supplied to the plasma by the
external source accumulates in an ever diminishing layer around the singular position
r = 14, where the driving frequency matches the local Alfvén frequency wy = wa(r,). This
accumulated energy is thought to be converted into heat by dissipative effects, but this
conversion is, of course, beyond the scope of the ideal MHD model. The concept of plasma
heating by the resonant absorption of Alfvén waves has been confirmed by calculations
in a dissipative system with finite electric conductivity, where the power emitted by the
antenna and absorbed by the plasma is actually converted into heat by Ohmic dissipation
(Poedts, Kerner & Goossens 1989). The Ohmic dissipation rate (~ f‘, n72dV), however,
is not the only important quantity to look at when investigating Alfvén wave heating.
The efficiency (or inefficiency) of plasma heating by resonant absorption can be expressed
in several complementary ways. A typical figure of merit is the coupling factor which is
defined as the ratio of the imaginary and the real part of the antenna impedance. Hence,
the coupling factor measures the energy that is circulating in the system relative to the
absorbed power. An infinite coupling factor means no coupling at all and, hence, no
absorption. For efficient plasma heating, a small coupling factor is desirable. However, in
engineering terms, the quality factor of the resonance, which measures the total energy
contained in the plasma relative to the power that is dissipated or absorbed per cycle, is
more important. For heating, a low quality resonance, with a lot of dissipation, is prefered.
Clearly, a good coupling of the external driver to the plasma does not guarantee a low
quality resonance and vice versa. Another important parameter is the time the externally
excited dissipative system needs to reach a stationary state in which the power supplied
by the external source is exactly balanced by the Ohmic dissipation rate in the resonant
plasma layer(s). This time is directly related to the quality factor. So a large time scale for
achieving phase-mixing corresponds to a high quality factor and is not suitable for plasma
heating, especially not when the coupling factor is high and, hence, the plasma-driver
coupling is bad too.

It was shown (Poedts, Kerner & Goossens 1989) that driving a dissipative system
periodically at an arbitrary frequency inside the continuous spectrum often yields only a
modest Ohmic dissipation rate (compared to the power emitted by the external source).
This is a consequence of the bad coupling of the external driver to the plasma that is
obtained with a badly tuned antenna. A better plasma-driver coupling is achieved when

a global mode of the system is excited. Such global modes occur in the form of the



stable external kink modes and/or the cylindrical discrete Alfvén waves, which exist only
when certain criteria are satisfied (Goedbloed 1984). One of these criteria is that w4(r)
has to have an extremum in an internal point, i.e. w';(rez¢) = 0. The frequencies w; of
these discrete modes are located underneath or above the continuous spectrum. Thus, a
Sturmian (or anti-Sturmian) sequence of global modes can exist with w; < min{w.(r)}
(or wi > maz{wa(r)}) and an accumulation point at the end of the continuum. Driving
at the frequency of such a discrete Alfvén wave yields extremely good plasma- driver
coupling (with a coupling factor of 0, hence 100% coupling) but the time-scale needed to
reach the stationary state is also extremely long and, consequently, the quality factor of
the resonance is very high, which is bad for heating. Through numerical simulations it
was shown that the power emitted by the external source and coupled into the plasma
causes a substantial increase of the plasma kinetic and potential energy for a long period
of time, while the Ohmic dissipation needs much longer to become important. As a result,
the power that is dissipated per cycle in the steady state is relatively small as compared
to the total energy contained in the system.

A better candidate for heating and absorption is, therefore, given by the stable external
kink with an oscillatory frequency in the range of the ideal Alfvén continunum. For fixed
plasma parameters the frequency of the external kink can be adjusted upon varying the
distance of the perfectly conducting wall to the plasma. The closer the wall is placed to
the plasma, the higher the oscillatory frequency of this mode is. For a certain range of
wall positions, the external kink frequency is located in the range of the ideal continuous
spectrum. In that case, the frequency is not purely oscillatory any more but, instead, it
also has a non-vanishing damping part, i.e. Re()) # 0. Therefore, this mode is also called
a “quasi-mode” in the literature. The fact that the oscillatory part of the frequency of a
quasi-mode is located in the range of the continuum is the essential difference between these
discrete modes and the discrete Alfvén waves underneath the continuum mentioned above.
Indeed, “quasi-modes” yield good coupling due to their global nature — just as the discrete
Alfvén waves — but also efficient heating (with a low quality factor) due to resonant
absorption. The relative damping factor é, defined as 6 = I-%L is affected by the
gradient of the local Alfvén frequency and, hence, by the equilibrium profiles. The density
profile, in particular, was found to have a substantial influence on this parameter. Clearly,
the relative damping factor is inversely proportional to the damping time 7, 1.e. the larger

0 is, the faster the corresponding mode damps out. It was found that the relative damping
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factor can be very large and that the absorption can be very efficient for density profiles
with large gradients. We have found cases with é in excess of 5%. In these calculations the
absorption was evaluated within resistive MHD in the limit of asymptotically small . It
was established that the damping and the absorption efficiency, become both independent
of # in the limit of small n. This result confirmed that the damping is well defined.
Furthermore, the damping is independent of the specific dissipation mechanism.

In tokamak systems the poloidal wave number m is no longer a good quantum number
as the finite aspect ratio causes coupling of the different poloidal Fourier harmonics. When
continuum branches with the same toroidal wave number but with different poloidal wave
numbers (e.g. m and m + 1) intersect in the cylindrical limit (¢ = 0), the coupling
due to the finite aspect ratio causes an ‘avoided crossing’ of the two continuum branches
considered. Not all frequencies are any longer accessible for the continuum normal modes
and, therefore, gaps in the toroidal continua occur. Since the toroidal Alfvén continuum is
essential for the further discussion, a new method (Poedts & Schwarz 1991) is applied to
determine the toroidal continua accurately and efficiently. Inside the gaps in the toroidal
continua discrete frequencies are found which correspond to global Alfvén waves. The
coupling of at least two different poloidal Fourier components allows the construction
of eigenfunctions where the singularity and the jump are avoided, while satisfying the
boundary conditions at the magnetic axis and at the plasma boundary. The oscillatory
frequency of these global, toroidicity-induced, Alfvén eigenmodes (so-called TAE modes) is
found to be of the order of the typical Alfvén frequency. In the simplest case, these normal
modes are truly global, thus the damping in a dissipative system is directly proportional
to the dissipation, i.e. for asymptotically small resistivity nliﬂ}od = 0. If, however, the
configuration is chosen such that the frequency w falls into the range of the continuum of
a sideband, for example m + 2, then a finite damping occurs in the limit of asymptotically
small resistivity nlino 8 = ép # 0, as will be shown in the paper. In other words, the modes
have become quasi-modes, similar to the external kink quasi-modes discussed above, but
different in nature.

