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1. Introduction

Considerable evidence is emerging from experiments covering a wide range of physical situations,
from the reversed field pinches and the spheromaks to the medium and large size tokamaks, which
indicates the tendency of the plasma to assume preferential configurations, largely independent of
external conditions. This behaviour suggests that, beyond the complexity of the various modes and
instabilities, some global constraint holds, which expresses a basic physical property of the plasma.

In the case of a collisional plasma a privileged equilibrium notoriously exists, that is the
Maxwellian equilibrium associated with a maximum of the entropy. The idea that privileged equilibria
could exist also in the case of a collisionless plasma, such as to be expressible, under certain conditions,
as the extremum of an entropy, suitably extended to the collisionless collective (static) equilibria
(henceforth called "Vlasov equilibria”) has been the driving motive of our research.

By formulating a statistical model, whose basic objects are not particles, but volume elements
(containing many particles) forming a statistical system to be considered in a configurational space of
the electric charge or of the current density, an entropy functional S = - [ PigP dI" of the collective
quantities pertaining to a suitably defined Vlasov configuration was introduced, where P is probability
distribution in the space I" above. The variational properties of S are related to relevant equilibrium and
stability properties of the electrostatic (Minardi 1972, 1973) and of the magnetic Vlasov equilibria (the
pinch, Minardi 1981, 1989; the tokamak, 1990, 1992).

On the light of the more recent applications, one gains a more mature outlook of the physical
context and of the conceptual basis of the original model. The purpose of the present paper is to retake
the model ex novo, so as to take profit of the new perspective for clarifying, exemplifying (and in some
cases for amending) the previous arguments, by showing at the same time how the entropy of the
Vlasov equilibria and the related variational procedure can be inserted in the conceptual context of
classical thermodynamics.

Sections 2 to 5 contain the formulation of the model and the derivation of the entropy functional.
The calculations are presented in detail. In section 2 the statistical model is formulated. The basic
constraint in the statistical procedure expresses the absence of energy interaction between the collective
configuration in Vlasov equilibrium and an underlying neutral medium of individual fluctuating particles. In

fact this constraint constitutes the very definition of Viasov equilibrium in our phenomenological scheme.



In section 3 the model is shown to lead to a thermodynamic formalism similar to that based on the
canonical ensemble. In section 4 we introduce the so called "thermodynamic limit" in which the number of
objects of the statistics (the volume elements) as well as the total volume of the system tend to infinity.
This procedure will allow the separation of the collective effects from the effects of the infinite
background of individual particles. In the absence of collective fields the background is electrically neutral
and currentless in the average, but it is the site of fluctuations of the charge and of the current density,
due to its particle structure. The concept of background will allow (section 5) the introduction, in the
thermodynamic limit, of the concept of “isothermal variation" and fulfils, in a certain sense, the same
function as the "heat bath" in the statistics of Gibbs. This point of view is developed further in section 6,
where we study in detail the energy interaction due to charge exchange between the collective system
and the background and show that the interaction process is reversible. The reversibility enables us to
define (section 7) in the conventional way an entropy attached to the reversibly accessible states and to
relate the variations of the collective entropy to the transfer of heat, so that the entropy functional
acquires the same meaning as in classical thermodynamics of macroscopic systems.

Once the entropy of the collective system is defined through the reversible interaction with the
background, we can study entropy increasing irreversible variations of the collective system considered
as isolated. This allows the introduction of the concept of "thermodynamic instability”: an isolated
collective system in Vlasov equilibrium is declared to be unstable when it admits neighbouring accessible
states with higher entropy.

In the next sections we apply our thermodynamic concepts to practical systems. In section 8 we
discuss cases of Vlasov electrostatic equilibria, both in unstable situations and in the Maxwellian limit. In
- section 9 we study examples of magnetostatic equilibria namely the case of the reversed field pinch,
considered as isolated from the external world by a closed conductive shell, and the case of the tokamak,
which is energetically open to the external world. One aim of our discussion is the illustration of the
relationship between the thermodynamic instability and the instabilities resulting from the dynamic
treatment. Another point is the illustration of the thermodynamic meaning of the boundary conditions to
be applied in the variational treatment of the entropy. When the collective system is isolated, the
boundary conditions should express the absence of energy exchanges with the external world represented

by the background. In the case of an open system, the boundary conditions should describe properly the



energy balance between the plasma and the external systems.

Finally, in section 10 we extend the concept of collective entropy in order to include the description
of those properties of the Vlasov equilibria which depend on the local structure of the magnetic
configuration (for instance the interchange modes) and apply the extended concept to the discussion of

the thermodynamic properties of the tearing modes.

2.  The Statistics of the Plasma Volume Elements in Information Space

The electrostatic or magnetic Viasov equilibria of a plasma with given boundary conditions are
completely described when the macroscopic distribution of the collective charge and current density is
known. Any collective quantity pertaining to the equilibrium should then be expressed as some functional
of these density variables. This is, of course, true also for those quantities, as for instance the entropy,
whose basic definition involves the particle structure of the plasma and the statistical behaviour of the
system in phase space.

It is then natural to ask whether a kind of short circuiting procedure can be found for constructing
the entropy of a Vlasov configuration, such as to involve from the beginning only the information which is
relevant for the problem at hand.

In order to proceed with this task we shall take the point of view of the information theory (see
e.g. Jaynes 1957). We start from the information that a collective charge or current density distribution is
given and that the energy of the corresponding electrostatic or magnetostatic configuration is
uncorrelated, in the average, to the fluctuations of the quantities arising from the particle structure of
the system, that is the energy of a Vlasov equilibrium can be defined independently of the effects of this
structure.

We shall illustrate our procedure by considering first the electrostatic case which is formally
simpler than the magnetic case to which the formalism can be easily extended afterwards.

We shall consider a plasma of volume V and a large assembly of N volume elements AV = V/N,
where AV is large enough to contain many particles. The N volume elements are the basic objects of our
statistics. Let us introduce a four-dimensional space for the values of the charge density o and for the
position X in the volume V. Now take one volume element from the assembly, call it AVj and throw it at

random into a copy of the space above, called S;. The volume element will take a certain position denoted



by (_x’j, oj) (_x)j is for instance the centre of mass of AVj). Do the same for another volume element
AVi;, in another space S;, taking care that AV; can only occupy in Sj a position _x’i #3 j because the
volume elements cannot overlap in V. Do this for all N volume elements. At the end one will get a single
point in the 4N dimensional space I'r which is the product of all §j. This point represents a particular
electrostatic configuration of the plasma, reconstructed in the volume V with a coarse-graining AV.

