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Abstract

High energy particle drift orbits near the magnetic separatrix have been
studied in order to analyze the divertor target plate heat load by the
superthermal ions. It was found that the particle flux profile usually has
three maximums at the toroidal drift facing divertor plate, and two at the
opposite one.

It is shown that toroidal field ripple due to discreteness of the toroidal
coils produces a ripple well region near the divertor X-point and as a
consequence can change the distribution of the escaping particles over the
target plates. The convective flux of the ripple trapped particles provides
noticeable toroidal asymmetry of the particle flux profile, even at a very
small ripple value of < 10-3.

JET parameters have been considered as an example, but the results
obtained are applicable to a tokamak-reactor as well.

1. Introduction

In tokamaks with poloidal divertor, the thermal heat flux from the plasma is concentrated in
a thin layer near striking points at the divertor target plates. The bigger the tokamak, and the larger
the thermal flux from the plasma, the smaller the relative thickness of the thermal scrape-off layer.
This conclusion follows from 2D modelling of energy balance in the scrape-off layer, based on the
transport equations [1]. In this approximation, the thickness of the layer is defined by the balance
of thermal heat conductions along the field lines and across the layer. A prediction for tokamak
reactors like ITER [2] with total fusion power of about 1 GW, indicates a very small thermal
scrape-off layer thickness of about Agp; = 1 cm. For such a narrow layer, there are a number of

effects which give rise to a spreading of the particle and heat fluxes at the divertor plates.



One of them, the particle toroidal drift, has been used in [3-5] for interpretation of
experimental observations of the divertor plate heat load patterns in JET. Because of the VB x B
drift particle orbits in a tokamak deviate from magnetic surfaces by a distance of Agqr = qpL. for
transit and Agr = qp1/e!/2 for banana particles. Here pr. is the particle Larmor radius, q the safety
factor and € the inverse aspect ratio. For particles with energy above several tens keV, Agp > Agol
and for the calculation of the high energy particle contribution to the divertor heat load, it is
necessary to consider not magnetic, but drift surfaces. As the magnetic surfaces the drift surfaces
have a separatrix which separates in the divertor configuration confined particle orbits from orbits
intersecting the divertor plates. While there is only one magnetic separatrix, particles with different
energies and pitch angles have different drift surface separatrixes and this leads to a spreading of
particle heat load at the target plates. This effect is important, especially for the loss of high energy
particles such as fusion alpha-particles in a tokamak reactor, or superthermal ions produced during
neutral beam heating in tokamaks. The reason why the high energy particles are lost is not
discussed in the present paper, but there is experimental evidence [6] that superthermal ions can be
lost during bursts of MHD activity. Monte Carlo orbit following models show [7] that the loss of
high energy ions may be caused by toroidal field ripple or MHD modes [8]. In any case, the
divertor plate heat loads by high energy particles depends on the geometry of the drift surfaces near
the divertor separatrix which are studied in section 2 of the present paper.

The second effect which can be important for the redistribution of the fast ion flux is
toroidal field ripple (section 3). A ripple well region always exists in the vicinity of the magnetic
X-point. The closer a magnetic field line is to the separatrix, the smaller BVIBI is, and therefore,
an arbitrary small ripple produces magnetic wells near the X-point. It will be shown that in JET
with 32 toroidal field coils and a very low ripple value, the width of the ripple well region is of the
order 10 cm. Banana particles with their turning point in the ripple well region can be trapped and
then drift vertically towards the target plate on the ion drift side. This effect does not change the
ion confinement in the bulk plasma, but leads to a redistribution of ion flux over the divertor target
plates. It is shown that the ripple trapping spreads the particle flux profile in the poloidal direction

and also produces a peaked toroidal flux profile. The toroidal flux profile is analysed in section 4.



2. Axisymmetrical Magnetic Field
The drift surfaces of charge particles in the axisymmetrical field are defined by three

constants of motion: particle energy, magnetic moment {, and angular momentum Pg:
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Here

¥ = ¥(R,Z) (3)

poloidal flux, B = By = BoRo/R is the toroidal magnetic field, Bo = B¢/(R=R,). The poloidal flux
is defined to be zero at the magnetic axis. For the particular class of high energy particles to be
considered here, the electric field will be neglected, and then:

v2 = v} +v3 = const. C))

Combining Egs. (1,2,3) one can easily obtain the equation describing the drift surfaces:
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where Rp and Wy, are the two constants defining the drift surface. For banana particles they are
actually the position of the particle turning point.