We will concentrate on truly toroidal global Alfvén waves for small aspect ratio, and
small toroidal wave number (|n| < 5), where the leading poloidal harmonic varies from
zero to ten. Thereby, our analysis complements recent analytic results based on specific
scaling assumptions (Berk et al. 1991 ; Rosenbluth et al. 1991 ; Zorca and Chen 1990).

The physical model considered is presented and discussed in the next Section. In
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Section 3 the toroidal Alfvén spectrum is derived with continuum modes and regular,
global normal modes. The finite damping which occurs for global Alfvén modes coupling
to the continua are discussed in detail in Section 4. Finally, Section 5 presents a discussion
of the implication of these results for confinement of fusion horn a-particles and recent

experiments with anisotropic pressure.

2. Physical model

The dissipation is assumed to be small and, consequently, can be treated in a per-
turbative manner. This allows application of the usual procedure where the equilibrium
is determined by force balance in ideal MHD. The dissipation is then introduced in the
motion of small perturbations around the equilibrium state. Here, the dissipation con-
sidered is finite electric conductivity. In our previous studies in cylindrical symmetry it
has been demonstrated that the dissipative Alfvén spectrum is essentially the same for
either viscosity and resistivity as the damping mechanism. Therefore, we are sure that our
results, obtained in the limit of asymptotically small resistivity, are indeed independent of

the specific dissipation mechanism.

2.1 Equilibrium

Tokamak equilibria obey force balance in ideal MHD

Jo x By = Vp, (3)

where ﬁo denotes the equilibrium magnetic field, J-;) the current density and pg the pressure.
The magnetic field is represented by the poloidal flux function " and the poloidal current
profile F

By = V¢ x Vi + FV 6. (4)

Here, the usual flux coordinates (¢, 6, ¢) are adopted, with v = (R, Z) where (R, Z, ¢)

are cylindrical coordinates. The current density is obtained from the magnetic field

.j;)ZVX§0. (5)

Two profiles, i.e. po(3) and F(v) or po(¥') and ¢(7)), together with the shape of the plasma

boundary define an equilibrium. The quantity ¢ denotes the safety factor.
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A specific equilibrium configuration defines a flux coordinate system (s,9,¢) with
straight field lines BY /BY = ¢(¢). The radial coordinate s = /% /¢, corresponds to the

normalised radius r/a in the cylindrical limit. A suitable choice for the Jacobian is

R?q
7==L (6)

In addition, the density py can be chosen arbitrarily. We make the choice of

po = po(s) = [1 = (1 - Ds?)}", (7)

with v = 1 or 2 and the constant D determines the value of the plasma density at the
plasma surface, po(1) = D”.

The ideal gas law relates the pressure to the temperature and density

R
Po = E poTo, (8)

with R and /i the Boltzmann constant and the mean molecular weight, respectively. Tp
denotes the equilibrium temperature. The ratio of the averaged plasma pressure and the

magnetic pressure defines the plasma beta :

_ 2pfpodr

B = (9)
[ Bdr
Another useful expression is the poloidal beta :
2 ds
8, = 21/ pods (10)

[ Jogds]”
Normalized quantities are introduced, where the distance is normalised to the radius of
the magnetic axis R and where the toroidal magnetic field and the plasma density are
normalised to their respective values at the axis, viz. Bgy(0) and po(0).The electric current

density is normalised to Bpg/uR with p the magnetic permeability.

2.2 Resistive MHD equations

The resistive MHD equations that govern the linear perturbations around the ideal

static equilibrium presented above can be written in the (dimensionless) form

8



Op1

2L = Y- (o), (1)
6171 = =1 2} 2
p0-§—=~'vp1+(VXB0)XB1+(VXB1)XBU~ (11b)
oT; - -
Po—a—tl = —poU1 - VIg ~ (v — 1)pe Ty V - vy, (11c)
B - "
%:Vx(ffleo)—VX(nval). (11d)

The subscript 1 denotes an Eulerian perturbation. The resistivity, 7, is assumed to
be constant in the present paper and the ratio of the specific heats, v, is taken to be 5/3.
Equations (11a)-(11d) are, respectively, the continuity equation, the momentum equa-
tion for a non-viscous plasma, the equation for the variation of the internal energy, and
the induction equation which includes the ohinic term due to the finite electric conduc-
tivity of the plasma. An initially divergence-free magnetic field remains divergence-free
owing to equation (11d). Notice that there is no restriction to incompressible plasmas.
Equations (11a)-(11d) form a system of 8 partial differential equations for 8 unknowns,
viz. p1,V1r, V19, Y1, 11, B1r, B1y, and By, which is to be completed with appropriate
boundary conditions, namely regularity at the magnetic axis s = 0 and vanishing normal
magnetic field and velocity at the plasma boundary s = 1. The systemr (11) is written
in dimensionless form. The time is expressed in Alfvén-transit-times, ¢4 = a/V}4, with
Va4 = Bog(0)/ \/,upT(O). The plasma pressure and the temperature are normalised to, re-
spectively, Bog(0)/u and iV2/R. The velocity, 7, is normalised to V4 and the resistivity
to i a V4 In the following, we will always use dimensionless quantities.

