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Neoclassical Transport in the Presence of Fluctuations

T E Stringer
JET Joint Undertaking, Abingdon, Oxon. OX14 3EA, UK

Abstract

The usual argument for automatic ambipolarity of neoclassical particle
fluxes in a tokamak is based on the flux surface averaged toroidal
momentum equation. It does not apply when fluctuations are present,
because they also contribute to the momentum. In the case of electrostatic
fluctuations, their contribution comes from the FLR pressure tensor. The
same pressure tensor gives rise to a difference in the drift velocities of ions
and electrons, and hence to non-ambipolar anomalous transport. The mean

(jxB)g force introduced by magnetic fluctuations can be much larger, as in

the associated non-ambipolar particle flux. Any non-ambipolarity in the
anomalous transport affects the ambipolar electric field. Because of their
high Z, impurity neoclassical transport is most strongly affected. This can
explain the pump-out of impurities by MHD activity.

1. INTRODUCTION

The proof that neoclassical particle transport is automatically ambipolar can be based on
either the toroidal or the parallel component of the momentum equation [1-6]. In the absence of
fluctuations the toroidal momentum can be averaged over a flux surface in such a way that the
divergence of the pressure tensor vanishes. This gives a relation between the mean radial flux and
the collisional friction between species. Because collisions conserve momentum, the collisional
friction vanishes when summed over all species. This leads to Z; €3 ['3 =0, i.e. ambipolarity.

When fluctuations are present, as they always are in real plasmas, their first order effects
may be separated from first order effects resulting from toroidicity. However, when second order
effects in the momentum equation are averaged over a flux surface, the mean forces arising from
toroidicity and fluctuations must both be retained. Electrostatic fluctuations introduce a term

<(V 1, )¢> into the toroidal momentum balance, where Il is the collisionless anisotropic pressure



tensor resulting from finite Larmor radius (FLR) effects. Magnetic fluctuations give rise to a
<jxB>q force. Adding the momentum equations for the different species no longer leads to
ambipolarity of the neoclassical fluxes.

In Sec. 2, fluctuations are included in the momentum balance equation. Although the effect
arising from electrostatic fluctuations is small compared with what can result from magnetic
fluctuations, it is considered first because the analysis is particularly straightforward. The
adjustment of the ambipolar electric field so that the neoclassical particle flux balances any non-
ambipolar anomalous flux can be seen more clearly. The transport due to electrostatic fluctuations
must be non-ambipolar, because X, e, nz = 0 while the velocity of the ions differs from that of the
electron, due to FLR effects. In the guiding centre description, the averaging of the electric field
over the fast gyration of the ion can be expressed by taking the effective electric field acting on the
ion to be (1 + (pg / 4)V_2L )E, where p, is the Larmor radius. In the fluid description an equivalent
FLR correction to the ion cross-field drift comes from the term - (V-J]) x B/neB2 in the ion
perpendicular velocity. Such a radial current must contribute to the moment balance.

The conclusion that the ambipolar condition must include all particle fluxes has important
implications for a pure plasma. For example, the electron loss along a stochastic magnetic field can
be balanced by an enhanced ion neoclassical flux. However, the effect on the predicted impurity
flux is more pronounced, because their larger ionic charge makes them more sensitive to radial
electric field. Section 3 describes the equations for particle fluxes in a multi-species plasma
originally derived by Connor [3], and how these can be extended to include ion species in different
collisional regimes. Section 4 considers the superposition of fluctuations on neoclassical effects,
and discusses how the non-ambipolar anomalous flux is balanced by the neoclassical fluxes.
Section S briefly describes a few of the experimental observations on impurity transport, and how

far they can be explained by the foregoing analysis.
2. MOMENTUM BALANCE IN A NEOCLASSICAL PLASMA

Fluctuations will now be included in the derivation of automatic ambipolarity of the

neoclassical fluxes, based on the generalised fluid momentum balance equation
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where subscript a denotes the species, P is the pressure tensor, and Ra = Z Rgp = Z,fma v
Cab(fa,fb)d3v is the collisional friction. Although the analysis may be performed for a general
toroidally symmetric magnetic configuration [5,6], in the interests of physical clarity the simplest

geometry of concentric circular flux surfaces will be used.