To study the geometry of drift orbits near the separatrix, it is more convenient to use 3D
space, R,Z,W instead of the traditional R,Z plane [9]. In this space the drift surface may be
represented as the intersection of the cylindrical surface Eq. (5) and surface Eq. (3), Fig. 1. To
obtain the drift surface shape in the R,Z plane, it is necessary to project the three-dimensional curve
(thick line) shown in Fig. 1, upon the R,Z plane. Here we shall use another projection of orbits,
namely R,y variables. A particular example is shown in Fig. 2, where the plasma boundary, first
wall position and trajectory are shown in the configuration space and variables R,'W. The
equilibrium W(R,Z) corresponds to the JET X-point discharge (# 23083). One can change the drift
orbit by changing the banana tip position. When the banana tip position is located out of the
plasma region in R,y space, the single banana trajectory splits into two transit particle orbits with

the same value of Ry and ¥y,



In order to avoid the prompt particle loss to the wall, we assume that there are no limiters
located close to the plasma near the equatorial plane. In this case, particles may escape from the
plasma only on the divertor target plates. Particle scattering and/or spatial diffusion leads to a
random walk of the banana tip position. In the banana diffusion regime where 14i¢ is greater than
the particle bounce time 1Ty, this process may be considered as random displacement of the surface
Eq. (5) marked as number 2 in Fig. 1. It can be seen from Fig. 1 and Fig. 2b that particles can
reach the target plates by passing through one of the separatrix trajectories which have their X-
points located on the curve given by

F¥(RZ) _,
=0,

The curve Eq. (6) is represented by the dashed-dotted line in Fig. 1. Two separatrix drift surfaces

©

for banana and transit particles are shown in Fig. 3 and Fig. 4.

The drift trajectory through the drift X-point goes strictly in the toroidal direction because
the toroidal drift in this point is compensated by the vertical component of particle longitudinal
velocity. Therefore, the particle at the separatrix has an infinite bounce time T — ¢=. In an actual
machine, small magnetic (and electric) field perturbations destroy the drift surfaces near the
separatrix, and produce an ergodic layer similar to the ergodic layer in the vicinity of the magnetic
separatrix.

The position of the X-point on the line Eq. (6) depends on the particle energy, and pitch
angle. In order to calculate the splitting at the X-point position, the following dimensionless
variables are introduced:

x=(R-R.)ja, z=(Z-Z,)fa, y=(¥-¥,)/2ma’B,(R,).

In these variables, Eq. (5) takes the form:

2
2
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where a is the plasma minor radius, € = a/Ry, PL = PL/a, pL is the particle Larmor radius. Using

the closeness of the drift X-point to the magnetic X-point, x <&, it is convenient to expand y(x,z)

in a series near the saddle point. To leading order we have
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where here « is the angle between the separatrix magnetic line, and the equatorial plane, and kis a

dimensionless parameter = 1/q; gs.

The drift X-point is a saddle point of the surface Eq. (7) and its coordinates are obtained

from the equations 0®/dx = 0, 0®/dz = 0. These equations are

z=-xctg(Ra), &)
and
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Eliminating yy, W and z from Egs. (7-10) one obtains the following equation for the x coordinate
of drift surface X-point:
x2(x—xp )1+ &x)
(1+2ex - ex,,)’

M, (11)

where
p2 sin2(2a)
M = ——'2—
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In the dimensional variables
2
M= n pl%Rng _
2
(02w or?)
R=R,,Z=Z,

In the zero banana width limit, Eq. (11) gives the solution
XxX=
Xp Xp> 0.

The finite banana width effect can be estimated analytically for particular values of xp. We obtain:
2(Me)? x,=-1e (vy=2v),
x={M!3 xp=0 , (12)
Xp+Mfx, xp>>MY3

Fig. 5 shows the dependence x = x(xp) obtained from the solution of Eq. (11) for the JET

equilibrium used above, and three particular values of M, which correspond to tritons with



energies E = 10, 100, 1000 keV. The banana particle with the same major radius at the tip, as the
magnetic X-point, have maximum shift of the drift X-point from the magnetic X-point.

The topology of separatrix surfaces of two transit particles and the banana particle are
shown qualitatively in Fig. 6. The separatrixes for banana and transit particles with vy > 0 are
shifted to the right hand side of the magnetic separatrix but the transit particles with vy < 0 shift to
the torus axis, The direction of particle motion along the separatrixes is shown in Fig. 6 by
arrows. It can be seen that the particle striking points are located between magnetic separatrix
striking points at the target plate in the ion drift side and outside the magnetic separatrix striking
points at the opposite target plate.

The position of the particle striking point at the target plate depends on the magnetic field
geometry and the target plate configuration, but the general features may be obtained by analysing
the following simplified model. We consider straight horizontal plates located at a small distance
zy 2 € from the magnetic X-point.. Using the approximation Eq. (8) for the poloidal magnetic
field, Eq. (7), and with the above solutions x = x(xp), one can easily calculate the position of
striking points 1-3, and 1'-3' (Fig. 6), as functions of particle pitch angle (or xp). Figs. 7 and 8
show the dependence of radial coordinates of the particle striking points xy, as functions of xp
calculated for low (E = 10 keV) and high (E = 1 MeV) energy particles and the JET equilibrium.