The linearisation of the resistive MHD equations around a static equilibrium is, strictly
speaking, an inconsistency in the model since magnetostatic equilibria do not exist in
resistive MHD, because the resistive diffusion generates flow. However, linearisation around
an ideal magnetostatic equilibrium yields a good approximation for the description of
phenomena with a characteristic time scale that is long compared to the dynamic time
scale (Tgyn = lo/Va, with Iy a characteristic length) and short compared to the time scale
of resistive diffusion (74;f = I2/n). Resonant absorption can be treated within the theory
of linear motions around a magnetostatic equilibrium because the characteristic time scale

—1/3 and — for the relevant (very small)

related to this phenomenon is proportional to 7
values of 7 — much smaller than 74i5 (~ 5~!) but much larger than the dynamic time

scale. Put differently, for the very small values of 1 that are relevant in tokamak plasmas,
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74if 1s much longer than the other time scales of interest. Consequently, resistive effects
can only be important in localised regions where the current profile has a large gradient,
implying a small characteristic length l. When the plasma is driven periodically such
localised regions form around the ideally singular layers where the local Alfvén frequency

matches the frequency of the external source.

Since the equilibrium quantities do not depend on the toroidal angle ¢ the separation

ansatz

400
fils,9,8,8) = X e fi(s,0) = X e ST fi () (12)

m=—oc

is suitable for the perturbed quantities. Here, X is the eigenvalue. The imaginary part of
A corresponds to oscillatory behaviour, while a negative real part indicates damping and

a positive real part yields an exponentially growing instability.

MHD spectroscopy (Goedbloed 1991), i.e. the identification of ideal and dissipative
MHD modes for the purpose of diagnosing tokamaks and optimising their stability prop-
erties, requires a numerical tool which accurately calculates the dissipative MHD spectra
for measured equilibria. The new spectral code (Kerner et al. 1991) CASTOR (Complex
Alfvén Spectrum for TORoidal Plasmas), together with the equilibrium solver HELENA
(Huysmans, Goedbloed & Kerner 1991), provides such a tool. In CASTOR, the fluid vari-
ables p, v, T, and B = V x@ are discretised by means of a combination of cubic Hermite and
quadratic finite elements for the radial direction and Fourier modes for the poloidal coordi-
nate. The equilibrium in non-orthogonal flux coordinates (i, 4, ¢) with straight field lines
1s computed using isoparametric bicubic Hermite elements, resulting in a very accurate rep-
resentation of the metric elements. Finally, for analysis of JET discharges the equilibrium

solver HELENA is interfaced with the equilibrium identification code IDENTC(D).

In the absence of particle effects, the resulting generalised non-symmetric eigenvalue
problem A - ¥ = A B . ¥ with block tridiagonal matrices A and B is solved by means of
different algorithms (QR, inverse vector iteration, Lanczos) which produce the complete
spectrum, single eigenvalues, or branches of the spectrum in the complex A-plane, respec-

tively. The structure of the code allows for easy extension with other dissipative terms.
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e.g. viscosity and thermal conductivity.

3. Toroidal Alfvén Spectrum

3.1 Continuous spectrum

In ideal MHD the Alfvén spectrum of tokamak plasmas comprises both discrete and
continuous spectra. The corresponding continuous “normal” modes are characterised by
non-square integrable singularities. When the equilibrium quantities depend only on the
radial coordinate, being constant on magnetic surfaces, different poloidal Fourier compo-
nents of the perturbations, Eq. (12), do not couple and the continuous part of the spectrum
is determined easily by the coefficient of the highest radial derivative acting on the normal
component of ¥. The condition that this coefficient vanishes yields the dispersion rela-
tion Eq. (1) in a simple algebraic form. Generally, in toroidal systems the equilibrium
quantities exhibit poloidal dependence. This loss of symmetry makes the determination
of the continuous spectrum more complicated by introducing derivatives in the poloidal
direction. Goedbloed (1975) and Pao (1975) have shown that the continuous spectrum
i1s determined by a reduced eigenvalue problem in the form of a fourth-order system of
ordinary differential equations on each flux surface. This analysis utilises an expansion at
a particular flux surface » = 1g. This reduced eigenvalue problem yields a discrete set
of eigenvalues on each flux surface. When the position of the flux surface is varied each
eigenvalue of this discrete set maps out a continuous spectrum. It has been shown, in
addition, that the normal components of velocity and magnetic field possess a logarithmic
singularity while the perpendicular components diverge as 1/(y" — ¥s).

We have found an extremely convenient way for computing the continuous sub-spectra
(Poedts & Schwarz 1991). It is recalled that the numerical solution of the MHD equations
in the form of a normal mode analysis leads to a large-scale eigenvalue problem A -7 = A B-
Z, where I stands for the numerical coefficients of the state vector WT = (p1.t1,Th,dy),
where B; = V x @. By supplying sufficiently many poloidal harmonics M and radial
points Ny, the entire spectrum — the continuous part as well as discrete modes — is
computed. This, however, requires the solution of large-scale eigenvalue problems with
dimension up to 50,000. The amount of computational work necessary to map out the

continua can be decreased significantly by solving a reduced eigenvalue problem on each
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flux surface separately. Instead of solving for the singular behaviour in the eigenfunction
by means of a large number of radial grid points, the known singular nature is prescribed
and it is solved for the remaining regular part. This is achieved by utilising the sub-blocks
of CASTOR within the matrices A and B but replacing the finite elements for representing
the normal components of ¢ and log(€) and the corresponding elements for the remaining
components of the state vector by 1/€, where the constant é has a small value, typically
¢ = 1078, This reduced eigenvalue problem on each flux surface is solved very accurately
and efficiently by the QR algorithm.

1 = 2.5, a safety factor in-

A circular cross-section equilibrium with aspect ratio e~
creasing monotonically from g9 = 1.10 on the magnetic axis to gs = 2.66 at the plasma
surface (as indicated in Fig. 1a) and with a small pressure 3, = 2% and 3 ~ 0.06% is
analysed. The density is only slightly varying with D = 0.5 and v = 2 in Eq. (8). The
toroidal wave number is chosen as n = —1 and five poloidal harmonics are included, viz.
m = 0, 1, 2, 3, and 4. Part of the continuous spectrum is displayed in Fig. la. The
profiles of the local Alfvén frequencies are shown in dependence of the radial coordinate
s. The dominant poloidal Fourier harmonic is indicated on each continuum branch. The
slow magnetosonic continua are in this case close to the origin (as a consequence of the
considered low plasma pressure), whereas the frequencies of the Alfvén continuum modes
readily exceed unity.