The space I'ris called "information space” and the o; are the "information variables™. Our
purpose is to calculate the probability P(c1,.., ON: 7’1,.., 7N) for the assembly of the N volume
elements to occupy at random any given volume element dI'y in information space. The form of dI'y is
easily derived. Indeed the volume accessible to the volume element j = 1 is V = NAV, that accessible to
the volume elements j =2, j =3, ... is V - AV = (N-1) AV, (V-2 AV) = (N-2) AV, ... Then the volume

accessible to the assembly of N volume elements is

[N(N-1)(N-2)...1] (AV)N = NI AVN 2.1)

This must be divided by N! because a permutation among the N volume elements has no physical
effect and must not contribute to the total volume element in information space. Hence dI'y is given by

the expression

dlt = AW dosy.... don (2.2)

In order to proceed to the calculation of P(cj; _x)i) we must introduce the constraints on the
random process considered above. One constraint should express the information characterizing the
Viasov equilibrium. To discuss this, let us look more closely at the form of the random charge density .
The collective electrostatic configuration, as we said, is characterized by a collective charge density
distribution o 7’) which we suppose to be given. This collective distribution is, however, always
superimposed on a fluctuating charge density o related to the particle structure which can never be
completely eliminated. It is just this fluctuating part which introduces the random character of the
problem, so that in fact the charge density in the volume element AVj is a random variable oj = 0(71)) +
.

Even in the absence of any collective excitation, fluctuations related to a population of individual

particles are always present. It is only after suitable averaging over these fluctuations that the



macroscopic properties of the system emerge. On the other hand, the collective equilibrium is physically
quite independent of the background of individual fluctuating particles. In particular, let us consider the
average interaction energy ¢int between the charge density fluctuations o and the potential <p(_x'))

created by the collective charge density o(?):
- N - - .
Ou =3[ P(0:X)Y, 8, 0(x)AVAT,  (1Si<N) (2.3)
r 1

(One can express oint with the form ¢ (_x)) (}3 rather than with & i) (_x’); under reasonable
boundary conditions the result would be the same, but the latter form is more convenient). The fact that
in a Viasov equilibrium the fluctuating background should not interact with the collective electrostatic
energy, so that this energy can be specified independently of any effect related to the random

fluctuations, is expressed by the condition ¢int = 0. Indeed let us write

- XN - - -
Ou +0 =4[ P(0;5%)Y (8,4 (X )Q(x))AV, dT, (24)
! 1
where, in view of the normalization condition

[P(o;x)ar, =1 (25)
Ly
¢ is given by the expression

N -3 -
0=%Y, ,6(x;))p(x))AV, (2.6)
1

and is the part of the electrostatic energy which belongs to the collective configuration. Thus the condition
dint = 0 characterizes an equilibrium which is purely collective in the sense that the energy interaction
with the electric charge fluctuations of the individual particles of the background is absent. So ¢int =0
constitutes the very definition of "Vlasov equilibrium™ in our phenomenological picture. Naturally one can
consider in general variations such that & ¢int # 0 around a Viasov equilibrium with ¢int = 0. This
involves an energy exchange between the varied collective configuration and the background so that the
system is no longer in a "pure” Vlasov equilibrium. In practice, as we shall see, 8¢int # 0 will simulate the
energy change of the collective configuration in interaction with the external world.

A further constraint on P arises naturally from the fact that o, in view of its component & is a

random variable whose values are then subject to dispersion. It is convenient to characterize the



dispersion by fixing the value Ac?of the following average quadratic form
—_ 5 N
Ac® =4 [ P(0;5x) Y, 03T, @.7)
r, 1

We shall see later (section 4) that this form is indeed identical in the proper limit (the
thermodynamic limit) to the conventional definition of the variance, as 6> ~G2.  Although AG is to be
ascribed physically to the particle structure, it will not be necessary to know its specific form in terms of

the particle fluctuations and it will be treated merely as a parameter.
The probability P (6;;X, ) can now be determined from the requirement that the entropy

S=-[PInPdr, (2.8)
I,

is stationary with respect to variations of P under the three constraints (2.7), (2.5) and (2.4) with

¢int = 0. These constraints and the variational condition above on the entropy constitute the formal
postulational basis of our model. A further specification of the model is a matter of physical interpretation

rather than of new basic assumptions.

3.  The Thermodynamic Formalism

We shall apply the constraint (2.4) in its general form with ¢int # 0 and only at the end of the
calculation we shall specify to the case ¢int = 0. This will give us the possibility of including in the
description the variations & ¢int 0 around a Vlasov equilibrium with ¢jnt = 0.

Applying the technique of the Lagrange multipliers, one is led to find the extremum of the following

functional
§=-[PigPdl, -a [Py o/, —%J.le_oj(p(xj)AdeF, ~y[Pdr,  (3.1)
I, r, I )
where «, v, T are constants to be determined later in order to satisfy the constraints. The vanishing of
the first variation of S with respect to arbitrary variations of P gives

P =P, exp- [azjojz +(1/ ")Z,- o j(p(; j )AVI.] (3.2)
when P = exp - (y+1). Let us put

1 - ~
(X,Cf+'1—:0'j(P(Xj)=a(0j "‘0,‘)2+Cj (33)



where G; and C; are independent of oj and given by the expressions

- _ - e 2,72, 2
0j=—5k-p(Xj)AV;,Cj = 4—al;,¢p (X{)AV;

(3.4)

The Iy integrations then reduce to integrations over gaussian distributions. Applying the normalization

condition (2.5) one obtains

_exp- aZ (0'J ) _exp- a(5j- 5j)°

One can verify the relations

G.=0(Xi)+Gi = J'Pc,.dl“, = —-2-%;;(P(3i)AV.-

2
=_2, 5,03V, =-¢—— ae7)

1 — 1 AV 2
zdF =—+0; —_—t 2(x Xi
"0 ' T 2a 4ot ¢°(x:)

—5 1 2. 1 AV? 2.
AO’2—§ZJIPG‘] dn—ﬁ+m21¢ (XJ)
Combining (3.6d) with (3.6b) one obtains
1 2
e L)
AV 2@ GAY,
4’ G, +0

We can now proceed to the calculation of the entropy

S=-[PlgPdl, =N 1g[Av(£-)m] +afPY, (o;- 5,) dr,

N/2 2
- T _2_ AV 2,2\ _
= ng[AV(a) ]+ NAG? - ¢* ()=

N/2
n N_ N N
=Nlgl AV| = +—=-—Ilga+Nlg(AVr'?)+ —=
g[ (a)]z e+ NIg(ave )3

(3.5)

(3.6a)

(3.6b)

(3.6¢)

(3.64)

(3.7)

(3.8)



% [ZA 71 __(¢"‘¢m))]+ng(AVn"2)+__

—upl N N 2
= ng[AV(ZnAoz)m] + 5= 18- (0+6,))

