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Energy Balance in Tearing Modes

J.A. Wesson
JET Joint Undertaking
Abingdon, Oxon. U.K.

Introduction

The dynamical behaviour of the tearing mode in a highly conducting fluid was
fully described by Furth, Killeen and Rosenbluth [1]. Over almost all of the fluid
the eigenfunctions have the form of neighbouring equilibrium solutions {2].
The governing equation for slab geometry is
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where v is the perturbed flux function, k is the wave-number and F = k.B. The
solution of this equation gives the quantity
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where ¢ is a small distance from the resonant surface at which F = 0 and y(0) is
the value of y at this surface. The eigenvalues are determined by matching the
solutions of equation (1) to a solution of the full equations in a narrow layer
around the resonant surface. The resulting relation takes the form

A= AL(7Y) .
where v is the growth rate. Since A'(0) = 0, the sign of A’ determines stability,
A' > 0, giving instability. Thus stability is determined by the outer solutions and

the growth rate is determined by the response of the inner layer.

Furth [3] pointed out that minimisation of the integral
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over the outer region leads to equation (1) and substitution of this equation into
equation (2) gives

+£

Vm = }ITW —c = _%Wz(O)A’ .

Stability is therefore determined by the sign of the minimum of V. Furth states
that the driving energy for the tearing mode comes from the gross configuration,
which is able to lower its magnetic energy in fluids with finite resistivity. Under
this description the energy released from the outer region provides a Poynting
flux proportional to yy'| and this is released in kinetic energy and Joule heating
in the inner layer.

The question of the driving energy of the tearing mode was re-addressed by
Adler, White and Kulsrud [4]. They found that indeed the magnetic energy
released is

-M = Lyt0)a . 3)

However from a detailed analysis they concluded that the driving energy comes
entirely from the region inside the tearing layer.

Bondeson and Sobel [5] pointed out that equation (3) is only valid for the
symmetric case. More generally

I.{4 ! 2
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where F” and F’ take their values at F = 0. They conclude that the quadratic form
given by Furth must be completed by the inclusion of the additional term
leading to

, F/’ FII F’ 2
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We shall here reconsider this problem and describe the energy balance in a way
which clarifies the underlying physics.



The energy balance in tearing modes is not as straightforward as might be
imagined. Consider the outer region where the current gradients which
determine stability lie. In this region inertia is negligible. Consequently the force
on each element of the plasma is zero and the work done in displacing each
element is therefore also zero. However the underlying process is that the
driving force of the instability induces a magnetic perturbation and the force
arising from the resulting bending of the magnetic field lines balances this
driving force. Thus we see that although the work done by each element of the
plasma is zero, there is a change in the magnetic energy density.

Another way of describing this behaviour is to regard the zero work done as the
balance between the change in the local magnetic energy density and an equal
transfer of energy described by the divergence of the energy flux. That is

oW=0=06M+ V.F

When we consider the whole outer region there will be an overall magnetic
energy change and an associated energy flux to the resistive layer.

It is tempting to look for the source of the energy for the instability by examining
the distribution of the change in magnetic energy density. However there is no
unique procedure. In general there will be regions of the positive and negative
changes in magnetic energy but it is not possible to attribute the overall energy
source to any particular region since the energy change at any point is a
composite of stabilising the destabilising contributions. Furthermore the
destabilising forces can be transmitted across the plasma to produce an energy
change in another region.

We shall here adopt a different approach, based on the energy balance between
recognisable physical contributions. It might be expected that this would just
involve the derivation of the appropriate form of the equation for the
conservation of energy. However it turns out that there are subsidiary energy
balance equations relating well defined physical quantities. The sum of these
equations gives the equation of energy conservation. One of the subsidiary
energy balance equations is similar to the relation proposed by Furth and another
describes the role of the extra term introduced by Bondeson and Sobel.



In the following sections we shall first review the tearing mode model and the
basic stability theory, and derive expressions for the kinetic and magnetic energy
densities. We then proceed to the analysis of the energy balance.

Model

The coordinate system is illustrated in Fig. 1
Ay

Figure 1. Showing the co-ordinate
system and the directions of the
equilibrium magnetic field Byo(x),

Byo (%)

the current density j, and the wave

j
~ - vector k.
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The y coordinate is chosen to be in the direction of k. The perturbations are
taken to be incompressible and so only the By and By components of the
magnetic field enter the calculation, any equilibrium component B, playing no
role.