The branch of the predominantly m = 1(m = 2) mode extends with increasing s from
Im(A) = 0.10 to Im(A) = 1.64 (from Im(A) = 0.82 to Im(A) = 0, respectively). There is
a finite gap around I'm(A) = 0.5 induced by poloidal mode coupling. The mode coupling
between the m = 1 and m = 2 components is the strongest at s = 0.72, where the safety
factor is ¢ = 1.50. The resulting gap in the continuous spectrum reaches from Im(\) = 0.33
to Im(A) = 0.65. In the cylindrical limit (¢ = 0) this coupling between the m = 1 and the
m = 2 mode vanishes producing two independent continua for m = 1 and m = 2 with a
degenerate continuum frequency at the rational surface where ¢ = 1.50. Near the plasma
boundary, at the rational surface where ¢ = 2.5 (s = 0.98), toroidicity- induced poloidal
mode coupling between the m = 2 and the m = 3 modes causes a similar ‘avoided crossing’
in the continuum branches of the predominantly m = 2 and 3 components. The resulting
gap in the continuous spectrum overlays the previous one and reaches from Im(\) = 0.23
to Im(A) = 0.73. Three other gaps are visible in the window shown in Fig. la, one

around Im(A) = 1.0 and two around I'm(A) = 1.5. These gaps are much smaller than the



previous ones because they result from the coupling of ‘non-neighbouring’ poloidal modes,
ie. | m —m'|# 1. As the mode coupling is gradually weaker with increasing | m — m/'|,
the corresponding gaps are gradually smaller. The gap at s = 0.91, for instance, is due
to the coupling of the m = 1 and 3 harmonics, which is strongest at ¢ = 2.0. This gap
is smaller than the previous ones : it reaches from Im(A) = 0.94 to Im(A) = 1.11. Still
smaller are the two gaps around Im()X) = 1.5 : one at s = 0.72 reaching from Im(X) = 1.48
to Im(A) = 1.50 and one at s = 0.98 reaching from Im(A) = 1.51 to Im(A) = 1.60. These
gaps are due to the next higher order in the mode coupling, namely between the m = 0
and 3 components at s = 0.72 (where ¢ = 1.5) and between the m = 1 and 4 harmonics
at s = 0.98 (where ¢ = 2.5).

Fig. 1b displays the corresponding part of the full ideal MHD spectrum computed with
CASTOR with only 21 radial grid points and for the same poloidal mode numbers. Of
course, CASTOR can not determine the internal structure of the continuous spectrum, i.e.
the radial profiles of the local Alfvén frequencies. Instead, the projection of these profiles
on the imaginary A-axis is obtained with CASTOR. The continuous part of the spectrum
as well as the related gap structure corresponds satisfactorily for the two procedures. For
a full agreement, of course, the same number of radial grid points should be provided in
both procedures, which would require the inverse iteration technique for one eigenvalue
at a time as the QR algorithm, which diagonalises the entire matrix, is then no longer
applicable because of its enormous memory requirements. It is, nevertheless, evident from
Fig. 1a and b that the two spectra agree well on the continuum branches. The apparent
discrepancy near Im(A) < 0.94 and 2.0 is due to the coarse grid in the complete solver
using only Ny = 21 grid points and thereby resolving only few continuum modes. For
Fig. 1a the reduced eigenvalue problem was solved on 400 (equidistant) magnetic flux

surfaces.

3.2 Discrete global modes

Inspection of the location of the singular surfaces of the continuum modes reveals
indeed full agreement with the sub-spectra in Fig. la. This confirms the existence of
“forbidden zones” in the eigenvalue plane as can be established easily in the large-aspect
ratio limit by keeping at least two Fourier harmonics. Fig. 1b reveals, in addition, the
existence of discrete global modes within these forbidden zones (Cheng & Chance 1986),
here for Im(A) = 0.39 and I'm(A) = 0.95. The Real part of the rv,.- component of the
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eigenfunction of the discrete Alfvén mode in the basic gap is shown in Fig. 2. In addition
to the expected m = 1 and 2 components the m = 3 and 4 components show up too, with
a smaller amplitude due to the small aspect ratio (¢ = 0.4). It is evident that the discrete
gap mode extends throughout the plasma. This indicates that the mode coupling allows
the construction of discrete normal modes, which avoid the jumps and singularities that
are present in the cylindrical limit (¢! = oo) and which satisfy the boundary conditions.
An immediate conclusion is that there should be more than one discrete global mode with
this property as many poloidal modes couple. We expect an entire class of global Alfvén
modes with increasing number of radial nodes. On the other hand, not in every gap such
a global mode occurs. Gap modes only appear when the poloidal mode coupling is strong
enough. For instance, in Fig. 1 such a mode is missing in the small gap (‘small’ because
of weak mode coupling) around Im(A) = 1.5. But, as we will see, even with strong mode
coupling the resulting gaps can be ‘empty’.

The frequencies of these discrete gap modes and, hence, the position of these frequen-
cies in the gaps, depend clearly on the specific equilibrium. By changing the equilibrium
parameters, for instance by increasing the pressure and/or by decreasing the inverse aspect

! — 1.0, the eigenvalue corresponding to the gap mode can even be ‘pushed’

ratio €~
outside the gap. This is demonstrated in Fig. 3 where a set of equilibria is considered with
increasing pressure. In Fig. 3 the relative distance of the gap mode frequency to the lower
edge of the gap in which it is located, is displayed versus the poloidal plasma beta, 3, (see
eq. 10), of the equilibrium. It is seen that the gap mode shifts towards the lower edge of
the gap as the plasma pressure is increased. For 3, = 1.27 the mode sits on the lower edge
of the gap and for still higher plasma pressure it seems to disappear out of the gap into
the continuous spectrum where it couples to the continuum modes (the mode indicated on
the plot is the one the code converged to, but at this moment it is not clear to us whether
this is an ordinary continuum mode or whether the gap mode has maintained its discrete
character even at this point outside the gap).