Let us calculate the free energy, in accordance with the usual definition F = tigP,. From (2.5) and (3.2)

one has
expX,;C;
0= AVV (R (3.9)
Thus recalling (3.4), (3.6b) and (3.6d) on obtains
F=1lgP,=1X,C, Ntlg(AVu"2)+ > Diga=
(3.10)
—3 Nt 2
=0+¢,, — Ntlg|AV(2rAc?)? [+ —l1g(1 -~ —(d + ¢,
0+0,, ~ NIg[AVQRAGT) ™|+ ZE1g(l - (0 +64,)
Comparison with (3.8) gives the following relation between F and S.
F=-—‘CS+¢+¢M+§1: (3.11)

4.  Thermodynamic Limit
A more expressive form for the entropy is obtained by separating the part corresponding to the
collective configuration from the part related to the fluctuating background. Both effects are contained in

Ac? which can be split as follows:

Ac? = %J’sz(o(}’,-n &,)dT, = %J'PZI(oz(}j)+260(35,-)+6f)dl‘, =

1 - 2 - - l ~2
=—ﬁzjoz(xj)+—ﬁ2jojo(x,-)+-ﬁ2jof (4.1)
Here the first term is a purely collective part, the second term describes a spatial correlation
between the collective charge density and the average charge density of the fluctuating background in

the presence of the collective field, and the last term is the mean square of the fluctuations of the

background.



Let us put

v

éL,

Iy,

N =

Ao, =13,F0G)=-23 [c’(i’-)+Lo(3c’-)q>(3c")]Av. = (4.2)
- N i J vV j J 2a‘t J J j

2 - AV N
—7{ [o*Ghav + oy | G(x)tp(x)dV}

where we have replaced the sums X ; AV, with integrals [dv _Atter inserting (4.2) into (4.1) one obtains

) =) 1 - AV i d -
Ac? = Aoz{ = [j o2 (X)dV + ajc(x)(p(x)dV]} (4.3)

Let us suppose that the collective configuration is localized in a volume Q much smaller than than the
volume V of our statistical system. We imagine that the part of V outside Q is filled only by the
background of fluctuating particles. In the limit V—oo the second term in (4.3) is much smaller than unity
andlg AG? in (3.8) can be approximated by an expansion up to first order in Q/V. Moreover, the limit
V—eo implies the limit N —eo, in order that AV and T (given by (3.7) remain finite. It follows that (¢ +
oint)/Nt is much smaller than unity, so that also the last term of (3.8) can be approximated by
expanding the logarithm up to first order in (¢ + ¢int)/N<. In this limit (thermodynamic limit) S can be
expressed as the sum of two parts
S=5+S (4.4)

where Sy, contains the effects of the background
S, = -12! + ng[AV(anéf)”’] + %L (4.5)

and S¢ is a purely collective part

S, = - = [02()av - 91 o [ 2@av+ AYAE ey | )
24VA5? o 24VAG%| 0 Q
The thermodynamic limit of the various quantities introduced in section 3 is the following
2_Gi2=-L =202 =25
2a

10



_AVAE [@*@av

T= 5 ryey (4.7)
2 famg, AVE L o o
Ao, =-= [‘[&(x)w = ic(x)(p(x)dV:l

F =-NtlgAV(2nAc?) "]
Comparing the expression (4.7) for Acg with (4.6) one can write

N
S, = —mm AG, 48
4AG? “8)

The collective entropy is then proportional to the spatial correlation between the collective charge density

and the fiuctuating charge density of the background.

5.  The Viasov Equilibrium and the Isothermal Variations
As we said, in our phenomenological picture the Viasov equilibrium is defined by the absence of

energy interaction with the background, that is by ¢int = 0. In this case the collective entropy has the

form
c=_1?2 _Ioz(;)dw,bi’i‘i&i‘)i"_ (5.1)
2AVAG ,f(pz(x)dV

Applying the Shwartz inequality one obtains that S¢ < 0. Thus, recalling (4.8), the absolute maximum
S¢ = 0 of the collective entropy at Viasov_equilibrium is associated with the absence of correlations
between the collective and the fluctuating charge densities. One sees that when ¢ (?)is equal to the

canonical average (3.6a)
- - 1 -
= = —— AV o
0(x) = 0(x) = =5 ——¢(x) (5:2)

the collective entropy has an absolute maximum. In general, the collective entropy is maximum within the
family of the Vlasov equilibria with ¢int.= 0 when o (') is proportional to ¢ (¥’). This is the case of
static solutions of the Vlasov equation for quasi-homogeneous systems when the charge density o(¢) is
a linear homogeneous function o(p) = k2¢.

It is worthwhile to study the variations of the entropy when the Viasov equilibrium is perturbed

1



by an energy interaction d¢int # 0. Let us consider a specific Vlasov equilibrium with a
potential ¢m (7) created by a charge distribution op, (7’). The parameter t is given by the equality
1=-AVAS® LEid (5.3)
c,p,4dV
We now keep < fixed and change ¢m, om according to ¢ = ¢m + 8¢, 6 = om + 8o (where 8¢ and 8¢
are related by Poisson's equation, 4ndc = k25¢). According to the expression (4.7) of < this variation

must be accompanied by a variation 8¢int given by the relations

AVAG?
T

80, =86 - [ o8pav (5.4)

Thus the variations with 1 fixed describe the interaction of the collective configuration with the
background which brings the system outside the Vlasov equilibrium. The parameter < plays the role of a
(generalized) temperature and the background, on which the collective equilibrium is immersed
isothermally, is formally similar to the heat bath of the statistics of Gibbs. We shall call "isothermal” the
variations with t fixed and 3¢in # 0. The value of d¢in will be calculated explicitly in the next sections
in a number of cases and we shall see that 3¢iny describes the energy interaction of the collective
system with the external world.

When isothermal variations are considered, the collective entropy (henceforth simply called

entropy and denoted by S) remembering (4.6), has the form

1

kn
= W[—J‘;Ozd‘/ + E!o(pdV] (55)

when k2y, is a parameter (to be kept fixed during the variations) related to t by the equality

ARZ
k2= _@c_ (5.6)

The functional (5.5) is the entropy which will constitute the basis for the discussion of the thermodynamic

properties of the Viasov equilibria.
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6.  TheInteraction Between the Collective System and the Surrounding Medium

As we have seen, the thermodynamic limit implies a scheme in which a subsystem representing
the inhomogeneous collective equilibrium is immersed in a much larger system constituted by a fluctuating
medium of individual particles. The only property of the large system which is essential to us is the ability
to exchange energy with the collective subsystem. In this way, as we shall see in the next sections, one
can simulate the complicated interactions of the collective configuration with the external world without
any necessity to consider the detailed mechanisms of the external interaction, because the very large
system remains practically unaffected by the energy exchange (the heat bath of the statistics of Gibbs).
The properties of the collective subsystem in interaction with the background can then be extrapolated to
the realistic situations in which the background extending to infinity does not exist but nevertheless
energy is exchanged between the collective system and the external world.