At the low energy there is an inaccessable or "dead" zone at the toroidal drift facing side
(between points a and b in Fig. 7). As the particle pitch angle decreases (xp increase) and the
transit particle with v > 0 is becoming the banana particle, the striking point position (marked by 3
in Fig. 7) jumps radially from point a to point b in Fig. 7 and then continues to change its position
in accordance with curve 2.

For the high energy particle with large banana width, there is no "forbidden" zone and the
striking point position changes gradually with pitch angle Fig. 8.

In order to calculate the particle flux profile over the target plates due to the drift effects, the
dependence of particle flux on particle pitch angle or ®(xp) must be known, and this requires a
detailed knowledge of the diffusion rate at the plasma periphery. Here it is convenient to assume
®(xp) = const. The particle flux density is then proportional to dxy/dxy, which can be calculated

directly from the dependencies presented in Figs. 7 and 8. The particle flux profiles are shown in



Figs. 9 and 10. It can be seen that the distribution, especially at the low energy, consists of very
narrow peaks from transit particles (1', 3, 1, 2', 3') and more broad distribution of banana
particles (2). The shift of the transit particle peak from the magnetic separatrix striking point can
easily be obtained from Egs. (7) and (12) by putting xp = -1/€:

( ME)I/ 2
sin®(c)
(Me)l/ 2
cos?(a)

Ax,, =x,-x;=1 for outer striking point,

(13)
Ax, =x,—x;,=%

for inner striking point.

For example the peak displacement for fusion dd-tritons in JET is about Axy =
0.36(E)1/2 cm, where E is the energy in MeV. The spreading of the narrow peak arises from
averaging over the particle energy distribution function. For a wide distribution function, a half
width is approximately equal to Axy,.

For high energy particles the spreading of the particle flux profile due to drift, dominates
over the spreading caused by particle transport across the magnetic surface . The spreading due to
particle transport [10] can be estimated as

A = (D) Ja=1yv (14)

Comparing Eq. (13) and Eq. (14) one would obtain in JET D = 104 cm2/s, Axy€ < Axy for
E>1keV.

For the double null (DN) magnetic configuration Fig. 6, the magnetic separatrix and the
drift separatrices have two X-points. But, in the loss of up-down symmetry, particles can have
single null drift separatrixes even in the DN magnetic configuration. In the symmetrical case the
fluxes to the up and down plates should be almost equal. The difference between the up and down
fluxes is determined by the radial profile of the particle diffusion rates. If the diffusion rate
decreases with minor radius, then the particle load at the upper plate will be larger than at the down
one as can be seen from Fig. 6, by comparing opposite sides of trajectories a-f. The asymmetry in
the upper and lower plate particle loads Fyp, Fdown can be estimated to be

Fdown"Fug ZQQAPba

Fdown+Fup B dp

and is large for high energy particles with large banana width Apy,



The limiters located near the equatorial plane can change the up-down symmetry, but only
when the diffusion rate D > py 2q2/1y, is large at the plasma periphery. In the latter case, the limiter
will cut off the flux to the plate which is opposite to the toroidal drift direction side.

In the symmetrical DN, the configuration ratio of the plate load near the outer and inner
striking points depends on poloidal inhomogeneity of the diffusion rate. If the particle diffusion
rate is larger at the outer part of the plasma cross section, trajectories (c-f) in Fig. 6 than at the inner
part, trajectories a,b then, the particle flux near the outer striking point will be larger than that near
the inner one. One can change the partition of flux between the outer and inner striking zones by
applying magnetic or electric field perturbations which are resonant with the outer (c-f) or inner

(a,b) parts of the particle trajectories.

3. Ripple Loss Through the Divertor Scrape-Off Layer

The effect of the magnetic field ripple due to discreteness of the tokamak toroidal field coils
on the plasma energy and particle confinement has received much attention and studies reported in
the literature [11]. Previous work deals mainly with the bulk plasma and the region near the
poloidal divertor X-points has received less attention. It will be shown here that the magnetic field
ripple near the X-point can have a significant effect on the particle orbits and the distribution of the
particle flux onto the divertor plates.

The rippled toroidal field can be described by the following standard expression [11]:
R
B, =B, ?"(1 + 6(r,z)cos No), (15)

where N is the number of toroidal field coils. At the large ripple value, the magnetic field strength
IBI = By may be non monotonic along the field line and in this case the ripple wells exist and the
particle may be trapped between two toroidal field coils. However, the ripple value in tokamaks is
typically, 8 = 1% and the ripple wells only exist in the outboard side of the plasma cross section.
Neglecting small terms order of 82 and BRr/B the boundary of the ripple well region can be

described by the equation
Bg _



Here, BR is a radial component of the poloidal field. In the ripple well region b < 1. Because Br
= 0 at the equatorial plane (up-down symmetric configuration) the ripple wells always exist near
the equatorial plane. In a tokamak with a poloidal divertor; there is another line, where Bg =0
which passes through the X-point. This is illustrated in Fig. 11, where the ripple well region
boundary is shown for JET X-point equilibrium. Ripple wells exist outside of the boundary 1,
Fig. 11.