In order to demonstrate the other extreme, namely the fact that a single gap can
contain more than one global mode at once, we found it more effective to vary the as-
pect ratio. We enhanced the poloidal mode coupling due to toroidicity by increasing the
toroidicity effect, i.e. by increasing the inverse aspect ratio of the equilibrium. As a result
of the increasingly stronger mode coupling the gap size gradually increases as illustrated

in Fig. 4, where the lower and upper edges of the basic gap are plotted versus the inverse
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aspect ratio €. Also indicated here are the corresponding frequencies of the discrete gap
modes found in this gap. When the gap is wide enough, i.e. when the poloidal mode
coupling is strong enough, a second gap mode appears in the basic gap. For the case
shown in Fig. 4 this happens for € = 0.6. We made a convergence study of the frequency
of this second gap mode for € = 0.8, both in N, and N,,, in order to check whether this
second gap mode is not an artefact caused by a too low resolution or a too small number
of Fourier harmonics (for € = 0.8 the poloidal mode coupling is quite strong and 5 modes
do not suffice to represent the mode accurately). We went up to 100 radial intervals and
11 Fourier components (m = —3 — 8) and obtained full convergence with the frequency
still in the gap which proves there are indeed two modes in this gap. The second gap mode
looks different than the first one which looks very similar to the mode shown in Fig. 2. The
real part of the rv,-component of the eigenfunction of the second gap mode is displayed in
Fig. 5. It is seen that the dominant m = 2 component of this mode has one radial node in
the rv,.-component in contrast to the first gap mode (see Fig. 2). It is also seen that this
mode has a different parity in the Fourier harmonics. For the mode shown in Fig. 2, all
coeflicients of the Fourier harmonics have the same sign whereas for the mode shown in
Fig. 5, these signs are not all the same. The same applies to the other components of the
eigenfunction. The m = 2 contribution is dominant and all coefficients of Fourier modes
with m > 2 have the same sign as the m = 2 component, while those of the harmonics

with m < 2 all have the opposite sign.

3.3 High-n cases

A gradually more complex gap structure emerges in the continuous spectrum for a
stronger magnetic shear, stronger density variation and higher toroidal mode number.

1 = 2.5 is analysed having

Again the circular cross-section tokamak with aspect ratio e~
small pressure and a safety factor increasing from ¢go = 1.05 on axis to ¢s = 2.54 on surface.
Now, the toroidal wave number is chosen as n = —3 and the poloidal wave numbers are
m = 2,3,4,5, and 6. The density profile considered here is given by equation (8) with
D = 0.05 and v = 2. The continuum structure and the corresponding part of the entire
ideal-MHD spectrum are shown in Figs. 6a and 6b, respectively. The ¢(v)-profile is also
indicated on Fig. 6a. Again, the numbers on the contnuum branches indicate the dominate

Fourier harmonic for that continuum branch. Three overlaying gaps with Im(A) = 0.5

occur : near s = 0.47 where ¢ = 7/6 and m = 3 and 4 couple strongly, near s = 0.78 where



g = 1.5 and m = 4 and 5 couple strongly, and near s = 0.89 where ¢ = 11/6 and m =5
and 6 couple strongly. From Fig. 6b it is clear that two discrete, global Alfvén waves exist
in these gaps. The ideal MHD eigenfrequencies of these two modes are indicated in Fig. 6b
and the rv,-components of the corresponding eigenfunctions are displayed in Figs. 7a and
7b. Two other gaps occur around Im(A) = 1.0 due to the coupling of the m = 3 and 5
modes (at the ¢ = 4/3-surface) and the m = 4 and 6 modes (at the ¢ = 5/3-surface). The
calculation of the ideal MHD spectrum by means of the QR algorithm seems to suggest the
existence of a global wave inside the m = 3, m = 5 gap (see indication on Fig. 6b). This,
however, is a consequence of the low spatial resolution imposed by the enormous memory
requirements of the QR algorithm. An inverse vector iteration with higher resolution
(Ny = 101) reveals that the indicated frequency corresponds to a continuum mode and
not to a global mode. Indeed, the m = 4, 5 and 6 continuum branches in the outer part
of the plasma cover the m = 3,m = 5 gap at the ¢ = 4/3-surface (see Fig. 6a). The
low spatial resolution used to produce Fig. 6b is responsible for the bad representation of
these continuum branches. Hence, only two gap modes are found in this configuration.
In contrast to the previously shown gap modes, these global modes interact now with the
continua because the gaps in which they are located are now overlayed by one or more
continuum branches which is a consequence of the steep density profile near the plasma
surface (D = 0.05). The two discrete global modes in the lower gaps both exhibit a singular
m = 6 component due to coupling to the m = 6 continuum branch that is overlaying these
gaps (see Fig. 6a), whereas the regular gap modes are mainly due to coupling of the m =3
and 4 and m = 4 and 5 harmonics, respectively. The consequences of the coupling between
the discrete global modes and the (singular) continuum modes yielding singular parts in
the eigenfunctions is discussed in the next Section.

An even more pronounced gap structure is obtained for n = —5 as shown in Fig. 8.
Here the equilibrium parameters are chosen such that the interaction of the gap modes
with the continua are not pronounced. In Fig. 8 many more gaps occur as compared to
the previously shown continua. This is a consequence of the higher | n}-value. Remember
that the gaps occur in toroidal plasmas on the rational surfaces where ¢ = j—'%tL") as
a result of the cancellation of the one-dimensional degeneracies on those surfaces. For
higher n-values there are gradually more of such rational surfaces and, hence, there are

gradually more gaps in the continuous spectrum. In Fig. 8 not less than 8 overlying gaps

occur around Im(A) = 0.5 due to coupling of the m = 5 and the m = 6 branch at s = 0.32
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(where ¢ = 11/10), the m = 6 and the m = 7 branch at ¢ = 13/10, etc. The same scenario
is repeated around Im(A) = 1.0 due to the (higher order) coupling of dominant modes
with a poloidal mode number that differs by 2 (m = 5 and 7, 6 and 8§, etc.). Notice also
in Fig. 8 that the width of the gaps depends clearly on the magnetic shear : the gap size
increases with increasing ¢-values.