In the electrostatic case the exchange of energy is related to an exchange of electric charges
between the collective system and the fluctuating medium. Let us consider the isothermal variations
around a quasihomogeneous Viasov equilibrium 4rxom = k2mem. The reaction of the background to the
presence of the collective charge o, is described by G,, and this quantity vanishes at Viasov equilibrium,

according to (3.6a)

- k2
6=-0,_,+—=2¢,=0 (6.1)
4x

At the contrary, when considering variations with © fixed, the reaction of the background is given,
according to (3.6a) by the expression
2

d=-0, -8+ %(q;, +80) = —80[1 - ﬁ) (6.2)

which describes the exchange of electric charge and the transfer of energy 8¢, =(1/2) j ¢SdV

between the background and the collective system, when the latter is not in Viasov equilibrium (k2 s k2p).

As a consequence of this interaction the entropy of the background, given by (4.5), varies as

follows:
. 1 k2
55, =N __ Lo (- K \soav 6.3
b1 27 -‘[(p"'( k? ) (6.3

13



The change of entropy of the collective system, remembering (5.5), is given by the relation

1 k?
1| AV +3n [ (5,50 +0_S0)dV |=
; 2AVA62[ !,6“86 +4n£(°" *9.00) ]

(6.4)
=- 'G 1— ocdV "——1 '(p 1—42 dV = -85,
2AVA~2 ( ) 2ty "\ K d

One then concludes that in the interaction process the total entropy of the system formed by the
collective configuration and by the background is conserved. Since the total system is isolated and the

entropy is conserved, the interaction process is reversible.

7.  The Connection with the Classical Thermodynamics and the Concept of
Thermodynamic Instability
The fact that the interaction process is reversible and that the total system is isolated makes it
possible to apply the conventional procedure (the Charathéodory axiomatics; see e.g. Adkins 1975; Redlich
1981) for defining the entropy of the collective system and of the background, according to which a

reversible transfer of heat 8Q between the two systems is accompanied by the entropy variations

55, =92 55, =-% (7.1)
1 T
where 1/t is an integration factor. The heat transfer 8Q can be assimilated, after comparison with (6.3)
and (6.4), to the energy interaction 8¢int = - 3Q and in this way one attributes to the variations &Sy,
85S¢ the meaning of entropy variations in the same sense of classical thermodynamics. We assume that a
positive 8Q means that energy is transferred from the background {g the collective system.
Let us now discuss the isothermal variation of the free energy in the interaction process. From
(3.11) one obtains
3F = 3¢ + doint = 8¢ - 8Q (7.2)
Comparing this relation with the energy balance between the collective system and the external world
Q=8¢ + 6L (7.3)
where 8L is the work performed in the interaction process (see the examples in the next section) one

recovers the usual meaning of the free energy in an isothermal reversible process, that is 8F = - 5L.

Using (5.4) and (5.6) one obtains

14



oF = [ o,5pdV (7.4)
o]
The heat transfer can be expressed as a surface integral
30 =" [(9.50-0,50)v =— [ (9,8 - E, 59} S 75)
2 ° -m m 81It z m L3

where X is the surface enclosing Q2. When Z is an equipotential surface, that is ¢m = const, ¢ =0on Z,

(7.5) becomes
80 = “’—;j&odv (7.6)

and 8Q is proportional to the variation of the total charge of the collective system.

Once the entropy of the collective configuration is defined in a reversible transformation, one can
proceed to consider irreversible variations of an isolated collective system. Indeed, let us suppose that the
collective system in contact with the background can accede reversibly to a neighbouring state of
increased entropy. In the realistic situation, in which the infinite background of neutral plasma does not
exist and the collective system is isolated, the same neighbouring state of increased entropy can be
reached with an irreversible transformation. If this transformation is in accordance with the physical and
the geometrical constraints acting on the system, the isolated collective equilibrium is declared to be
thermodynamically unstable. The limitations in the accessibility of the neighbouring equilibria imposed by
the constraints are, of course, of primary importance for deciding about the thermodynamic stability of
the collective system. This also results from a closer examination of the conditions under which the
entropy can increase according to the thermodynamic relation (7.1). Indeed, as we shall see (next section)
T can be positive or negative. If T is positive, then 8S¢ > 0 implies 8Q > 0 according to (7.1). This
corresponds to a situation in which the collective system is in contact with an external source of heat
simulated by the background. But if T < 0 the collective system yields heat out to the background while its
entropy increases. This simulates an equivalent irreversible process which may spontaneously occur in
the collective system. At the same time, the energy W = ¢ + L decays and is transformed into heat,
because W = 8Q < 0. Hence the condition T < 0 is indicative of thermodynamic instability provided that
accessible neighbouring states of the collective system with higher entropy exist. This condition, however,

is not sufficient for thermodynamic instability as it follows from the simple observation that when the

15



system is conservative and W is minimum, accessible states with W < 0 cannot exist.
The existence of neighbouring states with higher entropy is insured by the following general

property of entropy functionals of the form (5.5): If the Vlasov equilibrium is not unique (that is, if it
admits neighbouring static modes satisfying the same boundary conditions and such that 8S = 0) then, on

aximum, (For the proof in
a magnetic case see Minardi 1988; see also the discussion of the next section on the electrostatic case.)

The relation between a negative T and the thermodynamic instability expresses the fact, known
in ordinary thermodynamics, that a system with negative temperature is "hotter" than one with positive
temperature: the collective system with T < 0 yields out heat to the ambience while ¢ decays and the
entropy increases.

The concept of thermodynamic instability based on the existence of neighbouring accessible
states with higher entropy is broader than the concept based on the energy principle because it can be
applied to situations not amenable to a dynamical treatment. The extremum of the energy is always
defined with respect to a limited physical family of variations depending on the dynamical model within
which the energy and its variations are considered. By refining the physical model one can include a larger
family of perturbations with respect to which the minimum of the energy can be assessed. However, a
point is always reached in practice such that the family of physical variations to be considered is so large
that it is impossible, for practical reasons, to construct an energy able to encompass all of them in a
dynamical treatment. A typical example is given by a so-called non-conservative system for which a
minimum of the energy does not exist or is not related to the stability. It is just when a large global set of
perturbations is considered that the thermodynamic method shows its full power and the concept of

thermodynamic stability supersedes the concept of dynamic stability.