The well depth, which has been calculated for a typical JET configuration, monotonically
increases in the vertical direction, Fig. 12. This is an important point for further consideration.

A banana particle diffusing towards the drift separatrix can be trapped in a well and then
lost from the plasma through toroidal drift. There are two proceses in which ripple well trapping
can occur: the trapping due to Coulomb collisions with the background plasma {12]; and
collisionless trapping due to finite banana width effects [13]. As was shown in [13], the
collisionless trapping is the dominant trapping mechanism for superthermal particles with energy
above several tens keV. Because of the final banana width, the particle approaching the turning
point and on being reflected, moves into regions with increasing ripple values. In the well region
near the X-points, the well depth increases in the vertical direction and therefore the trapping can
only occur at the toroidal drift facing plasma side for particles with an unfavourable toroidal
position at the turning point. The toroidal precession of the banana orbit, and consequently, the
randomisation of the banana particle position in the toroidal direction suggests a probabilistic

description for the trapping process. The probability of trapping during one reflection has been

calculated in [13]
V., AR
=—dr™ b _T(p a7n
Y Ty (®)
where

1 95 16(2(1- bz))l/2 cos™}(b)
5 7T 172 NS
n[(l—b ) —bcos (b)jl

and Vqr is the toroidal drift velocity. The last expression was obtained in the adiabatic

approximation, when the timescale of the ripple variation along the trajectory
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is larger than the bounce time of the ripple well trapped particle

_ 2mR

and imposes an upper limit on the particle energy

_le PL <<]
trip (151/2
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The last inequality for the JET ripple profile, § = 5-10-4 gives the upper limit for the energy E =
100 keV.

At the high particle energy pr/a >> 81/2, Eq. (17) is unvalid and a numerical calculation is
required. Starting from the guiding centre equations of motion, which in the dimensionless

variables used above can be written as follows:

“""%‘K pL(l'zl(:xex)]’
o= a +xax)’ "
£ S e}

where 7 = v)/v and the normalised time is T = tv/Rx. The contribution of the ripple field in the first
three equations have been discarded as unimportant [11].

We shall again consider the vicinity of the X-point, x, z < € where Egs. (18) can be further
simplified. The particle trapping occurs during its motion in that well which is closest to the
particle turning point ¢p, where ¢-@p < 2n/N. The radial projection of the field line with the
length of one well is equal to Ar = 2iR,BR/NB¢ = 2nRod << ae and the particle vertical

displacement from the turning point can be estimated as follows:

_ - R, __pL
AZ—Vdervdr-m-:-A—,él/—z<< ae.

The last condition imposes an upper limit on the particle energy p1/adl/2 < Ne which for JET

parameters is typically E < 1 MeV.

10



Omitting the small term O(e2), O(1/N) and O(31/2¢/q), Eq. (18) can be simplified as

follows
t=pL(2,
= (19)
X= l{.ea—w+ ON sin Nqo}
21 oz

Near the X-point, 08/0z >> 98/0x, i.e. & = 8(z). At the small distance of AR,Az = € one can

assume

1 96
A= 55, = const o 8= 6(zp)exp[A(z - 2)] (20)

In comparison with the exponential dependence (20), the first term in the last equation (19) may be

considered as constant, dy/dz = 0y (xp,zp)/0z. Renormalising t1 = 1(8(zp)N2/2)1/2 one can

obtain
2
2—§—=b+exp(arl)sin§, 1
311
where
__pA ___ Bg

a= ; b= .
N(28)"? NB,6(zp)
By means of these two parameters, the analytical expression (17) can be rearranged as

_ a
P=>T5mh T(b). (22)

The last equation is valid for a << 1. To obtain the trapping probability at a = 1, Eq. (21) has been
solved numerically and the probability of the trapping is defined as a ratio of the phase volume of
particles trapped in the well during one bounce to total phase volume. A good agreement with the
analytic expression has only been found at very small values of a < 0.1. At JET, parameters a =
0.1 correspond to the particle energy of E = 10 keV. The probability contours in the a,b plane are
shown in Fig. 13. For a > 0.1, where Eq. (22) is invalid, the probability p(a,b) calculated

numerically can be approximated by the following function:

p(a,b) = a F(b~-18a) 23)
(0.1267 + az)l/2

where

11



1 ;0 x<-0.4
F(x)=<(1-x)/1.4 ; -04<x<1
0 o 1<x

The accuracy of this approximation is better than 10% for 0.1 <a<1.5and 0.1 <b< 3.