a) Inclusion of electrostatic fluctuations
The variation over a flux surface of quantities such as density n and electrostatic potential ®

will be written in the form

n(r, 9"1’) = 7(r)+a(r,0)+ z "ms(r)cos( Vms + ams)

m,s

O(r,0,9)= D(r)+ é(r, 6)+ 2 q)ms(r)cos( Vs +ﬁms) @

Here 1i(r,0) is the neoclassical variation which, to first order in € = 1/R,, varies as ni¢(r) cos6 +
ng(r) sin6. Superimposed on this is a spectrum of electrostatic waves, with Yy =m0 + s¢ - t,
representing the density fluctuations which are always present experimentally.

Since the scale length of the neoclassical variation is the plasma radius, finite Larmor radius
(FLR) effects are negligible, and the pressure tensor can be treated as diagonal. The measured
fluctuations, however, have relatively short wavelengths, and FLR effects are important, while
pressure anisotropy is not expected to play a significant role. The pressure tensor will therefore be
separated into its two components P = gN + }=‘F, where the neoclassical part

PN=p I+(m—-pyL)bb

includes the zero order pressure. Here [ is the unit tensor and b is a unit vector parallel to the local

magnetic field. The fluctuating pressure will be written as

PF=pfl+z

where T contains only FLR terms. Its components are given, for instance, by Braginskii [7].

We now examine the ¢-component of the pressure tensor.

(V'ﬁ)(p =€y '[VPL +b(b- V) —pL)+ (- pL (b V)b +b(b-b)}+ VP + V'ZE] 3)
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where © = Bg/By, and the symmetry of the neoclassical pressure in ¢ has been invoked. In the
simple geometry considered, and with the tokamak ordering, B = By = Bo/h(6) where h(6) =1 +
€ cos0, and © is independent of 8. To eliminate py - p1, multiply the ¢-component of Eq. (1) by

h2 and integrate over 0 and ¢, giving

du 1
Mg (p, —280 523 R EAR?)+ =3 i -
el <”a at h > TaBgo + <”aE h >+ 2R SMamsPms Sin(Brms = Cps )

‘<(V'£a)¢> +(Ragh?) /ea (5)

where <A> = § d¢ § d@ A/4n2, and Ty = <njuprh> is the mean particle flux across a magnetic

surface. EA g¢ is the externally induced electric field. Because V- consists of terms of the

A
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where dx and dy may be rdf or Rd¢, and u, any velocity component, it is already a nonlinear

general form [7]

term. It generally gives a non-vanishing mean when integrated over a flux surface.
We will now separate off the classical particle flux (such as occurs in a plasma slab) and the

anomalous flux due to the electrostatic fluctuations. What is left we will call the neoclassical flux.

We write
B AP
r r
°g (eet) {(F) o

The classical flux (the first two terms) and the anomalous flux (the third and fourth terms) can be
obtained by vector multiplying Eq. (1) by B, and integrating over a magnetic surface. The
variation in B does not affect this integral, since it is not in phase with the fluctuations.

Substituting Eq. (6) for I'; in Eq. (5) gives
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where EA = EjAb - @EAg |, Rap = Rail - ®Ray, and ¢ is a unit vector in the flux surface,

perpendicular to B. kms is the wave number of the fluctuation, so kms'B = mBg/r + sB¢/R.

b. Automatic ambipolarity in the absence of fluctuations
Assuming a steady state plasma with no fluctuations, and neglecting convective inertia, Eq.

(7) reduces to

eal"' By, = —«ﬁaeaEuA + Rall)h2> ®)
Summing Eq. (8) over all species, including electrons, £ Rap = 0 because total momentum is
conserved in collisions, and hence I e,I'N = 0. Thus the particle fluxes are ambipolar, without
having to impose it as a condition [1-6].

A more restrictive form of neoclassical automatic ambipolarity has recently been derived,
known as the principle of detailed balance [4-6]. For each species in a multi-ion plasma, some
lower energy particles fall within the Pfirsch-Schliiter collisional range, while higher energy
particles satisfy the banana/plateau collisionality condition. Thus N =T,PS + I,BP. In [4-6] it

is stated that each contribution can be written in a form similar to Eq. (8), i.e.

raBP -

- 1 —(FoeoEf + Ra). TP = ea;& ((FataBi + Rar)(? -1))

Summing over species now leads to ZeaI',BP = 0 and Ze,I',PS = 0, i.e. the Pfirsch-Schliiter and
banana/plateau components of the particle fluxes must be separately ambipolar.