8.  Thermodynamic Stability of Electrostatic Equilibria and the Maxwellian Limit
As a simple illustration of our thermodynamic concepts we consider an electrostatic Viasov

equilibrium described by distribution functions fg(es) where &5 - (1/2) mg v2 + qs and s denotes different

particle species. Up to first order in ¢ the charge density is given by the relation

6. =3 a.[fleHv=0,%,¢ gﬁfd-"v 8.1)
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Applying (5.3) and (5.6), one obtains the following expression for the temperature:

_4TAVAG® __ AVAS

= =- 8.2
k> T, q2] %— d’v 82
The first variation of the entropy functional (5.5) is the following
- —2j c,0odV + £':—j‘«p,,_&s +0,00)adV (8.3)
2AVAG?| 4ny

Using the relation

D sovre o Lo veseqy L _ S
‘j] 0. 3qaV =~ J BoV'g,dV =-— f 9.V"8paV - £ oV, —9,V5p).d3 (8.4)

The first variation becomes

1 k2 k, PRI S
oS = -|o 6odV + —= dodV —-| = OE —-80QE )-d

(8.9)
Recalling (7.5) the surface integral is proportional to the energy transfer 8Q between the collective
system and the background. In an isolated system this integral must vanish. The entropy is then

extremum in an isolated system when the following relation holds:

2

G, = f—;(p,, 86)
It follows that the electric field E, = V¢, of the extremal equilibrium must satisfy the equation
V’E, +k:E,=0 8.7)
Let us assume k2y, positive (t negative) and sufficiently large, so that (8.7) admits a regular solution
with at least one zero in Q (including the boundary). In this case a solution of class C° of (8.7), with
prescribed boundary conditions, is not unique. Moreover, the existence of a zero would violate the so-
called Jacobi condition of the variational calculus (Goursat 1964) which requires a solution of (8.7) not
yanishing in Q in order that the sign of the second variation of S be definite. Indeed, according to the
variational calculus, if zeros exist, a smooth variation 8 & (of class C') can always be constructed
arbitrarily close to a solution of (8.7) of class CO (so that 8S is arbitrarily close to zero) and such that
the configuration ?m + 8F describes a neighbouring equilibrium with increased entropy (52S > 0). At
the contrary, when k2p, is negative (t positive) a non-vanishing solution in Q exists, (unique for given
boundary conditions) and S can be shown to be maximum. The condition k2y > 0 (t < 0) is then

necessary for the thermodynamic instability and in this case the distribution function of at least one of
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the species must satisfy, in some domain of velocity space, to the inequality
a9,
=50 8.8
. (88)
which is then necessary for thermodynamic instability.

We now consider the case when fg is Maxwellian. In this case one has, up to first order

6, =2,n4q,exp—(q,0./T)=-0,2,4!n,1/T, (8.9)
Thus

k:=-4nY, q’n, /T, <0 (8.10)
and S is maximum. The temperature is given by the expression
AVAG®
T1=—————>0 (81 1)
Z.qn /T,
Let us assume that the mean square deviation of the number of particles in the volume element AV is

given by Poisson's statistics. Then

AG* =3, qXA-n,) _Zan (8.12)
F i ¥ 3 £ ) AV
and
2
1= 2t (8.13)
.5

It follows that when all species have the same Maxwellian temperature T, the generalized temperature t
is identical to T. Moreover, - k2, is identical to the square of the Debye length.

We conclude this section with two remarks. The first remark is that the relation between the
maximum of the entropy and the uniqueness of the equilibrium is consistent with the meaning of the
entropy principle as an evolution principle. The uniqueness of the equilibrium is indeed necessary in order
that the maximum of the entropy could indicate ynambiguously the direction followed globally by an
evolving system.

The second remark is that the thermodynamic instability can be interpreted in terms of a
negative sign of a dielectric constant describing the reaction of the background to the presence of a
collective charge 8o immersed in it. The modification of the charge density of the background, as we

know, is described by G given by (6.2). Let us call edo the modification of the collective charge density in
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the presence of the reacting background. The local conservation of the real charges gives

£86+6=0 (8.14)
or, remembering (6.2)
k2
=1- k_2 (8.15)

It is easy to verify that the second variation of S is positive for € < 0. In this situation the entropy is
minimum, the collective system is unstable and the total system formed by the background and the
collective system is not in thermodynamic equilibrium. Starting from this observation, one can develop a
method for calculating the saturation levels of unstable collective modes by taking into account the
nonlinear reaction of a medium, formed by a certain population of individual particles, to the buildup of the
unstable collective charge (Minardi 1985). Taking into account higher orders in ¢, one finds that a
neighbouring equilibrium of maximum entropy can be reached which corresponds to a saturated level of
the electric charges fluctuating between the medium and the collective system. The saturation of the
instability is then related to the nonlinear reaction of a background of individual particles, namely particles

which, in the linear limit, do not participate to the formation of the collective field.

9.  The Vlasov Magnetostatic Equilibria

The formalism developed above for the electrostatic equilibria can be immediately extended to
collective equilibria of gravitational or magnetic nature introducing the appropriate potentials and
information variables. In the magnetic case the information variable is the current density and the
potential is the corresponding vector potential. The entropy functional related to isothermal variations is

given by the equality (Minardi 1981).

M.zc + =
E2j - Aav 9.1
2AVAJ [ JJ o E‘;J ] (9.1)

Here p2 is related to the generalized temperature and to the magnetic configuration at equilibrium by the
relations (analogous to (5.3) and (5.6)): .
4TAV A

T=-
3u2c?
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1
— = - (92)

It follows from these relations that the arbitrarity of the gauge is reflected in the freedom of u2 as well
as of 7. The parameter p2 will act merely as a label of the equilibria which belong to the family
characterized by the extremum of the entropy or by the vanishing of the entropy production defined by
dS/dt (see the examples later). The magnetic configurations which follow from the stationary properties
of S were examined in recent papers both for collective systems of the pinch and of the tokamak type.
Here we shall discuss some aspects of these systems which are related to the interaction with the
external world and are relevant for the thermodynamic interpretation of the boundary conditions to be

applied in the variational treatment of the functional S.

91  Example of a closed system: the reversed field pinch,
A closed system can be schematized as a system formed by a cylindrical or a toroidal plasma

and a perfectly conductive shell enclosing the plasma and screening it completely from the external world.

The plasma carries a current density 'fp and the shell a current j, which screens the magnetic field B
created by j, so that the total magnetic field vanishes outside the shell:

4—6"-7,,=VX§=vaxKP,4—"]',=—6(p-p,)é,x§ (9.3)
C

Here €, is the unit vector normal to the shell directed outwardly. The function 8(p-ps) describes the
localization of j, on the conductive shell with effective minor radius ps and will be approximated by a 3-

function. The integration volume 2 in the entropy functional (9.1) includes the shell and j = j, + ..

We shall calculate the energy transfer 6Q = - d¢int between the collective system and the

background. The variation of ¢int is given by the expression (analogous to (5.4)):

AVA32 <2 1 - - - u2 -2
0Pine =—6| o+ A%dQ |=-0| — + i) A dV—-— JAzdV 9.4
Pint [4’ —6_;2__(12 :| 5[20})(1‘) k)-Ap 871:}) P (9.4)
Note that the screening field created by j, exists only outside Q and the same holds for the

corresponding vector potential As.



