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Ion Temperature Gradient Driven Impurity Modes
Stefano Migliuolo+
JET Joint Undertaking, Abingdon, Oxon. UK

The presence of two (or more) species of ions in an inhomogeneous
magnetically confined plasma can present opportunities for a new class of
drift-type modes to become unstable. When the thermal speed of a minority
ion species (the impurity) is much smaller than that of the primary species,
waves with parallel phase velocities intermediate between the two speeds can
be driven unstable by a source of free energy (e.g. density or temperature
gradient) and Landau damping. Their linear stability theory and quasilinear
particle and heat transport are discussed in the context of a shearless slab
geometry. The simultaneous appearance of two unstable modes, one
propagating in the ion diamagnetic direction and the other in the electron
direction, is discussed. When the effective impurity concentration is finite,
the threshold for the ion temperature gradient (ITG) instability is raised
dramatically.

I Introduction

The control of impurities in magnetically confined toroidal plasmas is fast becoming a
crucial problem for present day experiments [1-2], and will likely remain such in the future.
Impurity ions that are either resident in the gas that acts as a fuel for the plasma or which are
produced via interactions (e.g. sputtering) between the plasma and the wall of the containment
vessel can be highly deleterious to the achievement of plasma ignition (namely the "point” in
density/temperature parameter space where heating from thermonuclear reaction balances all
energy losses). Their two main deleterious effects are dilution of the fuel (D-T or D-D),
especially by high-Z impurity ions, and energy loss through radiation. A variety of remedies
can be attempted, though it is advisable that the physics of these impurities be known as much

as possible before they are implemented.
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The physics of impurities can loosely be grouped into three main areas: production,
entry into the main plasma, and (particle and energy) transport consequences. We shall be
concerned only with the third area here. We shall assume that an equilibrium exists, with
prescribed density and temperature profiles for each species, and study the processes that arise
from this situation: unstable spectrum (if any) of low frequency waves and ensuing quasilinear
transport of particles and energy. We are interested in processes which arise from the presence
of two ion species, which will necessarily fall outside the single fluid description (e.g. ideal or
resistive MHD). Since much of current interest is centered around microturbulence due to ion
temperature gradient modes (ITG) whose parallel phase velocity is comparable to the thermal
velocity of one ion species, a kinetic description is in order.

In the present study we shall concentrate on the transport due to microturbulence that
arises from the presence of two ion species in a plasma with a temperature inhomogeneity. The
temperature gradient provides the free energy for the instability. The mode becomes unstable,
in most situations of interest, through a competition between the (stabilizing) Landau damping
of (heavy) impurities and the destabilizing inverse Landau damping of the primary ions. The
simplest magnetic configuration, shearless slab, is assumed. Section II deals with the linear
theory of impurity modes, their stability properties (e.g. marginal stability, number of unstable
modes), and the extent and shape of the unstable spectrum. In Section III we discuss the
quasilinear transport of particles and energy, arising from a saturated spectrum of these modes.

Section IV contains the conclusions.

I Linear Theory
We consider the simplest equilibrium, a shearless slab: B = ¢,B with a low-$ plasma.

Hence, only electrostatic perturbations, E —-V¢ are of relevance. The equilibrium

distribution function in velocity space depends on energy and canonical angular momentum:
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where Q = ZeB/mc is the cyclotron frequency and 1} = d¢nT/d{nn is the temperature gradient
parameter. The thermal speed is V1 = 4/2T/m. The dispersion relation in the local

approximation is well known (see, e.g. [3]) and can be written as:
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where the summation is over ion species (j=i,I) and the electron response has been taken to be
adiabatic, fie = need/Te since lwl << kVTe. Perturbed quantities are Fourier analyzed in two
directions §(T’,t) = ¢ exp (-iwt + ikyz + ik y). The diamagnetic frequency is

Wy j =k cT;j[Z jeBLy; 3)
while the finite Larmor radius (FLR) parameter is bj = k; 2Ty/m;Q;2 with Tj = exp (-bj) Io(bj)
and 5j = 1-I1(b;)/Ip(b;). The quality Z(w/kyVTj) is the standard dispersion function [4]. The
collisionless limit, v < (0+j,kVT) is considered to be of relevance, as we are interested in
modelling keV-level plasmas that occur in the main body of experiments. For instance, for
JET, we may take T 2 0.5 keV, n ~ 3-1013cm3, B ~ 4 Tesla, R ~ 300cm, a ~ 100cm, q ~ 5/2
and Ly ~ 100cm, and obtain: vi < 2.5-103sec], kyVTi 2 VTi/qR ~ 4-10%sec!, waj (ki =

2n0g/a) > 10%#sec-1 (for n® = toroidal mode number = 20).