The findings of this Section reveal that for tokamak configurations there exist gaps,
1.e. forbidden eigenvalues, in the ideal MHD continuous spectrum. These gaps are due to
toroidal effects which couple continuum branches with different poloidal wave numbers m
and m'. This coupling is the strongest at the rational surfaces where the corresponding
one-dimensonal continuum frequencies are degenerate, i.e. where ¢ = —(m + m')/2n.
The effect of the mode coupling is to cancel these degeneracies which results in ‘crossing
avoidances’ and, hence, gaps. In addition, there exists a class of discrete global Alfvén

modes with eigenfrequencies within these gaps due to toroidal coupling.

4. Damping of Global Alfvén Waves

Regular discrete Alfvén modes possess a well defined frequency and in such a mode
every part of the plasma oscillates with this particular frequency. For a continuum mode,

on the other hand, it holds that the normal component of the velocity is damped like 1/t

Vp ~wae WAL (13)

whereas the tangential components execute undamped oscillations

vp ~ —t(waw'y ko )eTAL (14)

These components undergo completely uncoordinated oscillations, where each plasma layer
oscillates with its own local Alfvén frequency. If the plasma is continuously excited peri-
odically at such a continuum frequency, phase-mixing takes place until eventually after a
time Tss a steady state is reached and the entire plasma oscillates with the same driving
frequency w = wy. As a consequence of the phase-mixing, the oscillation of neighbouring
flux surfaces with different local Alfvén frequencies gets out of phase and large gradients
build up around the plasma layer where the local Alfvén frequency matches the frequency

of the external driver. In this resonant layer dissipative effects become important. Hence,
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the damping of Alfvén waves by phase-mixing is essentially due to the inhomogeneity of
the equilibrium in ordinary space and is analogous to Landau damping which results from
the inhomogeneity of the equilibrium in velocity space. The efficiency of plasma heating by
phase-mixing or resonant absorption is completely determined by the presence of global
discrete modes with a frequency in the range of the ideal continuous spectrum. These
modes play the role of energy-carrier and transport the energy supplied by the external
source from the plasma surface, through the magnetic surfaces, to the resonant layer. As
shear Alfvén waves propagate only along magnetic field lines, resonant absorption is highly
inefficient without such a damped global mode. Since the ideal MHD differential operator
is Hermitian, there exist no eigenfrequencies with both a non- vanishing real and imaginary
part. Therefore, this mode of plasma oscillation does not correspond to a normal mode in
ideal MHD and is consequently called a “quasi-mode” or “collective mode”. In a previous
paper (Poedts & Kerner 1991) it has been shown that the ideal quasi-modes correspond to
weakly damped eigenmodes of the resistive-MHD differential operator. Moreover, in the
limit of vanishing plasma resistivity the damping of these resistive eigenmodes remains fi-
nite and becomes independent of the plasma resistivity. Hence, these resistive eigenmodes
converge to their ideal-MHD analogues in the limit of vanishing 7. It is emphazised that
this does not hold for the Alfvén continuum modes. In resistive MHD, the ideal contin-
uum is replaced by a set of discrete resistive eigenvalues which lie on well-defined curves
in the complex A-plane. With a finite number of exceptions these resistive eigenmodes
do not converge to the ideal MHD continuum modes in the limit of asymptotically small
resistivity.

In the following we will construct global Alfvén modes interacting with continuum
modes by choosing the equilibrium parameters such that there is a continuum branch over-
laying the gap, so that the gap mode frequency corresponds to the local Alfvén frequency
of at least one magnetic surface. In analogy to the calculation in cylindrical geometry the
singularity in the equations is removed by including finite resistivity. Again. the resulting
damping is determined by computing Re()) in a resistive plasma and then decreasing the
plasma resistivity. Since the damping becomes independent of the actual value of the re-
sistivity in the limit of vanishing eta, we are again dealing with quasi-modes but this time
in toroidal systems. It has been shown above how the gap structure is changed by varying
the magnetic shear and the density profile. By changing the constant D for the equilibrium

studied in Fig. 1 from D = 0.5 to D = 0.01, the density decreases strongly in the outer
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part of the plasma causing a strong increase in the local Alfvén frequency. The resulting
gap structure is displayed in Fig. 9. There is only one gap visible in the window shown in
Fig. 9. It results from a crossing avoidance of the two continuum branches with, respec-
tively, m = 1 and m = 2 as dominant Fourier harmonic and extends form I'm(A) = 0.525
to Im(A) = 0.819. A global Alfvén mode is found with Im(A) = 0.58 (in the gap). Notice
however, that due to the strong density decrease in the outer part of the plasma the m = 2
branch increases again in this part of the plasma and overlays the gap. As a result, the
gap mode frequency matches now a continuum frequency on the m = 2 branch near the
boundary. This, of course, affects the eigenfunction corresponding to the gap mode. The
eigenfunction for ideal MHD, i.e. n = 0, (see Fig. 10a) reveals a regular, global plasma
mode with a singular behaviour at s = 0.94. It is evident that all Fourier components,
not only the m = 2 component, couple to the singularity. A physical eigenmode without
singularity is obtained for finite resistivity, n = 10~7 (shown in Fig. 10b). Due to the
low resistivity the solution is nearly singular. So, the regular part in the eigenfunction is
identical as in ideal MHD (see Fig. 10a) and the solution is changed only in a small layer
around s = 0.94. The singular behaviour of the ideal MHD eigenfunction is clearly recog-
nizable in the resistive solution and the jump contribution even appears more pronounced
although their is no real jump any more. It has to be pointed out that for the considered
equilibria with up- down symmetry the matrices A and B in the eigenvalue problem have
real elements. Therefore, a complex eigenfunction is required for an imaginary or complex
eigenvalue. For these eigenmodes, the jump and the logarithmic singularity in the normal
component of the velocity manifest themselves more dominantly in either the real part or
in the imaginary part of the complex eigenfunction. This fact explains why in Fig. 10a,
the logarithmic singularity is more pronounced and in Fig. 10b, the jump.