Even in the absence of fluctuations, the automatic ambipolarity of the neoclassical fluxes
can be questioned, because of the neglect of convective inertia, Tama<iiy-Vilap>. Evaluating this

for the Pfirsch-Schliiter regime, for example, using the expressions in Ref. 8, gives

2
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where pyg is the Larmor radius in the poloidal magnetic field, and ry is the density scale length.
Although pae/ry is assumed small, when convective inertia is included momentum balance does not
produce exact ambipolarity. It will be neglected in the following analysis, however, because

fluctuations produce a larger effect.

c. Non-ambipolarity of neoclassical fluxes with fluctuations
When fluctuations are present, multiplying Eq. (7) by e; and summing over species,

neglecting convective inertia, gives,

BaoX eal2 =X (v-z.),) ©)

Thus the neoclassical fluxes are no longer ambipolar.

The above equations may be interpreted in a different way. Multiplying Eq. (5) by eaRg

and summing over species, the result can be written in the form

Y ma<Rna d';‘;"’ h>= (RBgj. b)Y <R(V- z_ra)¢ h> (10)

a a

=R,Bg,Y. e, TN -3 <R(V-£a)”> 11

But Eq. (10) is just the angular momentum equation about the major axis, integrated over the
annulus between two flux surfaces. (In the simple geometry used, the spacing between the flux
surfaces is constant). In the absence of fluctuations, there is no V- 1 term. If the convective inertia
is neglected, it then follows that the net R(j x B)¢ force must vanish. This happens to coincide
with Zeal'a = 0. Since the classical fluxes are automatically ambipolar, it follows that Ze,I'aN = 0.
This does not result from any special property of neoclassical transport (the loss mechanism in
Eq. (10) need not even be specified). It merely states that the angular momentum is constant only
if the net moment vanishes. If there is no other ¢-directed force, this requires <Rj;Bgh> = RoBgg
Zeal'g =0.
When electrostatic fluctuations are present, then from Eq. (6) ambipolarity requires

Y e -2 ¥ (V1) =0 (12)

a



where 1 denotes the component in the flux surface perpendicular to B. This does not generally
ensure that the right side of Eq. (11) vanishes, i.e. the condition for ambipolarity is not generally
the same as for vanishing angular momentum about the major axis. Momentum balance will be

discussed in a later paper.

d. The FLR viscous tensor
Since this plays such an important role, we will briefly discuss its physical origin. The
most important terms, arising from the general form given earlier for V-, combine to give

nT
o)

1
il—‘ = —naeaBpgvzlli
; 2
This arises because an ion responds to the electric field averaged over its very fast gyration motion.
In the guiding centre description the same effect gives rise to the FLR correction to the electric

drift, i.e.

[1+(p2/a)2 |2
It is apparent that electrostatic fluctuation must produce non-ambipolar fluxes, since quasi-
neutrality requires that 2Z3n, = 0, while the ion drift velocity is less than that of the electrons. The
measured fluctuations typically have kjp, ~ 0.1-0.3, consistent with prediction, so the non-

ambipolar flux must be of order 1% of the total. This would produce a very rapid build-up in

space charge if no compensating non-ambipolar loss is present.

Other terms in V-__1§ have the form

i(ﬂ)éﬁ
ox\ 2 )dy
These terms arise because the full equation for the flux includes the convective inertial term
(na/Q2)(W-Vw) x b (neglected in Eq. (6)). The above terms cancel the diamagnetic part of y,
leaving the guiding centre convective inertial term. It is physically reasonable that the true

convective inertial term should contain the guiding centre, and not the diamagnetic velocity. This

term, however, is not considered here.



e. Inclusion of magnetic fluctuations
Since this follows similar lines to the inclusion of electrostatic fluctuations, the analysis is

abbreviated. The local current carried by the ath species, associated with the fluctuations, is

denoted by ja = naeaua. The first order fluctuations in magnetic field and charge flux are denoted
by B and ja. Since the effect of the FLR pressure tensor and electrostatic fluctuations have already
been analysed, they will now be omitted.