A) Marginal stability - fluid impurities

It has been known for a long time [5] that the presence of a second, massive species of
ions can give rise to a new instability: the impurity drift mode. In the absence of temperature
gradients, this mode is unstable provided that the impurity density gradient is directed in the
direction opposite to that of the primary ion (and is strong enough) and that the impurity
thermal speed is finite (thereby providing a reactive instability through coupling to the impurity
sound mode or dissipation through inverse Landau damping). Subsequent work [6-8] has

considered the effect of primary ion temperature gradient, under the assumption of a fluid



response by the impurities to the perturbation. We begin the linear analysis by considering the

limit T — 0, N1 — 0. Noticing that n; = n, - Zn|, the dispersion relation becomes:
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where we define yy = (1/Z)(my/m;) = 2 (for a plasma with hydrogen as a main species) and oy
= dfn nj/d¢n n;. Marginal stability occurs when the following pair of equations is

simultaneously verified:
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Solving the first equation in the limit of very small impurity concentration, we obtain:
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The first root is a frequency shifted (upshift for 61 > 0) ion temperature gradient mode (ITG).
It is well known that impurities with o1 > O tend to stabilize it (see, e.g. [7] and [9]). This is
by far the most common situation for toroidal plasmas (the exception being a transient state in
impurity injection experiments, cf. [10]). Both roots indicated in Eq. (6b) have low frequency
lol << kyVTi, hence they correspond to the same (positive value) of n; at threshold: njc =
2/(142b;8;), which is the critical 1; for the ITG mode in the absence of impurities, in the long
parallel wavelength regime (kjLp; << k1 pj, cf. [3]). Note that three roots ITG and two
impurity drift modes) can be simultaneously unstable according to this analysis. This can be

verified using Nyquist diagram techniques and is also a feature of the full equation (i.e. Eq. (2)



when all species are kinetic). The properties of the two impurity drift waves (propagating in
opposite directions) are similar, as opposed to those of the ITG mode. Thus, for simplicity we
only follow the one with ® = W.«eZny/ne in detail.

For larger concentrations of impurities, the dominant terms in Eq. (5a) are the adiabatic

responses of the electrons and primary ions (=2) and the E x B drift of the impurities

(o1m«j/®) so that the relevant solution becomes:
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namely a low frequency mode that propagates in the electron diamagnetic direction. We have

assumed that bjuj < 1, for simplicity. This solution is found in regimes where one finds
o1 > (1/2 upkyVri/®«)? and (1-Zny/ne) Nilj (0«i/kyVTi)?2 < 1. The corresponding value of
7; at marginal stability is

1+ O'Iﬁl
V) 2
1+2bi6i -(G[n]) (w*i /klle)

n; =2 (7b)

where nj = (Zny/ne)/[2 - (Ziny/ne)]. Note that for sufficiently large opny the impurity drift mode
is unstable at any positive value of the ion temperature gradient parameter. This clearly
establishes the existence of an instability threshold in impurity concentration, for fixed ion
temperature gradient.

Examples of marginal stability curves for the ITG and impurity drift modes are shown
in Fig. 1 for oxygen and carbon impurities, solving Eq. (5) numerically. One clearly sees that
the threshold values of m; for instability of the ion temperature gradient mode are raised
dramatically above the values found for pure plasmas, Zegf = 1 as was previously noted in [7]
for the slab branch of the ITG and in [9] for the toroidal branch. The threshold for the impurity
drift mode is consistently lower. There are no qualitative differences between fully ionized
impurity species for which p = 2: from Eq. (5), the only nontrivial species dependence is in
Zefr. The markedly increased threshold values of 1, for the ITG instability, are likely to be of
relevance to recent observations [11-13], that experiments can operate at varying values of the
temperature gradient parameter 1}; > 1 (the nominal threshold value for pure, Zegr = 1, plasmas)

with no appreciable change in transport properties.