Next, it has to be examined how the results and, in particular, the damping that
follows from the coupling to the continuum modes, depend on the actual value of eta. In
Fig. 11 a convergence study of the damping (| Re(A)|) of the gap mode shown in Fig. 10
is presented. This figure shows in fact two kinds of convergence at once. viz. convergence
of the damping for n — 0 and, for each value of 5 convergence with respect to the Ny.
The plasma resistivity 7 was varied over four orders of magnitude from 10~* to 10™® and
the damping has been computed with 51, 101, 201, 401, 601, and 801 spatial grid points
in radial direction for each eta value. It is clear that sufficiently many radial mesh points

are required for properly resolving the (nearly-singular) layer around s = 0.94. It is also
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clear that this resolution has to be higher for lower values of the plasma resistivity since
the layer is narrower than. This qualitative picture is indeed confirmed and quantified in
Fig. 11. For n = 10™* and 1073, 51 radial grid points are sufficient and increasing the
resolution just yields exactly the same damping. For n = 10~%, however, 101 radial mesh
points are needed to get the damping right and for = 10~7 we need Ny, > 201. For
n = 107® the damping becomes idependent of the spatial resolution for Ny > 601. The
oscillatory frequency stays at Im(A) = 0.58 and the real part of the frequency converges
to Re(\) = —1.99 x 1072, thus § = 3.4%. It is evident that we have a well defined result
forn < 107%.

I = 2.5 is shown in

The gap structure of an equilibrium with g, = 1% and again €~
Fig. 12. Except from enlarging the slow- mode continua up to Im(A) < 0.5 the pressure is
not essential — as expected — for the Alfvén branch. Three gaps are present in the shown
part of the ideal continuous spectrum : anm =1, m =2gapat ¢ =3/2,anm=2,m =3
gap at ¢ = 5/2, and an m = 1,m = 3 gap at ¢ = 2. There exists a gap mode in this last
gap with oscillatory frequency 1.43, which couples to the continuum modes of the m = 2
branch that overlays this gap. The corresponding eigenfunction is shown in Fig. 13. The
(ideal) singularity is here very pronounced in all five harmonics of the mode because the
coupling between the harmonics is stronger now as a consequence of the higher shear and
higher pressure as compared to the previous case. The damping too is somewhat higher
here : § = 4%.

So far the possible strong damping for global toroidal Alfvén waves has been demon-
strated. When this mode is excited by energetic particles the absorption of the corre-
sponding energy takes place near the plasma boundary in the two simulations shown so
far. It is natural to conjecture that this absorption should also occur near the centre, if
the equilbrium profiles are chosen such that a resonance can occur there. An interesting
configuration is generated by choosing ¢ on axis as go = 0.8 (¢s = 1.84) in the previously
examined low pressure equilibrium with the density sharply falling at the edge, D = 0.01
and v = 2 in Eq. (8). When the toroidal wave number is n = —3 and the poloidal harmon-
ics m = 1 to 7 are included, the corresponding toroidal continua yield a wide gap around
s = 0.8 where ¢ = 1.16. This gap is generated by the strong coupling of the m = 3 and 4
Fourier harmonics. This coupling should take place for ¢ = —(m + m')/2n = 7/6 = 1.16,
which is indeed confirmed by the results shown in Fig. 14. A global Alfvén mode exists

with an eigenvalue Im(\) < 0.96 well within this gap. This global mode interacts with the
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m = 2 continuum branch at s = 0.47, with the m = 4 continuum branch at s = 0.92 and
with the two m = 5 continuum branches at s = 0.96 and at s = 0.97. The corresponding
ideal eigenfunction exhibits a global structure with predominantly m = 2. 3 and 4 har-
monics and with 4 singular layers at s = 0.47 (m = 2 branch), at s = 0.92 (m = 4 branch)
and at at s = 0.96 and s = 0.97 (m = 5 branches). Again the singularity of the ideal case
n = 0 is coupled to several Fourier components. In Fig. 15 the radial velocity component
of the resistive eigenfunction is shown for » = 10=5. Here, of course, the singularities
have disappeared form the eigenfunction due to the finite conductivity of the plasma. The
resistive mode has also a global nature and the ideal singularities are now replaced by a
relatively smooth transition in a resistive plasma layer around the ideally singular surfaces.
The convergence study for asymptotically small resistivity, shown in Fig. 16, reveals that
the damping remains constant for eta smaller than 10~%. Now four basic singularities at
four distinct positions have to be resolved accurately. This requires a large number of ra-
dial grid points for resolving these four resistive layers in the limit of vanishing resistivity,
e.g. up to Ny > 801 for n = 10™8. Apart from this increased computational effort, the
results emerge very clearly. For asymptotically small dissipation the damping becomes
independent of dissitation and remains finite, i.e. lim,__. ¢ = 9.5%. In this case, where

resonant absorption takes place at four distinct locations, the damping is indeed large.

5. Conclusions

We have studied the Alfvén spectrum of axisymmetric tokamak plasmas. In contrast
to the determination of the continuous part of the ideal MHD spectrum of plasmas with
cylinder symmetry, the determination of the ideal continuum of toroidal plasmas is not
trivial. The toroidal curvature induces a poloidal mode coupling which is the strongest on
rational surfaces where the cylindrical continuum frequencies are at least four-fold degen-
erate. The effect of the mode coupling is to remove these degeneracies which gives rise to
‘avoided crossings’ and, by consequence, ‘gaps’ in the continuous spectrum of finite aspect
ratio tokamaks. The size of these gaps is proportional to the strength of the poloidal mode
coupling and the appearance of the gaps stresses the importance of two-dimensional effects,
e.g. for Alfvén wave heating, since whole frequency bands that yield resonant absorption
in one-dimensional (cylindrical) models are not eligible for this heating mechanism in —
more realistic — two-dimensional equilibrium models. When the poloidal mode coupling