The equation corresponding to Eq. (5) is

m, <na Yhag h2> - eaBaTa + ealaE W)+ U ig - TaoB )+ (Ragh?) (1)

As before, the anomalous transport due to flow along the perturbed magnetic field and the classical

flux are separated off, leaving the neoclassical flux

WR,)xB (RE*)xB, |  (juB,)
T,= (#Ro) B, I A ASy P Clucd Y o 15
S o
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Substituting this into Eq. (14) gives
du . o~ a =
Mg <nd Tdatih2> = eaBeoraN + ((ﬁaeaEA + Raﬁ)h2> + <./arBG - JaJ_Br> (16)

where j,; = Jae - © Ja is the fluctuating charge flux lying in the magnetic surface and
perpendicular to the unperturbed field. summing Eq. (16) over species gives

)y m<

du -~ -
" h2> =By, .1 +(j.By—],B,) a7
a

where 1 = Eaja-

As with electrostatic fluctuations, conservation of momentum in collisions does not imply
ambipolarity of the neoclassical fluxes when magnetic fluctuations are present, even when
convective inertial is ignored. Ambipolarity must be imposed as a separate condition

Z earaN +<ja|1§r>=0 (18)
As will be discussed in Sec. 4, this allows electron loss along an ergodised magnetic field to be

balanced by neoclassical ion flux.



3. CONNOR'’S SOLUTION FOR AN IMPURE PLASMA

To study the implications of Eq. (18), particularly for impurity fluxes, we need specific
expressions for the neoclassical fluxes in an impure plasma. Such expressions were first derived
by Connor [3], who considered a multi-ion plasma in which all the species are predominantly in
the banana collisionality regime. In practice, impurity ions are more likely to be in the plateau or
collision-dominated regimes. Such a situation has been considered by several authors [6,9,10],
but the Connor analysis will be used for its analytic simplicity. Its generalisation to other regimes
will be discussed later in this section.

Connor assumed a stationary toroidal plasma without fluctuations. Starting from the

kinetic equation with Fokker-Planck collision operator, he found the diffusion flux of the ath

species to be
- ’ ’ B A
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In the derivation of Eq. (19), the radial electric field, E;, is treated as an arbitrary parameter.
Up?, which is approximately the parallel mass flow of the bth species, is defined more precisely in
[3]. For brevity we will denote the term containing it by its approximate value, Bguy, but this can
be replaced by its exact value if greater accuracy is desired. Since the Ware pinch, the last term in
Eqg. (19), is automatically ambipolar, it plays no part in the following discussion and will be
dropped.

The remainder of this section will summarise the impurity behaviour predicted by Eq. (19)

when neoclassical transport is the only loss mechanism. Connor [3] derived the radial electric field



from the ambipolar condition, Zeal'3 = 0, and then eliminated it from Eq. (19). Since the
coefficients of all terms in I' are O (me/m;)1/2 smaller than comparable terms in the ion diffusion,
the ion fluxes must cancel to this order. For simplicity he discussed the case of a light main ion,
and one dominant heavy impurity, denoted by subscripts 1 and 2 respectively. After eliminating
E,, determined by ambipolarity, the impurity flux becomes

1.4681/2 (nlmp?l n2m2\72 )l: 82 ( T T
I = = 2 ||| L-7 Tz =2 - 127 =2 |+ eyBg(uy —uyy) | (20)
e%B% mymyVy + npmyvs e \m h n T ( )

I'1 may be obtained by interchanging subscripts 1 and 2, or from I'} = - ZpI"y/Z;.
Although Eq. (20) is the more suitable form for evaluation, the origin of the rather complex
variation in neoclassical flux may be seen more clearly when E; is retained, as in Eq. (19). The

neoclassical particle flux in all collisional regimes may be written in the general form

. T, e
ryN =n,D [—i’iw a(E, — Bouy, ] @21
a a™~a na aTa Ta( a)

where the expressions for D, and ¥, vary as the collisionality changes from the banana, through
the plateau, to the Pfirsch-Schliiter regime. When the ion species are in different collisionality
regimes, an approximation to the more exact analysis [6], [9-10] may be obtained by using in the
ambipolar condition the expression appropriate to each component species. This gives the
ambipolar value of E; - Bgu);, which can then be eliminated to obtain the flux for each species.
This approach is described in detail in [11] and [12].