There is a choice of perturbation variables with which to describe the problem.
Here we use the magnetic flux y and the x-component of the displacement
vector, £. We shall use physical quantities throughout, avoiding the use of
complex variables.

Basic Equations

Tearing modes are described by the equation for resistive diffusion of the flux
together with the equation of motion. Defining the flux function y by

Y oy
B =ZX B, =-2£
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then Maxwell's equations

¥ x B=j vxE=-2
combine with Ohm's law
E+vxB-=nj
and V.v = 0 to give
59—3’— +vVy = ¥y . (4)
The curl of the equation of motion
p% = jxB-Vp
gives the other required equation
PL(Y x v) = Ty x UTY) 0

where the term v.V v has been dropped because it does not enter the analysis of
small perturbations.

Linearised Equations

Linearising equation (4), using the definition

v =98

- ot
with ¢ = (R&cosky + y & sinky)e”
and v = (¥, + v, cos ky)e”’

leads to
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Y(Wl_éxByo) = n(Wl -k lVl) (6)
where the primes indicate derivatives with respect to x.

Similarly, using V.§ = 0, that is

1.,
§y=_;§x s

the linearised form of the z component of equation (5) is
PY' (7~ KE) = ~ KB (yi-Kyy) + Koy (M

It is usual in this subject to use dimensionless variables but in the present
treatment the basic physical quantities will be retained.

Equations (6) and (7) are the required linearised equations. To simplify the
subsequent equations, the subscripts on v, &, Byo and jzo will now be dropped,
that is

Vi—= vy, gx_')é’ Byo'_)B and jm__)j’

and we note the relationship to the usual notation

i _F
B F
Equations (6) and (7) then become
y(v-¢B) = n(y"-£y) @8)
prE-KE) = - BBy -Ky) +Kfy . O

Eigen-solution

We summarise here the usual stability calculation [1}. The analysis is based on
the assumption that the ratio



is very large, where
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In the outer regions inertia is negligible and v is given by the resulting form of
equation (9)

Y- k"’w—%w=0 : (10)

The resitivity is also negligible in this region and, from equation (8), § is given by

gy
I
e

The solution of equation (10) which satisfies the chosen boundary conditions has
a discontinuous derivative at the surface on which B = 0. Taking x = 0 to be at
this surface, the magnitude of the discontinuity is measured by the quantity

s = X (e —>0)

vi-€

In the inner region the full equations are solved but, because of the narrowness
of the layer, p, n and B’ can be taken as constants. Furthermore in this region the
k2 terms are small compared to the second derivatives, and the last term in
equation (9) can be neglected. Equations (8) and (9) can then be arranged in the
form

v’ = %(w—éB’x) a1
szl kzj’
= B2 (yoeBax + 5y 12)
¢ npy(w ) py2

where B', 1 and p take their values at x = 0.

The solution of equations (11) and (12) is such that y is approximately constant,
that is



v = y(0) + small terms

The small terms play a crucial role but equation (12) can be solved for § keeping
only y(0). Thus equation (12) can be written

77 ” 2
1—2—’;% + X% = - xw(O) +y I wo) (13)

This is an inhomogeneous equation for £. The first term on the right-hand side
of the equation is odd in x and the second is even. Thus these terms produce odd
and even parts of the solution for §. It turns out that only the odd part of £ enters
the stability analysis. This is an interesting feature, the significance of which will
become apparent later. The equation to be solved is therefore

oY gn , 2 _ 1
k23,2 o X go = _'B_,XW(O) ’

where &g is the odd part of §. This gives a solution of the form
o= fl(B n.p.k7), x] w(0)

the characteristic width of the solution being

1/4
(NP
d -( T ) . (14)

The solution for & is substituted into equation (11), again putting y = y(0) on the
right-hand side, to obtain the change in y'/y across the inner layer

Al = l jlf((f) —29_pB’x dx

The dispersion relation is then given by
A= AL(B',n.p.k.Y)
and the specific form of A, leads to the growth rate

A&’/ k)"
r=0. 55_2/‘5 2



To illustrate the behaviour of the functions y and &, examples taken from
reference [6] are shown in Fig. 2. In the case shown, the resonant surface is at the
mid-plane of a symmetric equilibrium but no such symmetry is assumed in the
present general analysis.