As indicated in Fig. 1, each mode becomes unstable once 1; crosses a threshold value.
It is important to realise that once both threshold values are exceeded, both modes are
simultaneously unstable. Thus, there exist regimes in which the unstable spectrum is predicted
to have two peaks, one with positive w/k; (by our convention this would be the ITG mode,
propagating in the ®,; direction) and the other with negative w/k, (the impurity drift mode).
This is in agreement with what is observed, e.g. in the TEXT experiments [14] which first
identified an ion feature in the spectrum of microturbulence, where one has kj pj = 0.4,
kyV1i/oi = 0.2 and nj = 2.5. From Fig. 1, we see that Znj/ne 2 0.1 is sufficient to predict a
two peaked spectrum (e.g. a concentration of a few per cent of impurities with Z = 4). An
alternative explanation, used previously, for this kind of spectrum involves modes driven
unstable by two different processes, e.g. an ITG mode (due to 1; > Mjc) and a trapped electron
mode (due to N > 0 and collisional detrapping).

The preceding remarks are meant as proof-of-principle arguments in favour of an
important role of impurity drift mode in plasmas. So far, all calculations have assumed that the
impurities are "cold" in the sense that their thermal speed is much lower than the parallel phase
velocity of the mode. Note, from Eqgs. (2) and (4) that the temperature, Ti, is not the small
parameter. Indeed, it cancels out from the impurity drift terms, leaving the FLR, sound term,
and E x B terms (the first two include the factor of pj) in Eq. (4). In realistic cases, the ratio
of impurity thermal speed to mode phase velocity is finite and the impurities contribute a finite
dissipative term (i.e., Landau damping) to the linear dispersion relation. As we shall see in the
next section, this will considerably restrict the part of the wave spectrum, in (kj p; - kyLp)
space, where these impurity drift modes are unstable. It will also bring in a strong dependence

on the ion mass ratio, mj/mj [8], and on the charge state, Z.

B) Unstable impurity modes - fully kinetic ions

In this section we solve the dispersion relation, Eq. (2), with full kinetic responses for
all ion species. We will fix the density gradient scale lengths, oy =dén nj/dén nj =Zegr=1 +
(Ziny/ne)(Z; - 1), to simulate a central peaking of impurities (we have consistently found that o1

> 1 is needed for instability of the impurity drift mode). Such a peaking is expected to occur as



a result of ion parallel friction, as predicted by fluid theories (e.g. Braginskii equations). We
shall also take Ty = T;j = Te, for simplicity, and to model high temperature plasmas. This has
the unavoidable disadvantage of bringing the two thermal speeds, V11 and VT, closer together,
thereby weakening the instability. We find that, given an impurity species (mj/m;, Zj), the
instability exists in a rather restricted region of multi-dimensional parameter space (1;, ny/ne,
kiLni, bj = k12pi2/2). This is due to the delicate balance between the mode phase velocity
(determined mostly by the parameter W.1Z12ny/ne = O ZMy/ne) and the two thermal speeds.
The result of this balance is that the competition between effective inverse Landau damping by
the primary ion ("effective” because of the 1); factors multiplying it) and the (stabilizing)
Landau damping due to the impurity, determines the overall sign of the mode “growth rate".

As can be expected from these considerations, the unstable spectrum is broader with
larger mass ratio, mj/m;, and the maximum growth rate is larger (cf. Fig. 2). In this figure, we
have taken M; =2 and kjLy; ~ 0.1, which are values appropriate for the middle of the plasma
(r/a = 1/2) in JET ohmic and so-called low-T; L-mode discharges. We only show the growth
of the impurity drift mode here; the standard ITG is also found to be unstable over part of this
k1 pj spectrum. We present the case of fully ionized oxygen as a case relevant to JET; the
curves for Z = 8 chlorine are shown to provide a comparison with a heavier species (i.e. more
instability). The unstable spectrum, when it exists, is consistently characterised by modes with
parallel phase velocities that are comparable (though somewhat lower) than the thermal speed
of the primary ion: w/kyVrj=-0.4 — -0.6 (cf. Fig. 3). This is reminiscent (apart from the
minus sign) of the values found for the ITG mode and is not far from the value for which the
(inverse) Landau damping of primary ions is maximum (/kyVTi)2 = (1/M)(2n - 1/2 - b;Y;) for
o.i/kiVTti >> 1. This helps to partially explain why the mode turns off over a large region of
parameter space: the primary ions try to drive it unstable at the aforementioned frequency,
while the impurities attempt to force an oscillation at their diamagnetic frequency, Oj®«j. A
sufficient mismatch between the two precludes growth. Thus, for example, having set Ziny/ne
= (0.2, we find that Z; = 6-8 impurities are unstable (for oxygen, Z| = 7 maximises growth) in a
hydrogen plasma, but carbon (my/m; = 12, Zj < 6) is stable. By analyzing the relative effect of