As an example, a possible variation of Z,;2D, for the two-ion species example is sketched in
Fig. 1. This shows the main ion species just reaching the plateau regime, while the impurity,
because its higher atomic charge increases its collisionality, reaches the Pfirsch-Schliiter regime.
Whichever species has the larger value of Z2D dominates the ambipolar condition. E; must then
adjust itself so that the bracket in Eq. (21) nearly vanishes for this species. This reduces its flux so
that it is equal, but opposite, to that of the slower diffusing species.

As illustrated in Fig. 1, the most common situation is where the main ions dominate the
ambipolarity equation, because of their higher number density. An inward directed radial electric

field is then set up to reduce the outward ion flux. The inward pull of this field on the impurity

10
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Fig. 1, Variation of the diffusion coefficient with collision
frequency for main plasma and impurity ions

ions is enhanced by their larger charge, convecting them inwards even when their profile becomes
more peaked on axis than the main ions. The impurities continue to accumulate on axis until a
steady state profile is reached when
-7 k —ky
na(r) _[Tz(r)] 2 =[nl(r)] ,[Tm] ‘ o)
n2(0) [ 12(0) m(0)) L7(0)

where k = ZpT1/Z;T>. Thereafter, both main and impurity ions have a slow outward flux, their

sum equalling that of the electrons.

q. NEOCLASSICAL TRANSPORT IN THE PRESENCE OF FLUCTUATIONS
Now consider how the Connor analysis is modified by the presence of electrostatic
fluctuations. In the kinetic equation we substitute Eq. (2) for the electrostatic potential, and the

analogous expression

f(r.8,w.p)= F(row,u)+ F(r,8w,u)+ Y fo (1w, 11)COS(Wpns + Vpms) (23)

m,s
for the velocity distribution function, where W and L are the particle kinetic energy and magnetic

moment, and f =0(ef) is the neoclassical variation. Treating € and fn¢/f as small quantities, the

11



kinetic equation may be linearised and solved for f and f,s. When the sum of the linearised
solutions is substituted into the quasilinear particle flux [d3vv,f, and then integrated over a flux
surface, only products of neoclassical terms or of fluctuation terms survive. A similar separation
of the first order variation can be made when magnetic fluctuations are superimposed on a
neoclassical plasma.

Because the wave frequencies are expected to be larger than the ion bounce frequency (their
ratio for a drift wave is qkyp,€-3/2), the E x B drift displacement of a trapped ion should be small.
Thus nonlinear interaction between the two effects should be negligible. The neoclassical analysis
" is also valid in the presence of magnetic fluctuations. A trapped particle is not aware that the field
line wanders radially, provided the displacement from a magnetic surface is small over one bounce
length. The escaping electrons have largest v/, while neoclassical electron diffusion results from
those with small vy. Hence the interaction should again be small, and the Connor derivation of the
neoclassical flux is still valid when fluctuations are present.

The two effects first interact when the ambipolar condition is imposed. The fluctuation
driven fluxes generally result in a residual non-ambipolar charge flux eI'c. In the case of

electrostatic fluctuations, Eq. (6) gives

el =Y eI = —3172 (V-z,xB) 24)
a a

In an ergodised magnetic field the electron loss is a function of the strength of the magnetic
fluctuation, the ratio of the mean free paths to the fluctuation correlation length, and the radial

electric field. Ambipolarity requires
S eV (E)+el, =0 (25)
a

Because the coefficient of the neoclassical electron flux in Eq. (19) is smaller than that for
the ion flux by a factor (me/m,)!/2, in a pure plasma the ambipolar E; - BgUy must reduce the ion
flux to balance that of the electron. Thus E; - BgUj; almost cancels the other terms in the bracketed
factor for the ion flux. When electrostatic fluctuations are present, a small change in this ambipolar
value produces the increased ion neoclassical flux required to balance the non-ambipolar part of the

fluctuation-driven flux.
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Now consider an ergodised magnetic field such that, in the absence of any radial electric
field, the electron loss rate is I'¢a"(0). This loss rate has been estimated for different collisional
regimes by many authors, e.g. [13-15]. If I;N(0) >> I'e2?(0), the ambipolar E; - BgU) reduces the
ion neoclassical flux to a value of order I'.27(0). If, on the other hand, I'¢27(0) >> I';N(0), the
radial electric field must restrain the electron ergodic loss to the order I';N(0).