(b)
€
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Figure 2 (a) Eigenfunctions y and £ for the symmetric mode of a current
configuration j = jo/(1 + x2/a2) with ka = 0.1, the ratio of the
characteristic resistive time to mhd time, S = 103 and a conducting wall
at x = 10a. (b) Expanded forms of the same eigenfunctions in the inner
region together with the extensions, yex and Eex, of the outer solutions
into this region.

Before deriving energy balance equations we shall derive equations for the
kinetic and magnetic energies.

Kinetic Energy

In calculating energies we shall follow convention and use the average energy
per unit area in the (y,z) plane. Then the kinetic energy, | 15 pv2dx, over any

regions of x is

K= i—j:/kI% py2(§2 cos® ky + §y2 sin’ ky) dxdy



Thus
K=37"[p(8* +8y) ax

and using V.E=0

K=%%§-Jp(§’2+ kzéz)dx . as)

Magnetic Energy

The magnetic energy is | 1iBzdx and the change in magnetic energy is therefore
k er/k
M= ;L [4(B% + Bjy +2B,,B,,) dxdy . (16)

The required y independent, second order By field is given by the y independent,
second order flux, Y2, and following Adler et al this is determined from the
second order part of equation (4). Thus, noting that the second order terms have
an exp (2yt) dependence,

L""‘[zm +¥{&y cos” ky - éykwsinzky)] dy = [ nyyay
Thus, using V.{=0
27y, +%7(6 v'+Ey)=ny;
and hence Y is determined by the second order inhomogeneous equation
ny:-2vy; =%7(§ v) a7

Writing the perturbed magnetic fields in equation (15) in terms of the first and
second order fluxes now gives

M=£J'ﬂ/k

Lt 20w

o
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so that

M

%j(w’2+ k2w2—4Bw§) dx (18)
where y» is determined by equation (17).

Energy Balance Equations

In addition to the equation describing the conservation of energy there are
separate equations which describe the energy balance between the various
physical effects. We shall first derive two such equations. The sum of these two
equations gives the equation of energy conservation. The equations will initially
be for an arbitrary region of x.

First Energy Balance Equation

We first write equations (5) and (6) in the form

v = -2y - ) + Ly 19)

p5(87- ¥%¢) - j'w = - By~ K"y) (20)

Equating the products of the left-hand sides of these equations to the product of
the right hand sides gives

3

pLré(e-#%) ~ ity = nv" -k —rw(v - #v)

Integrating over x, and integrating the second derivative terms in the first and
last terms by parts

2
brfo?+ 8y 4 1ew+ B+ 28 ax = - [0y - Byiax

+(%}'W'+%%y;§5')

11
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11.

and noting that

we have
%}'I(V"Z +k2y? + JEy)dx +%It£ = H—njlzdx + (3 W’+%p—kz—3-§§')| . (21)
Writing for the ohmic heating term
Q=4 njtdx
and considering the whole region, equation (21) becomes

bf(v ey ey = -2 v,

This equation was given by Furth. It is an exact equation but at this stage it does
not allow an attribution of the left hand side to the outer region and the right
hand side to the inner region. We shall return to this question shortly but first
we shall analyse the energy balance more generally.

Second Energy Balance Equation

The second energy balance equation is obtained by multiplying equation (17) by j
and integrating over x. Thus using partial integration on each term, and noting
that

¥: = -l

we obtain

1v[(4By; +Ey) dx = - [njjrdx - (Lyi€y+27Bw,) (22)

Equation Energy Conservation

Adding equations (21) and (22) together we obtain the equation of energy
conservation

12
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d

~M+K) = =[(hnit +niip)dx +F (23)

with
F = (Mrigw +3(o7 18)68" ~278v; +1mv)

The integral represents the ohmic heating and F is the energy flux represented by
the boundary term. The factor% in the j;2 term results from averaging cos2ky
over a wavelength. The first term in F is the flux, due to the displacement &, of
the linear energy transfer to the plasma Ejj , the second term is the kinetic energy
flux and the last two terms constitute the Poynting flux.

We shall now proceed to analyse the energy transfers involved in the instability.
First however it is necessary to identify the term representing the "driving"
energy for the instability.