The position of the ripple well trapping region in JET configuration is shown in Fig. 14.
The magnetic separatrix is marked by the dashed line and line BR = O by a dotted-dashed line.
Ripple wells exist above the line with the solid circles in Fig. 14. When the banana tip moves in
the vertical direction, the probability of ripple well trapping changes from zero to unity, increasing
rapidly, from 0 to 0.8 in the shadowed region of Fig. 14. It is seen that the shadowed regions
corresponding to different particle energies are rather narrow (because of the finite banana width
corrections, the boundary of the ripple well region is located below the line Eq. (16)). As the
ripple well depth increases in the vertical direction, the particle which has become trapped will be
lost to the divertor target plates.

Therefore, particles with energy above several tens keV have a well defined trapping region

boundary given by

+ »
NBy8(rp,2p) N(25)/?

above which a particle will be trapped in a magnetic well in a few bounce periods and lost to the
target plate on the ion drift side through ripple trapping.

It is clear that there is a particle energy above which the banana width becomes larger than
the distance between X-point and ripple trapping boundary. For JET, ripple trapping occurs for
particle energy up to 1 MeV.

The lower limit on the particle energy given by
PL
a vé’

is defined by Coulomb collision, which expels the particle from a well before it reaches the wall by
vertical drift. Here, v; is the scattering frequency. For JET parameters, the last equation is

fulfilled for deuteron energy of EZ 10 keV.

12



4. Toroidal Distribution of Ripple Trapped Particle Flux

The ripple trapped particles are located between toroidal field coils and therefore provide
toroidal asymmetry in the particle flux at the target plates. The poloidal profile is rather broad
(poloidal width = €a) and is not linked to the magnetic separatrix striking points. The profile shape
depends on the poloidal distribution of the banana particle fluxes from the plasma core and can be
calculated on the basis of knowledge of the particle fluxes. In a general case and depending on the
form of the rippled field it is possible to estimate the toroidal distribution of the flux.

Because the width of the grey zone where the trapping probability changes from zero to
0.8, Az = a/N is small in comparison to €a, the trapping process can be described by the following

equation

2
0=—p(z) ”z) +D aa’z‘gz). 25)

Here, n(z) is the banana particle density with the banana tip position at z, D is the particle diffusion
rate across the trapping boundary, z = zy(x), and 1Ty is the banana particle bounce time. The real

dependence p(z) can be replaced by a simplified one

p(z)= 1-b+18a E__&_b_(z—z,,)E Ab(z-z,)

1.4 oz 14 1.4

,

and D will be considered to be constant within the narrow trapping zone. In the new variable
1/3
N . /
°A.47 »D ’

22 _yn=0. (26)

Eq. (25) can be rewritten as

Eq. (26) describes the density of the banana tip positions near the boundary of the ripple trapping

region z = z,. The solution of Eq. (26) for the appropriate boundary conditions njz=z,= no,

n=nyy’ (31/3 ){1—1/3( y3 -3 y3 : 27)

where I'(x) is the gamma function and I(x) is the modified Bessel function [14]. The number of

Njz—300 = 0 is

banana particles f(y) trapped at y can be estimated as:

13



f)= p(y)T—'; =y n(y). (28)

The longitudinal distribution function of the particles oscillating along the field line in the ripple

well
dl
gl)=—-=, (29)
v(J)
can be evaluated by replacing the real magnetic field profile in the well by a parabolic one. Then,
d
8(0)do = 2 (30)

2 2\/2°
”((Pmax - )
Here ¢ is the toroidal angle with ¢ =0 equidistant between the toroidal field coils. The amplitude
of particle oscillations in the well, @pax, depends on the position of particle trapping in the well,

®Pmax = Pmax(y). Itis easy to show that near the ripple well boundary, Pmax = 3(1-b)12/(\/2N),

or with the finite Larmor radius corrections similar to (23):

1/2 2p2pg, |0
Pmax = V2N = 2N Y UOEQY .
Weighting (30) with (28) one can obtain
d
8(p)= const| 2f(y) > = const | f(}’)dyz 77 (32)
((Pmax—‘l’ ) Q;(y_((P/‘Po) )
9,

Fig. 15 shows the toroidal distribution of particle flux evaluated by numerical integration in Eq.
(32). The half width of the toroidal distribution is equal to ¢o and because of the growth of the
well depth, decreases during the particle drift motion from the trapping boundary to the target
plates . The decrease of ¢g can be estimated roughly from conservation of the longitudinal

invariant of the ripple trapped particles, J = §v df = const. At the target plates, Qow? = @o2

(80/8w)1/2 where 3y, is the ripple value at the target plate. For JET, ¢o = 0.15, 8w/8, = 10, and
the half width of the distribution will be about Ag/(2n/N) = 0.5.