Anomalous loss can have a more pronounced effect in impurity fluxes, because their large
Z makes them more sensitive to changes in the radial electric field. For the example of a single

dominant impurity, the ambipolar value of E; - BgUy; is given by

nyMmo V- | ny T Th Zy nymav, | 04 y
{1 +L-Q](E, - BoUy) = _ll:_l_. 71_1+_2_1__Z_2__2_{_2_ 72_2.}]

mmv) elm h ThZ; nmh |m (4}
2
06852, (26)
€ nympvy

As can be seen from Eq. (26), stochastic electron loss (I'¢ = - I'¢2") reduces the inward directed
value of Er - BgUy. From Eq. (19), the effect of any change in E; - BgU); on the impurity fluxes
increases in proportion to their ionic charge. Thus moderate changes in E; - BgU), which have
only a modest effect on the main ion flux, may reverse the direction of the impurity neoclassical
flux from inwards to outwards. If I'¢ea(0) > T'{N(0), as is expected for strong ergodicity, the sign
of Er may be reversed, producing a significant increase in the main ion outward flux, and a rapid

pump-out of impurities.

5. EXPERIMENTAL EVIDENCE

We now consider the experimental evidence for the behaviour predicted in the foregoing
sections. Removing the ambipolarity condition on the neoclassical fluxes allows a large increase in
the ion neoclassical flux when it can be balanced by stochastic electron loss. However, it is
difficult to distinguish neoclassical flux from that driven by electrostatic fluctuations. The most
readily recognised effect is the enhanced response of impurities to electron stochastic loss.
Relevant experimental impurity behaviour will now be briefly reviewed.

Early tokamak plasmas usually showed no evidence of impurity accumulation on axis, with

Zesf approximately constant over the cross-section. In some, however, impurities did accumulate
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near the centre, but this accumulation relaxed during periods of enhanced MHD activity. For
example, during stable discharges in T-4 the central impurity density increased monotonically [16].
However, when a kink instability occurred, the impurity content dropped abruptly, rising again
after the magnetic oscillations died out. The accompanying changes in electron density and
temperature were small. When a disruption instability occurred, the central impurity density
dropped by an order of magnitude, while the central electron density fell by only 5% [16].

Later a bimodal behaviour was observed in several tokamaks, in which nominally identical
discharges showed major differences in their impurity behaviour. For example, in D-III [17] the
more normal discharge (type-S) developed sawtoothing early and no impurity peaking occurred
thereafter. In type-O discharges, however, the impurity density peaked sharply inside r/a = 0.25,
implying a large inward convection, as predicted neoclassically. In these discharges there was no
MHD central activity. Later in type-O discharges a large m = 1, n = 1 oscillation built up rapidly,
and the central impurity density decreased. Thereafter it behaved as a type-S. Which mode
developed was determined by differences in the plasma-wall interaction during the initial phase.
The difference in impurity behaviour was attributed to the difference in central MHD activity [17].

Impurity pump out during a sawtooth crash was studied in Alcator C by Segum et al [18].
They found the impurity to accumulate on axis between sawteeth, while during the crash it flattens
inside the inversion radius. This prevents any steady build-up of impurity on axis.

The above experimental behaviour is qualitatively consistent with analytic predictions based
on Sec. 4. The absence of impurity accumulation in early tokamaks could have been due to
significant electron loss along stochastic magnetic field, due to the higher MHD activity and to the
larger magnetic field errors. This would wholly or partly short out the radial electric field which
causes impurity accumulation in the purely neoclassical plasma. The impurity accumulation
during quiescent periods in T-4 could be due to the absence of magnetic ergodicity. Kink
oscillations could provide sufficient ergodicity to allow the electrons to short out the radial electric
field. During a disruption the ergodicity could be so strong that an outward electric field is
necessary to restrain the parallel electron loss. Because of their high Z, this would cause a very

rapid pump out of impurities.
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The absence of sawteeth in Type-O discharges in D-III can be attributed to the early
impurity influx from wall interaction [17]. Radiation cooling lowers the central temperature, so
that current does not peak on axis, keeping q(o) above unity. The impurity behaviour is
qualitatively consistent with neoclassical transport inside r/a < 0.25, which in type-S discharges is
opposed by impurity pump-out during sawtooth crashes.