The Driving Energy

The energy for the instability of the incompressible fluid clearly has to come
from the magnetic field. Equation (18) for the magnetic energy change contains
the familiar Bx12 and By stabilising terms together with the rather opaque By,
term. However, we know that stability is determined by the outer equation

o

74 —- k2 — -J_ -_ O
"4 ' B "4
If this equation is multiplied by y and integrated it gives Furth's relation
[8% + B, +J§ vhde=yy| . (24)

This equation suggests that the free energy comes from the current gradient
term. More explicitly the rate of energy transfer to the plasma is Eyj;, and part of
j1 arises from this current gradient. This part of j; is ~&j', and using E; = yy, the
resulting rate of release of energy is

D=-}y[{¢ydx - (25)

13
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In the outer region where § = yB, D has the form of the driving term in
equation (24).

In what follows we shall explore the consequences of assuming that equation (25)
does in fact represent the rate of release of free energy.

Overall Energy Balance

From equation (18) the rate of change of magnetic energy is

am %yj(y/’2+k2w2)dx -S -D, (26)
where

S+D = 2y[Byj dr

The first two terms in equation (26) are stabilising. Taking the second energy
balance equation (22) for the whole region we find

S=[njjydx . (27)
and it is seen that the magnetic energy source term S balances the ohmic heating
term involving j,. The role of the remainder of the energy balance, as

represented by the driving term D, can be determined using the first energy
balance equation (21). For the whole region this equation can be written

D = %yj(w'%kzwz)dx +%—:;—Jp(§’2+k2§2)dx +3[nfax . (28)
Writing
My = L f(w?+k0 ) dx

and
Q = %Jﬂjlz dx
equation (28) becomes

= g_M._l_ +d_K_ +Ql
dr at

14
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Thus, summarising, the source term S balances the y independent ohmic heating
term and the driving term D gives the increase in magnetic energy arising from
B12, plus the kinetic energy, plus the Joule heat arising from nj;2.

We shall now investigate the energy flow between the outer and inner regions.
This will lead to a natural splitting of the first energy balance equation into two
parts.

Energy Flow Between the Two Regions and Splitting of First Energy Balance
Equation

Equation (28) gives the first energy balance equation over the whole region.
Now the kinetic and resistive terms are negligible in the outer region, and the
contribution of the magnetic energy integral in the inner region is negligible
because of its narrowness. So, without affecting the values of the integrals,
equation (28) can be written

— {1 2 12,2 103 /12 2 282 2 )
D = (Jrfw? +:Pyhax) +(3( 10 pE? +12E0ax + [ nitdx) - (29)
In order to make further progress it is necessary to separate D into its
contributions in the two regions. In the outer region £ = y/B and the definition
of D given by equation (25) becomes

Do, = GY[Z¥ia0)

f.

In the inner region D becomes

Dy = (377 [(Ew(0)+&,w,)dx) (30)

in
where the subscripts e and o refer to the even and odd parts of the solutions for §
and vy in the inner region. First we shall determine the relative order of the two
terms appearing in the integral of equation (30). To determine the relative
ordering of & to &, we need the ordering of the ratio of the even and odd terms
on the right-hand side of equation (13) which determines &. This ratio is
nj'/yB'd where d is the characteristic width of the layer as given by equation (14).
Thus, since

de—2e  and  ye e
ksz/ TA2/57R3/5

15



we have for the required ratio,

Ce . M _ 0
& YBd

and so & ~ €.
We now need the ordering of the other factors, yo and y(0), appearing in

equation (30). The order of y,/y(0) is given by the form of y in the outer region
as the layer is approached. The small x expansion for y is [7]

V= 1,1/(0)[1+ i;,x inixl + Ax]

and so

, 0
v, ~ u/(O)é—,d tnd ~ 3"’7(,321,:52’5 << y(0)

Thus in equation (30) the second term is negligible and
Dy =37y w0)[&, ax .