is strong enough, global Alfvén modes are found with a frequency in the above mentioned
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gaps. These ‘gap modes’ might play an important role in controlled thermonuclear fusion
as they can be destabilized by interaction with (fusion born) a-particles. These a-particles
— whose confinement is essential for ignition and hence for the possibility of generating
controlled fusion energy — are lost by particle-wave resonances. However, the interac-
tion of these gap modes with ideal continuum modes causes phase-mixing so that these
modes are damped by the same resonant absorption mechanism that enables Alfvén wave
heating. The important question now is which of the two phenomena - - destabilization
by interaction with a-particles or damping by interaction with continuum modes — is
dominant. In the present paper, we were able to quantify the damping of the gap modes
due to resonant absorption. The internal structure of the ideal Alfvén continuum is very
complex in tokamak plasmas and the gaps that occur at the rational surfaces are ‘covered’
by one or several continuum branches overlaying the gaps. As a consequence, the gap
modes interact with the continuum modes with the same frequency and are damped by
phase-mixing. Hence, the gap modes become quasi-modes in ideal MHD. Upon studying
these modes in resistive MHD numerically by utilising the code CASTOR, we were able
to show that, for asymptotically small resistivity, the damping of the global gap modes is
finite and independent of . We presented cases where the ratio of the real (damping) and
imaginary (oscillatory) part of the frequency of the gap modes is of the order of 10% in
the ideal-MHD limit.

The existence of TAE modes and their destabilization by neutral beam injection has
been demonstrated in TFTR (Wong 1991) and in DIII-D (Heidbrink et al. 1991). In both
experiments the pressure due to the energetic particles, 801, had to exceed the analytic
threshold by one order of magnitude in order to produce the predicted instabilities. This
clearly indicates that the plasma exhibits a certain damping, most probably in the form
of resonant absorption as considered here. A damping in the order of é = 0.5 — 1% can
easily explain the observed increased threshold for Bi,¢. Further detailed studies have to
be performed to show whether the damping can yield indeed re-absorption of the energy
near the plasma center and whether the high damping rates with 6 ~ 5 — 10% can be
realised by appropriately modifying the density profiles. In this context, experiments with

pellet injection are of great interest.
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Figure captions

Figure 1 : a) The ideal MHD continuous spectrum, in particular local Alfvén and slow
magnetosonic frequencies versus s for a circular cross- section toroidal plasma with
e =04, go = 1.10, g5 = 2.66, and B, = 2%. The density varies according to Eq. (8)
with D = 0.5 and v = 2. The wave numbers are chosen as n = —1, and m = 0,1,2,3,
and 4. b) Corresponding part of the full ideal MHD spectrum as obtained by using
CASTOR (Ny = 21, same wave numbers). Within the numerical accuracy the real
part of A is zero (n = 0).

Figure 2 : Radial dependence of the Fourier harmonics of the rv,- component of the
eigenfunction of the discrete Alfvén mode with a frequency located in the basic gap
shown in Fig. 1 (as indicated in Fig. 1b).

Figure 3 : Relative distance of the frequency of the gap mode from the lower edge of
the gap versus the (poloidal) plasma beta. Here e = 0.4, ¢o = 1.2, D = 0.01, v = 2,
n=—1,and m =0, 1, 2, 3, and 4.

Figure 4 : Width of the basic (m =1 and 2) gap and frequencies of discrete gap modes
therein versus the inverse aspect ratio. The other parameters are chosen as ¢g = 1.05,
D=05v=2n=-1,and m =0, 1, 2, 3, and 4.

Figure 5 : Radial dependence of the dominant Fourier harmonics of the rv,-component
of the eigenfunction of the second gap mode with Im(A) = 0.80 as indicated in Fig. 4
for e = 0.8.

Figure 6 : a) Structure of the ideal-MHD continuous spectrumn for n = —3 and m =2, 3,
4, 5, and 6, ¢ = 1.05 and a density profile given by Eq. 8 with D = 0.05 and v = 1.
b) Corresponding part of the full ideal- MHD spectrum obtained by using CASTOR.
Because of the coarse grid (N, = 21) the singularity in the gap modes is not resolved
and the real part of A is found to be zero. The correct damping can be determined
by means of a convergence study as shown in Section 4.

Figure 7 : Radial dependence of the Fourier harmonics of the real part of the rv,-
components of the two gap modes with a) Im(\) = 0.46 and b) Im(A) = 0.53 as
indicated in Fig. 6b.

Figure 8 : Structure of the ideal- MHD continuous spectrum for n = —5 and m = 3 — 13,

go = 1.05 and a density profile given by Eq. 8 with D = 0.1 and » = 1.
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Figure 9 : Structure of the ideal-MHD continuous spectrum for n = —1 and m = 0 — 4,
go = 1.10 and a density profile given by Eq. 8 with D = 0.01 and v = 2.

Figure 10 : Radial dependence of the Fourier harmonics of the real part of the rv,-
component of the gap mode with the frequency Im(A) = 0.58 as indicated in Fig. 9
a) for n = 0 and Ny = 401 and b) for = 1077 and Ny, = 401. The other parameters
are chosen as in Fig. 9.

Figure 11 : Relative damping versus plasma resistivity for the mode shown in Fig. 10 and
for different values of Ny. This convergence study shows the need for a sufficiently
high resolution in the resistive layer in order to get the damping correct.

Figure 12 : Structure of the ideal- MHD continuous spectrum of a higher- pressure toka-
mak plasma with ! = 2.5 and #, =0.31. forn = =1 and m =1 — 5. g9 = 1.05 and
a density profile given by Eq. 8 with D = 0.05 and v = 1.

Figure 13 : Radial dependence of the Fourier harmonics of the real part of the rv,-
component of the gap mode with the frequency Im(\) = 1.44 as indicated in Fig. 12
for n = 0 and Ny = 301.

Figure 14 : Structure of the ideal- MHD continuous spectrum forn = —3andm =1 -7,
go = 0.8 and a density profile given by Eq. 8 with D = 0.01 and » = 2.

Figure 15 : Radial dependence of the Fourier harmonics of the real part of the rv,-
component of the gap mode with the frequency Im(A) = 0.96 as indicated in Fig. 14
for n = 107° and N, = 201.

Figure 16 : Relative damping versus plasma resistivity for the mode shown in Fig. 15
and for different values of N,, again showing the need for a sufficiently high resolution

in the resistive layer in order to get the damping correct.
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