A field reversed force-free configuration is an extremum of (9.1) (Minardi 1989). With a suitable

choice of the gauge one has

i, ﬁ%jﬂ’" =&§,. &VXZ =%Vx§m (95)
Note that the first equality is consistent with the supplementary condition (9.2). We calculate the
variation 8Q arising from a variation A of the vector potential inside €2, assuming that the
corresponding magnetic field variation in € is screened by a variation of ],

1 (e - 1+ =
=-0¢p,, =—|0A-VxB dV+—|A _-Vx8BdV -
8Q 5¢1m 8”! x m 81‘! pm X

(9.6)
L [xeB A, L [d5xB, s4-Lo[ 4, odav =
8ny m 8mg " g ™
1 - - -
=—|8AXxB, -dS
41t-2[ %P
Considering that 54 arises from a time dependence, 84 = (9A/0t)t = - ¢ E &t, (9.6) becomes
8 _ _C (5B .47
< =—-—_|ExB_ -dS 9.7
ot 41:;[ X B 7

and one sees that d¢int = - 5Q simulates a radiation energy emitted by the collective system. In a
closed system the variations 84 = —cESt must be chosen in order that 5Q = 0.

The defining relation (9 4) of ddint is nothing else than the energy conservation

8 _ 3. ulc-. 84
Ad‘/__ nt d‘/=
& 2 8:-[(]’+j‘) St +41t£A"8t
C (BxB dS 1 3B
- =-= B — 9.8
- -)[E X B-dS i -Edv atdv (9.8)

Using (7.2) and (7.3) one obtains the free energy and the work per unit time

OF

5= —————jE (9.9)

92  Example of an open system ; the tokamak

A typical example of an open collective system is given by the plasma in a tokamak, which is



externally coupled to the primary of the ohmic transformer and is subject to an auxiliary injection of
power. The states of an open system cannot be characterized by the maximum entropy principle, which
has a meaning for isolated systems only, but one can assume that the entropy remains stationary in
time under the external action of the ohmic and the auxiliary heating and investigate the properties of the
states which satisfy this requirement. Applying the condition to the confinement region of the tokamak
q(sA) < q < q(s), where g(sA) =1, q(s) = 2, one is led (Minardi and Lampis 1990) to the following

expression for the time derivative of S (or entropy production) in the absence of auxiliary heating

dS 1 ¢= o . a3
—=——E- (V% +p*j)av 9.10
dt uz'ta ( jp IJ'JP) ( )

A family of isoentropic states (labelled by p?2) is then obtained whose axial current density

distribution, in the confinement zone, satisfies the equation
Vi, +u?j, =0 (SASr<s) (9.11)

Comparing this equation with D'Alembert equation —V’AP =(4n/c)j,, one has the relation

(apart from a constant related to the gauge)

2
. C
o= 12

which shows that the solution of (9.11) is consistent with the supplementary condition (9.2) of the
statistical model.

We shall now proceed to calculating explicitly the time derivative of the interaction energy ¢jnt.
Following the same scheme of previous work, the plasma is considered as surrounded by a thin conductive
shell with narrow cuts through which an inductive axial electric field T with Vx E = 0 is created in the
plasma by a magnetic field ?e changing in time outside the shell and vanishing inside it. The electric field
vanishes on the perfectly conductive shell so that the shell acts as a surface of discontinuity for E’e and

E. It follows from this schematization that a time dependent current _j)s

- =8(p-p,)E, x5+ (9.13)

exists on the shell, while E, the plasma current density —j-)p, and K)p are assumed as stationary. We
also assume that the field created by Tp is screened by the conductive shell so that A vanishes outside

the shell.



For our calculation we shall need the change of V x E and V x —A’p across the discontinuity
surface. Considering an infinitesmal volume element At with vanishing thickness and base surfaces
situated on opposite sides of the discontinuity surface and parallel to it, and applying the general

coordinate-free definition of the curl, one obtains the following expression for quantities localised on the

surface
_19B, _gyp=L dS x E = —dS, xE
c dt At T
(9.14)
- 1¢ = = 1 - =
V x P=A—1§dSXAP=A't mXAp

where dS, = -dS .
In the calculation of ddjnt/dt we shall consider the time dependent quantities (denoted by the

subscript s) as small perturbations and will retain only first order terms One can then write

d¢'l 2
Bim - _— +7)(A, +A dV+ A +A)adv=
2. = - dtj(z, J)(A,+A) J( )
(9.15)
Y, = aA i
= 2(:'[( A+ j
Recalling (9.13) and noting that (1/c) 94, / 9t = —E, one has
do, 1,2 0B+ 1¢=- pleps =
PBin - [d§xLeh +~[Ejav-EE[E-Aav 9.16
dt Sn-,[ SPTRLAPY S 4n£ ’ (816
We now use (9.14) and write
< OB, + o+ OB taax_ 1 o =
[ XA = [dS A x=e=-[dS A, x (a5, xB)=
=—Jd§-(7xpxALTd§in)xE=jd§-(VxAp)xﬁ (9.17)

where in the transition before the last the conditions A, - S = E - 4§ = 0 were taken into account.

Applying the relation
J'dﬁ-(VxA’P)xé=jv.(§x1§)dv=4—"j§~},dv (9.18)
> Q Ca
one finally obtains from (9.16), remembering (9.12),

2
_= IEJP _%=£=_IE(,, E<Z)av=0 (9.19)
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From these relations and the energy balance (7.3) one has the equality

dL dé =
=X =|E.jdV 2
dt dt ! Tr (920

and dU/dt is the rate of work performed by the generator driving the plasma current. From the second
relation (9.19) one concludes that the states with vanishing entropy production remain in Viasov
equillbrium during the ohmic heating, in accordance with our definition of Viasov equilibria.

The auxiliary power can now be easily inserted in this scheme. Let pa be the power density,

supposed as uniform for simplicity. Expressing the axial current density as j = jp - pa/E, the entropy

production (9.10) becomes

% - ﬁiE(V’ j+ uzj)dv+%£ p,dv 9.21)
where E is the axial electric field.

The first term in the r.h.s describes the production of magnetic entropy pertaining to the collective
configuration while the second term is the entropy production due to the external heating rate dQ/dt =
| p,av . Thus the family of “isoentropic states" satisfies the equation

2
vij+ptj=-Ele (9.22)

which was studied in detail in our previous work. The work per unit time performed by the external

system is now

& = [ paav + [ Bjav (9.23)
Q Q

This work is subsequently transformed into heat inside the plasma. We refer to our recent work
(1990,1992) for the discussion of the relation between the entropy production (9.21) and the energy

balance inside the plasma.

10.  Local Magnetic Entropy of Inhomogeneous Systems: the Example of the Tearing
Modes

101 The Local Entropy

The magnetic entropy functional (9.1) is expressed with an integral over the whole volume Q of
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the collective system so that its properties are related only to the global aspects of the system. In order
to include in our thermodynamic point of view those physical aspects which depend on the local structure
and inhomogeneities of the magnetic configuration, as for instance, instabilities with respect to
interchange modes, one must define an entropy functional which is sensitive to the local properties. A
natural procedure consists in dividing the system in small tube elements Qp, of the magnetic flux and in
calculating the entropy S, in each Qp, by treating them as statistically independent systems. The
entropy of the total system is then the sum of all entropies Sp. Of course, the Q, should be large enough
to preserve the macroscopic aspects implicit in our description (for instance Q >> V/N).