An energy balance equation for D;j, can now be obtained using the even parts of
equations (19) and (20) in the inner region, that is

Ui
B

Y

'yge = (Wg_kz‘//o) +'§Wa

2
p%f( e,"—k2€e) -j’We = _B(wg_k2‘/,o)

Then following the same procedures as used following equations (19) and (20) we
obtain

3
D = 3 15[ +#78)ax +4[ i, ax (31)

where the integrals are over the inner region and the magnetic energy term
involving (yo 2 + k2y,2) is small and has therefore been dropped. Subtracting
equation (31) from equation (28) we obtain

16
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D,y = $v[{w? +k*y Jix +%{—jjp( kel ) dx +3[nih dx (32)

Equation (32) expresses the energy balance associated with the stability calculation
which was outlined in Sections (4) and (5). Rewriting equation (32) in the form

, i’ e , 1 R
(—H(w2+k2w2+1§w2)dx) = v = [%(kﬁzfp(¢f+k2§3)+%7 | mfodx) :

out

n

we see that magnetic energy from the outer region flows via the Poynting flux to
provide kinetic energy and ohmic heating in the inner layer. The magnetic
energy term is just that which results from the terms in the stability equation for
the outer region, and this provides the energy associated with the odd parts of
the inner solution, &, and jio (= - yo"), which were the only parts involved in
the stability calculation.

Equation (31) is seen to be an independent energy balance equation for the even
functions &e and jie. The kinetic and Joule energies associated with these terms
arise solely in the inner region and are balanced by a driving energy, D;, , which
is also localised within this region. Thus, although equation (31) describes part of
the energy balance, it has a subsidiary role and the processes involved in this
energy balance occur "in parallel” with the principal processes described by
equation (32).

Summary of Energy Balance

It is perhaps helpful to bring together the energy balance equations and to show
how they lead to the equation of conservation of energy. Thus writing the
kinetic energy

K=K,+K,
and the chmic heating
Q = Qe + QO + Qz

with K, =%%Jp( 2+ K2E) dx Q. =4[ nitdx
2
Ko =47 [pl& +176) ax Q,=4[nitdx

Q, =I77J'J'2dx

17
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the energy balance equations (32), (31) and (27) may be written

M, dK,
=—+—2+Q
oM dr T dt °
71,4
D, = d_te + Qe
S = Q2

Adding these three equations together and recalling that D = Dyt + Djy
and that from equation (26)

M _ am

-S-D,
dt dt

we obtain the equation for the conservation of energy

Potential Ener \

Furth writes for the infinite conductivity energy principle integral
8W., = [BHE?+K?E) dx .

However the potential energy change is
SW = [&-F(§)dx

where F(€) is the perturbed force. Now in the outer region of the plasma F(§) = 0,
and so

SW,, = 0.

This is at first sight surprising since the description we have arrived at is one in
which the driving term for the instability arises in the outer region. However
there is no conflict between these results. The force which provides the driving
torque for the instability is transmitted across the plasma through the magnetic
field deformation. It exerts its effect in the resistive layer through the resulting
magnetic field deformation at the edge of the layer, this deformation providing
the boundary condition for the layer dynamics.

18
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Summary

From our analysis we see that we can describe the exact energy balance in the
tearing mode in a way which is consistent with intuition. This corresponds quite
closely to Furth's description. The only clarification which was needed arises
from the recognition that the energy flow arising from Furth's energy integral V
is dissipated solely in the kinetic energy association with the odd part of § and the
ohmic heating associated with the odd j;. This has a satisfying self-consistency in
that it is only these variables which arise in the stability calculation, since the
minimisation of V gives A’, and A'j; is obtained by solving for the odd & and
using this to integrate the odd .

This energy balance forms part of what we have called the first energy balance
equation. The remaining part of this equation involves only layer quantities and
shows how the internal driving term D;, is complementary to Dyy¢. Thus
whereas Dy,; drives the "odd" energies, D;, drives the kinetic energy involving
the even part of £ and the ohmic heating associated with the even y". This latter
energy transfer corresponds to the extra term introduced by Bondeson and Sobel.
The other energy balance is between the residual source term S and the
y-independent ohmic heating term involving njj,.

Adler et al,, attribute the driving energy to the magnetic energy decrease in the
resistive layer. Their results show that there are energy contributions of varying
signs from different regions and that the total magnetic energy change is
approximately equal to that in the inner layer. However there is no unique
accounting procedure and the attribution of the driving energy to the inner layer
is somewhat arbitrary. We should also recognise that the lowering of the
magnetic energy in a region does not mean that the region necessarily provides
the energy source for the instability. The magnetic field energy can be lowered by
the transmission of forces exerted elsewhere.

19
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