Conclusions

The superthermal particle drift orbits close to the magnetic separatrix has been analysed. If

there is only one magnetic separatrix, the particles with different pitch angles and energies have

14



different drift separatrixes with different positions of the X-point. The splitting of the X-point due
to the drift effect is actually one dimensional. All drift X-points are located at the line dy/dz = 0.
The shift of the drift X-point from the magnetic one was calculated analytically for the general case.
The toroidal field ripples due to discreteness of the toroidal field coils can change the
toroidal distribution of escaping particles. It was shown that near the magnetic X-point, ripple
wells always exist, which gives use to ripple trapping of the banana particles before they reach the
drift separatrix. The fraction of high energy particles which are trapped in the ripple wells is
estimated to be = € < 1, but a significant toroidal peaking factor leads to noticeable target heat load.
The analysis in this paper is based on the simple model assumptions and in some areas
requires a more detailed calculation, but the approach may be useful for understanding the result of

Monte-Carlo orbit following modelling and in the interpretation of experimental results.
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Fig. 1  The drift orbit (thick line) is the intersection of two surfaces in R,y,z space: 1) y =
Y(R,Z), 2) cylindrical surface Eq. (5).
Dashed-dotted line shows Br = 0.

4 3 !
\tr 7
\ T

Fig. 2 Plasma boundary (3), banana particle trajectory (4), first wall (1) and line BR =0 (2) in
R,Z variables (Fig. 2a) and x,y variables (Fig. 2b). JET double null configuration.
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Fig. 3 A separatrix drift surface (4) for transit particle, E = 100 keV. Dashed line (3) shows
magnetic separatrix. 1) first wall, 2) line Br = 0.

Fig. 4 The same as Fig. 3, but for the banana particle.
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Fig. 5 x-coordinate of drift X-point (xq4) at the line BR = 0 as a function of the banana tip
position (xp). xg = coordinate of magnetic X-point. 1) E=1MeV,2) E=100keV,3)E
= 10 keV. Curves with Ax < 0 correspond to transit particles with v|j < 0; xo =

0, x,<0,
Xps beO.
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Fig. 6 Qualitative picture of separatrix drift surfaces. Signs '+ and '-' indicate the direction of
particle velocity at the striking point. '+ corresponds to particles moving in the direction
of plasma current, and '-' to particles moving in the opposite direction.



0.4-
2l
3|
0.2F — )
1 2
b
=
0" ////
o -
% ///
& 02t y
(\
L ~
-04 N
\\\
\\\\
—061 3 A
. m— J— ___..é
—08 ! ] 1 ] )] 1 1
25 20 -15 -1.0 —05 0 05 1.0

Xb—xs

Fig. 7

The positions of drift separatrix striking points at the target plate, xy, as a function of

banana tip position, xp, for particle energy E = 10 keV. xg = coordinate of magnetic X-
point. Horizontal target plate located at the distance zy, = 0.4 from the magnetic X-point.
Different curves correspond to different orbits shown in Fig. 6. Dashed lines show

magnetic separatrix striking points positions.
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Fig. 8 The same as in Fig. 7 but for the particle energy of 1 MeV.
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Fig. 9 The flux profile at the target plate for particles with E = 10 keV. Different peaks
correspond to different orbits shown in Fig. 6. xg - coordinate of magnetic X-point.
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Fig. 10 The same as in Fig. 9 but for the particle energy of 1 MeV.
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Fig. 11 Position of ripple well region boundary (1) and line BR = 0 (2) in the plasma cross
section.
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Fig. 12 Ripple well depth vs. z. 1) x =-0.75, 2) x = -0.5, 3) x = -0.25.
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Fig. 13 Contours of the probability of ripple well trapping in the plane a,b.

Fig. 14 Position of ripple well region boundary (curve with circles). For high energy particles
probability of the trapping changes from zero to 0.8 when the banana tip position moves
across shadowed regions. 1) E =250keV, 2) E =1 MeV.
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Fig. 15 Toroidal distribution of the ripple trapped particle flux.