The local structure is taken into account considering that both the current density and the vector
potential deviate from the average value j, and A_ in Qp by a small amount j(%)—-7,, A(¥)-A,,
where ¥ varies inside Q. Thus we can proceed taking  — j, as information variable and A—A_as
vector potential and construct the local entropy functional Sy following the same formal lines as in

section 2:

3N - .2 wee+ +. = =
$=)8,= = =1 =-7)dQ. +=|(j—-Jj.) (A-A)dQ 10.1
28 = a2~ Ui (G-I A A ] (101)

where

. [G-7)-(A-A4)aq,

_A4ngq,
c

e 4TAV A

= 10.2
" 3c*t, (102)

|(A-4, 4,
The extremum properties of S are connected with the uniqueness of the magnetic equilibrium just in the
same way as discussed above. If the isothermal (tn, fixed) equilibrium associated with 8S = 0 is not
unique, which implies a domain where the t, are negative, and if this domain is sufficiently large and the
n-dependence of 1, sufficiently smooth, then variations can be constructed which increase S. For the
proof see Minardi 1988. The thermodynamic instability is then related to the negative sign of 1, or,

recalling (10.2), to the positive sign of the quadratic form
-+ Ty 77 T oivwE o L E o B2 \LE
(J—J) (A=-A)=(& Vj)§ VA) =5(§-V1)-(B(x,)><§)> 0 (10.3)
where E= i-x; B was assumed as practically uniform in Qn_ For the relation between the condition

above and various kinds of instabilities, see Minardi and Santini 1967, Santini 1967, Minardi 1981. By



expressing j in terms of the distribution function one can relate the thermodynamic instability to the
form of this function, just as we did in the electrostatic case, section 8. In this way one can see (Santini
1969) that the sufficient conditions of stability of the low B interchange modes (inciuding trapped particle
modes) derived by Rutherford and Frieman 1968 by means of an energy principle, imply tn > 0 and a
maximum of S. One can also prove (Minardi 1988) that the integral on Q, of the quadratic form (10.3)
divided by IE1? is locally identical in value and sign, in the limit of an infinitesimal Qp, to the form B. V25
and is then related to the local structure of the magnetic configuration, to the minimum of 131 , and to a
diamagnetic reaction of the low-p plasma (Minardi 1981).

The criterion above was investigated numerically in the case of inhomogeneous electrostatic or

gravitational one-dimensional equilibria by verifying the relation between the condition
J(o-0,)X0-0,)dx>0 (104
Q

(where oq, Qo are averages in Q) and the global instability (Cuperman and Tzur 1973, Finzi et al. 1974,
Schwarzmeier et al. 1979).

In the following we shall apply the concept of local magnetic entropy to the non-ideal MHD
equilibria by discussing the example of the tearing modes.
10.2  Thermodynamic Treatment of the Tearing Modes

We consider the case of a cylindrical plasma with helical symmetry carrying an axial current
density j, which creates a vector potential A;. The plasma is situated in a uniform large axial magnetic
field B; which remains practically unperturbed. As known from the conventional treatment of the tearing
modes, one distinguishes in the plasma two physical regions, namely a resistive resonant layer where q =
m/n inside which the dissipation is taking place and a dissipationless outer region. Correspondingly the
calculation of the entropy follows different lines in the two regions and one must resort to the local

formulation of the entropy presented above.

1021 The Entropy in the Quter Region

In this region the dissipation is neglected and the magnetic flux is conserved. We assume that the
magnetic configuration is slightly helically perturbed. As is well known, in view of the helical symmetry the

equilibrium current density depends on space through the helical flux ) = - mA; - nrAg/R, that is

.



J(F)=j,(x@).

We shall consider a set of tube elements Q, of the unperturbed magnetic flux with finite lengths
and infinitesimal thickness. Let be X, =(r,,0,,¢,) the cylindrical coordinates of a suitably chosen point
inside Qn. The coordinates of a point X varying along the tube Qp, are denoted X =(r,,0,¢).. We assume
that Bz is so large that it is not sensitive to the small helical deformations, so that the 6, ¢ dependence
of Ag can be neglected. The variation A, (X)— A,(X,) arising from the helical dependence inside Qn, is
then equal to —(1/ m)(%(X)— x(X,)). One can also write (dropping henceforth the subscript z)

g . __d
dx.(x Xa) .

m(A-A) (105)

J@-j, =

Inserting this expression into (10.2) one obtains, for sufficiently small integration domains Qp

2 _dmm 4 (106)

- c dy,

The first variation of the entropy (10.1) is then

1 L \Rs dj . ..
8S=-—=§= -2 - RSdQ”— ) A—Au dA(j - n dQn =
v 5 { ‘{(1 1%, ~m - ﬂf-[ j(A - A,)+8A(j - j,)] }

dj
dx,

)- [(j —J)+m Y a- A_)]Sj}dﬂ. = (107)

_ 1 .
= ZI{ (= 4 )3+ m8A >

2AVAj* g

1 o dj
————— —Ju S5j + mbA Q.
Yo J[(J INCALL s )]d

where 3j and SA are related by V23A = - (4n/c)3j (note that a factor 3 is missing in the expression

above with respect to the expression (10.1) of S; this depends on the fact that here the information

variable j - j, has only one component instead of three and the dimension of the information space is

correspondingly reduced). As for the higher variations of S one has

di

— 3 [8i@j+m y ; SA)IQ,, 8'S=0 forn>2 (108)
Q, n

88 =- -
AV Aj?

Let us now discuss the interaction energy ¢int and its variations:

I R e G [ea_aviao |-
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__1 Y _ 10.
80, = ZCZ"‘{(SJ-'-mEaA)(A A)dQ, (109)

80, == J(&m—%ﬁA)ﬁAdnﬂ 5%, =0 for n>2
€ Q, "

The condition dint = 0, which follows from (10.5), insures that the plasma is in Viasov equilibrium in the
outer region, in accordance with our basic definition.

At this point we introduce the assumption that the system remains in Vlasov equilibrium in the
outer region also in the varied state. This is a reasonable assumption because the dissipation is neglected
in the outer region. We must then restrict the variations 3j to those for which ¢int vanishes locally at all

orders. Then we must have

-V35A + dmm _dj

c dy,

84=0 (10.10)

This is just the conventional equation of the tearing modes in the outer region. Taking into account this
equation one sees that the variations (10.6) and (10.7) of the entropy vanish. The entropy is then

stationary in the outer region with respect to tearing modes.