Evidence that, in the absence of fluctuations, the impurity transport is neoclassical has
emerged from a recent work on JET [19,20]. Here the sawtooth period is long enough to evaluate
the transport during the recovery phase between sawtooth crashes. This is best done by studying
" the evolution of the density profile of injected impurities. The parameters in the impurity flux
I'z =- Dz dnz/dr - nVz, in a transport simulation code, were adjusted to obtain the best fit to the
soft X-ray and spectroscopic measurements.

The local impurity transport in JET is found to be different in a central core and in the outer
plasma, as illustrated in Fig. 2, taken from Ref. [20]. For p = r/a less than about 0.25, the
diffusivity and convection in ohmic and L-mode plasmas are both consistent with neoclassical
prediction. The diffusivity in the outer plasma, typically p > 0.4, is more than an order of
magnitude higher, being 30-60 times neoclassical prediction. Over the intermediate transition
zone, the diffusivity increases exponentially between these two values. The variation in a H-mode
plasma is qualitatively similar, but the good confinement and transition zones are wider [20].

This behaviour implies a quiescent central region in JET, where only neoclassical transport
occurs between sawtooth crashes. Outside p/a > 0.25 anomalous transport is so large as to
completely dominate the neoclassical flux. The rapid drop in central impurity content, observed

after the crash, is consistent with the predicted effect of a brief period of ergodic electron loss.
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6. CONCLUSIONS
1. Neoclassical particle transport is not automatically ambipolar when fluctuations are present, as
they always are in real plasmas. The usual argument for ambipolarity is based on the ¢-
component of momentum balance, suitably averaged over a flux surface. The fluctuations
also contribute a mean force in this direction. For electrostatic fluctuations the contribution
comes from the FLR pressure tensor <(V-Ta)¢>. Magnetic fluctuations contribute a <j x B>
force. This upsets the simple relation between particle flux and collisional friction which led
to automatic ambipolarity.
2. Anomalous transport is generally non-ambipolar. In the case of electrostatic fluctuations, FLR

effects introduce a difference between the cross-field drift of ions and electrons. Although this

difference is relatively small, if not balanced by some other loss mechanism it would lead to a
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very rapid build-up of electric field and plasma rotation. Magnetic ergodicity can produce

much stronger non-ambipolarity.

The electron, ion, and impurity neoclassical fluxes are all functions of the radial electric field,
as shown in Connor's [3] original analysis. In the presence of non-ambipolar anomalous
particle transport, the radial electric field adjusts itself so that this non-ambipolar flux is

balanced by the neoclassical fluxes.

In a purely neoclassical plasma, ions have the capacity for more rapid diffusion, but are
restrained by the more slowly diffusing electrons. Additional electron loss, such as by

stochastic diffusion, may be balanced by increased ion neoclassical flux.

Because of their higher Z, the impurity neoclassical flux is more strongly affected by a change
in radial electric field. The small change in electric field necessary to balance the anomalous
transport driven by electrostatic fluctuations will produce only a modest effect. However, the
magnetic ergodicity resulting from a sawtooth crash or a minor disruption could permit a large
electron parallel flow, shorting out the radial electric field. This would produce a rapid pump-

out of impurities, with a relatively smaller effect on the main plasma.

Outside a central region the experimental impurity diffusivity is generally much larger than
neoclassical prediction, by at least an order of magnitude. Presumably this is because the
neoclassical diffusion is dominated by the anomalous. Inside a central region, typically r/a <

0.25, the diffusivity is much smaller and is consistent with neoclassical {19-21].

The observed pump-out of impurities during periods of high MHD activity, such as sawteeth
or disruptions, can be explained by the foregoing analysis. An outward ambipolar electric
field may be necessary to restrain the electron loss along the stochastic magnetic field.
Because of their large Z, impurities are then strongly ejected from the centre, while the effect

on the main plasma is much less. The less pronounced change in impurity content in certain
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transitions, such as from H to L-mode, may possibly be due to a more modest change in

MHD activity.
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