ANNEX

P.-H. REBUT, A. GIBSON, M. HUGUET, .M. ADAMS', B. ALPER, H. ALTMANN, A. ANDERSEN?, P. ANDREW?,

M. ANGELONE®, S. ALI-ARSHAD, P. BAIGGER, W. BAILEY, B. BALET, P. BARABASCHI, P. BARKER, R. BARNSLEY>,

M. BARONIAN, D.V. BARTLETT, L. BAYLOR®, A.C. BELL, G. BENALI, P. BERTOLDI, E. BERTOLINI, V. BHATNAGAR,

A.J. BICKLEY, D. BINDER, H. BINDSLEV?, T. BONICELLI, S.J. BOOTH, G. BOSIA, M. BOTMAN, D. BOUCHER,

P. BOUCQUEY, P. BREGER, H. BRELEN, H. BRINKSCHULTE, D. BROOKS, A. BROWN, T. BROWN, M. BRUSATI,

S. BRYAN, J. BRZOZOWSKI’, R. BUCHSE?®, T. BUDD, M. BURES, T. BUSINARO, P. BUTCHER, H. BUTTGEREIT,

C. CALDWELL-NICHOLS, D.J. CAMPBELL, P. CARD, G. CELENTANO, C.D. CHALLIS, A.V. CHANKIN®, A, CHERUBINI,

D. CHIRON, J. CHRISTIANSEN, P. CHUILON, R. CLAESEN, S. CLEMENT, E. CLIPSHAM, J.P. COAD, I.H. COFFEY?®,

A. COLTON, M. COMISKEY'?, S. CONROY, M. COOKE, D. COOPER, S. COOPER, ].G. CORDEY, W. CORE, G. CORRIGAN,

S. CORTI, A.E. COSTLEY, G. COTTRELL, M. COX"!, P. CRIPWELL %, O. Da COSTA, J. DAVIES, N. DAVIES, H. de BLANK,

H. de ESCH, L. de KOCK, E. DEKSNIS, F. DELVART, G.B. DENNE-HINNOV, G. DESCHAMPS, W.J]. DICKSON ", K.J. DIETZ,
S.L. DMITRENKO, M. DMITRIEVA 4, J. DOBBING, A. DOGLIO, N. DOLGETTA, S.E. DORLING. P.G. DOYLE, D.F. DUCHS,

H. DUQUENOY, A. EDWARDS, J. EHRENBERG, A. EKEDAHL, T. ELEVANT’, S.K. ERENTS'!, L.G. ERIKSSON,

H. FAJEMIROKUN 2, H. FALTER, J. FREILING', F. FREVILLE, C. FROGER, P. FROISSARD, K. FULLARD, M. GADEBERG,

A. GALETSAS, T. GALLAGHER, D. GAMBIER, M. GARRIBBA, P. GAZE, R. GIANNELLA, R.D. GILL, A GIRARD,

A. GONDHALEKAR, D. GOODALL'!, C. GORMEZANO, N.A. GOTTARDI, C. GOWERS, B.J. GREEN, B. GRIEVSON, R. HAANGE,
A. HAIGH, C.J. HANCOCK, P.J. HARBOUR, T. HARTRAMPF, N.C. HAWKES'!, P. HAYNES'', J.L. HEMMERICH, T. HENDER ",
J. HOEKZEMA, D. HOLLAND, M. HONE, L. HORTON, J. HOW, M. HUART, 1. HUGHES, T.P. HUGHES'’, M. HUGON, Y. HUO®Y,
K. IDAY, B. INGRAM, M. IRVING, I. JACQUINOT, H. JAECKEL, J.F. JAEGER, G. JANESCHITZ, Z. JANKOVICZ'®, 0.N. JARVIS,
F. JENSEN, E.M. JONES, H.D. JONES, L.P.D.F. JONES, S. JONES", T.T.C. JONES, I.-F. JUNGER, F. JUNIQUE, A. KAYE,

B.E. KEEN, M. KEILHACKER, G.J. KELLY, W. KERNER, A. KHUDOLEEV?', R. KONIG, A. KONSTANTELLOS, M. KOVANEN?,
G. KRAMER ", P. KUPSCHUS, R. LASSER, J.R. LAST, B. LAUNDY, L. LAURO-TARONI, M. LAVEYRY, K. LAWSON!!,

M. LENNHOLM, J. LINGERTAT®, R.N. LITUNOVSKI, A. LOARTE, R. LOBEL, P. LOMAS, M. LOUGHLIN, C. LOWRY, J. LUPO,
A.C. MAAS'®, J. MACHUZAK'®, B. MACKLIN, G. MADDISON'!, C.F. MAGGI®, G. MAGYAR, W. MANDL?, V. MARCHESE,

G. MARCON, F. MARCUS, J. MART, D. MARTIN, E. MARTIN, R. MARTIN-SOLIS*, P. MASSMANN, G. MATTHEWS,

H. McBRYAN, G. McCRACKEN'!, . McKIVITT, P. MERIGUET, P. MIELE, A. MILLER, J. MILLS, S.F. MILLS, P. MILLWARD,
P. MILVERTON, E. MINARDI*, R. MOHANTI®, P.L. MONDINO, D. MONTGOMERY?, A. MONTVAI?, P. MORGAN,