1022 The Entropy in the inner Region

Thus an entropy change can only result from the dissipative process in the resonant layer. We
consider a resonant layer around r = s with finite thickness 2 and volume Qg. The magnetic flux is not
conserved in Qg and the unperturbed current is not a function of the helical flux. For the radial variation

of the current density and of the potential inside €25 one can write simply

(9, A= dAY
J J'—(dr),(r 5), A-A, (dr),(r 5) (10.11)

where s —e <r < s +¢, The generalized temperature in Qg is then given by the equality

N R0 R—
__APAV g, _Aj’AV

T JU-ixa-aye,
nl

B,%), <0 (10.12)
dj



Note that t is discontinuous across the resonant layer; tg is negative because the current density was
assumed to decrease atr = s.
We now calculate the entropy on the assumption that the only process which is taking place in the
resonant layer is a decay of the local plasma magnetic energy ¢s into heat. One can write
86, = 2i [(a8 + jsarde, 5%, = - [884d9, .80, = 0 for n>2 (10.13)
ca c
and in the limit of an infinitesimal thickness 2¢ of the layer

5, = RS;C(S) j _[ dod ﬁj:a idr

57, = %”d@ﬁi&j&dr - —%”dcpdﬁ:[:&(%r%&)d - (10.14)

= —:;; [[a@ay dgds

where

iaA[

dar |,
SA(s)

Note that the first variation 8¢ can always be put to zero by choosing A(s) = 0. The variation of the

entropy is calculated, in accordance with the procedure of section 7, by considering an equivalent

reversible process in which a quantity of heat 8Q = 52¢s is absorbed by the background:

ss=32_%o._ %, (10.15)

It follows from this relation that the entropy is maximum with respect to tearing modes when

32¢g > 0. The thermodynamic stability depends on the sign of A". The entropy is minimum and the
system is unstable for A’ > 0. This is the same result as the conventional dynamical theory. We have

found the stability properties of the tearing modes on purely thermodynamic grounds.

1023 rgy and [n ion Energy of th ring M
It is instructive to calculate the other thermodynamic quantities involved in the tearing process.

Let us calculate the variation of ¢int in the resonant layer. Since A and A must be continuous across

.t



the layer, there is no contribution from the term I(A - A,)*dQ, in the limit of an infinitesimal thickness.
Q

One has then that

8., =—8%, =80 (10.18)
So 52¢int is the heat supplied 1o the background by the decaying magnetic energy ¢g. Clearly the
system is not in Viasov equilibrium in the inner region.

In the outer region, where 8 Q = 0, the energy conservation is expressed by 82 ¢oyt + 8 L = 0,
where 82 ¢yt is the outer variation of the plasma magnetic energy and & L is the work performed on
the external circuits by the collective plasma configuration adjusting itself to the varied magnetic
configuration. If the process in the outer region is reversible, the work 8 L is expressed, as usual, (see
section 7) by 8 L = - 32 F, where 82 F is the global variation of the free energy. The variation 52 F
vanishes in the resonant layer, as is seen applying the relation (7.3), and in the outer region is given by
the expression

8F = Y 5°F, = ¥ [(6°0,),+8%,] = X.5°0, = 80.,, (10.17)
So the free energy available to the instability is the magnetic energy ¢out in the outer region, but the
instability can develop only when this energy is allowed to sink locally to the background in the resonant
layer, while the entropy is increasing. The condition for this to happen is the linear instability criterion of

the tearing modes. The energy balance of the global process is expressed by the equation

80 = — [ (38,)2d2+ 8L (10.18)
8ny

where %j(&ae )2dQ = 8%, +8%¢, (10.19)
aQ

Here 8Bg is the variation of the poloidal field.
We now go further and look for the nonlinear evolution of the instability according to the entropy
principle. We observe that all variations of order n > 2 vanish identically. This fact allows us to write the

relation (10.13) in finite terms

As =29 _ Ao, (1020)
T T

L 4 5

30



where Ads is is still given by the same equation (10.14) for 52¢s. We can then apply our considerations
to the nonlinear deviations from an unstable state. So when one starts from an unstable state with A' >
0, the nonlinear evolution must be directed towards a state with a negative A' in order that the entropy
reaches a maximum. But as soon as A' becomes negative the entropy is maximum and the system is
thermodynamically stable with respect to the tearing modes. At this point there is no mechanism for a
further evolution towards more negative A' values on the short time scale of the tearing modes (the
evolution can, however, proceed on the longer time scale of the ordinary resistive dissipation). We then
reach the conclusion that, as far as only tearing modes are considered, the system should stabilize at the
marginal state with A’ = 0 and consequently the current profile must consistently adapt to this state.

Arguments substantiating the evolution towards a state with A' = 0 were given earlier by Furth (1985).

11.  Conclusion

We calculated the probability distribution P of a statistical assembly of volume elements in a
configurational space of the electric charge density or of the current density under a constraint which
expresses the existence of Vlasov equilibrium. The Vlasov equilibrium is defined as a smeared out or
collective charge and current density distribution whose energy is uncorrelated to the fluctuations of
these quantities arising from the single particle structure of an underlying medium. We have shown that
the statistical procedure leads to a characterization of the Vlasov equilibria in the frame of a
thermodynamic formalism similar to that of the canonical ensemble. In this frame one can define an
entropy S =—J Plg PdT" which is a functional of the collective quantities. We have investigated the
consequences of the thermodynamic formalism when there is an energy interaction between the collective
system and the external world and in particular we studied in detail the variation of the entropy of the
collective system when the exchange of energy is reversible. One can then apply the conventional
procedures of classical thermodynamics for defining the entropy of reversibly accessible states and
through this way one can connect the variations of S, as defined above, to the heat transfer in a
reversible transformation. The entropy functional is therefore inserted in the traditional context of
classical thermodynamics of the macroscopic systems.

The variational properties of the functional S are connected with the equilibria and the stability

of the collective system. We have explicitly illustrated this connection taking examples of electrostatic
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Viasov equilibria, in unstable situations and in the stable Maxwellian limit.

The description of the interaction of a magnetostatic collective system with the external worid,
provided by the thermodynamic formalism, allows a precise characterization of an open or a closed
system. The former is, for instance, a plasma in a tokamak, subject to ohmic and auxiliary heating, and
the latter is a plasma completely isolated from the external world by a closed perfectly conductive shell.
The thermodynamically privileged states of a closed system are a maximum of the magnetic entropy.
For an open system only the weaker condition of vanishing entropy production, % =0, can be assumed.

While we consider that the present coarse-grained statistical mode! of the Viasov equilibria
(collisionless and in general not Maxwellian) can be formally and physically interpreted in the conceptual
frame of classical thermodynamics, the problem remains to see how this model can be justified on the
more fundamental grounds of the microscopic phase space description of statistical mechanics. The result
of the present paper, that the same formalism can be scaled from the level of a system of particles to
that of a system of volume elements with finite size, seems to indicate that the techniques of the
renormalization group might be helpful for attacking the problem. Needless to say, the solution would be of

significance for a better understanding of the interpretative basis of statistical mechanics.
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