H. MORSI, D. MUIR, G. MURPHY, R. MYRNAS?, F. NAVE?, G. NEWBERT, M. NEWMAN, P. NIELSEN, P. NOLL,

W. OBERT, D. O'BRIEN, J. ORCHARD, J. O'ROURKE, R. OSTROM, M. OTTAVIANI, M. PAIN, F. PAOLETTI,

S. PAPASTERGIOU, W. PARSONS, D. PASINI, D. PATEL, A. PEACOCK, N. PEACOCK", R.J.M. PEARCE, D. PEARSON ‘2,

I.F. PENG'S, R. PEPE DE SILVA, G. PERINIC, C. PERRY, M. PETROV?', M.A. PICK, J. PLANCOULAINE, }.-P POFFE,

R. POHLCHEN, F. PORCELLI, L. PORTE", R. PRENTICE, S. PUPPIN, S. PUTVINSKII®, G. RADFORD®, T. RAIMONDI,

M.C. RAMOS DE ANDRADE, R. REICHLE, I. REID, S. RICHARDS, E. RIGHI, F. RIMINI, D. ROBINSON'', A. ROLFE,

R.T. ROSS, L. ROSSI, R. RUSS, P. RUTTER, H.C. SACK, G. SADLER, G. SAIBENE, J.L. SALANAVE, G. SANAZZARO,

. SANTAGIUSTINA, R. SARTORI, C. SBORCHIA, P. SCHILD, M. SCHMID, G. SCHMIDT?', B. SCHUNKE, S.M. SCOTT,

. SERIO, A SIBLEY, R. SIMONINI, A.C.C. SIPS, P. SMEULDERS, R. SMITH, R. STAGG, M. STAMP, P. STANGEBY?,

. STANKIEWICZ®, D.F. START, C.A. STEED, D. STORK, P.E. STOTT, P. STUBBERFIELD, D. SUMMERS, H. SUMMERS ",

. SVENSSON, J.A. TAGLE®, M. TALBOT, A. TANGA, A. TARONI, C. TERELLA, A TERRINGTON, A TESINI, P.R. THOMAS,

. THOMPSON, K. THOMSEN, F. TIBONE, A. TISCORNIA, P. TREVALION, B. TUBBING, P. VAN BELLE, H. VAN DER BEKEN,
. VLASES, M. VON HELLERMANN, T. WADE, C. WALKER, R. WALTON?®', D. WARD, M.L. WATKINS, N. WATKINS,

M.J. WATSON, S. WEBER™, J. WESSON, T.J. WIINANDS, J. WILKS, D. WILSON, T. WINKEL, R. WOLF, D. WONG,

C. WOODWARD, Y. WU¥, M. WYKES, D. YOUNG, 1.D. YOUNG, L. ZANNELLI], A. ZOLFAGHARI'®, W. ZWINGMANN

QW ®mC >

18



O o ot B W R -

[

w

w
&

Harwell Laboratory, UKAEA, Harwell, Didcot, Oxfordshire, UK.

Rise National Laboratory, Roskilde, Denmark.

Institute for Aerospace Studies, University of Toronto, Downsview, Ontario, Canada.
ENEA Frascati Energy Research Centre, Frascati, Rome, Italy.

University of Leicester, Leicester, UK.

Oak Ridge National Laboratory, Ozk Ridge, TN, USA.

Royal Institute of Technology, Stockholm, Sweden.

1.V. Kurchatov Institute of Atomic Energy, Moscow, Russian Federation.

Queens University, Belfast, UK.

University of Essex, Colchester, UK.

Cutham Laboratory, UKAEA, Abingdon, Oxfordshire, UK.

Imperial College of Science, Technology and Medicine, University of London, London, UK.
University of Strathclyde, Glasgow, UK.

Keldysh Institute of Applied Mathematics, Moscow, Russian Federation,
FOM-Institute for Plasma Physics ‘‘Rijnhuizen’’, Nieuwegein, Netherlands.
Institute of Plasma Physics, Academia Sinica, Hefei, Anhui Province, China.
National Institute for Fusion Science, Nagoya, Japan.

Soltan Institute for Nuclear Studies, Otwock/$wierk, Poland.

Plasma Fusion Center, Massachusetts Institute of Technology, Boston, MA, USA.
Nuclear Engineering Laboratory, Lappeenranta University, Finland.

A.F. loffe Physico-Technical Institute, St. Petersburg, Russian Federation.
Max-Planck-Institut fiir Plasmaphysik, Garching, Germany.

Department of Physics, University of Milan, Milan, Italy.

Universidad Complutense de Madrid, Madrid, Spain.

North Carolina State University, Raleigh, NC, USA.

Dartmouth College, Hanover, NH, USA.

Central Research Institute for Physics, Budapest, Hungary.

University of Lund, Lund, Sweden.

Laboratorio Nacional de Engenharia e Tecnologia Industrial, Sacavem, Portugal.
Institute of Mathematics, University of Oxford, Oxford, UK.

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA.
RCC Cyfronet, Otwock/Swierk, Poland,

Centro de Investigaciones Energéticas, Medioambientales y Tecnolégicas, Madrid, Spain.
Freie Universitit, Berlin, Germany.

Insitute for Mechanics, Academia Sinica, Beijing, China.

19