terms within the dispersion relation, we have determined that, at each end of the k p; spectrum



of Fig. 2, stabilization occurs due to an increase in Landau damping by the impurity species,
accompanied by a minor decrease in inverse Landau damping from the primary. The shift in
mode frequency (from the last unstable point) is too small to play a role, when stabilization
occurs. Note, cf. Figs. 2-3 that for one case (chlorine, kyLp; = 0.05) an upshift (in the
negative direction) of the mode frequency causes a temporary "rebound" in the growth rate.
The upshift results as a combination of 61®.i/k)VT; which increases as b;j1/2 =k _]_pi/‘l2 and a
decrease of the primary ion term owing to the decay of the Bessel functions.

Just like the unstable spectrum is finite in kj pj-space, it also occurs over a finite
portion of kjLp;-space (kjLpi < 0.2 for oxygen) and for a finite range of impurity density
concentration. Although given a choice of impurity species and charge state, one can always
find a set of plasma and parameters for which the impurity drift mode is unstable, the slab
branch of this instability is "fragile": it exists only for a restricted set of parameters. This is
due to its inherently kinetic nature (for Ty = Tj): finite parallel compression of both ion fluids is
required for instability (which causes the perturbed pressure to be out of phase with the
perturbed electric field, leading to reinforcement of the initial charge separation and thus
growth). This parallel compression also engenders the two competing Landau damping
contributions and, even more importantly, couples the mode to the ion sound waves (kyVTj and
kyVT1). When the mode frequency controlled by the E x B drift of the impurities, becomes
much larger than an ion sound inverse transit time (kVTj), the two waves decouple and the
pressure perturbation of the primary ion is no longer able to maintain the instability (the same
thing happens to the slab branch of the ITG mode when 7; is increased to arbitrary large values
[15]: the growth rate is a non-monotonic function of n;). In this sense, the toroidal branch of
this instability, which arises because of perpendicular compression of the ion fluid, V-VE #0,
will likely be more robust, in the relatively short perpendicular wavelength region, k) p; >

kyLpi.

III Quasilinear Transport
Given our results from linear theory, namely a weak (y < lwl) kinetic instability, we

can expect the unstable spectrum to saturate at moderate amplitudes via a relatively gentle



quasilinear process: relaxation of the temperature profile accompanied by a small frequency
shift (cf. [15] for weakly unstable ITG modes in a slab geometry). Then, particle and energy
will be carried radially by quasilinear fluxes. We follow Manheimer's methodology [16] in
deriving these fluxes. From the quasilinear form of Vlasov's equation (the so-called slow-
time-scale portion) one takes the first and second moments. Considering the y component (i.e.

poloidal) of the first moment equation (i.e. momentum conservation) one quickly finds:
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where x is the radial-like slab coordinate, the bracket indicates an ensemble average over the
phases of the linear mode spectrum, and we have assumed that the equilibrium state has no y or
z dependence. This is equivalent to saying that particle transport occurs via the radial ExB
drift induced by the perturbation. When no degeneracy in (kj,k ) occurs (i.e. there exists only
one linearly unstable mode for a given wave number), one can replace the ensemble average by
an average over the ignorable coordinates (y and z in our case). This provides a more physical

description of the quasilinear flux as the flux-averaged over a closed surface. Evaluating this

expression for electrons (Il << kVTe) and impurity ions (by < 1, @41 > l®l > kyVT1) one

obtains:
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where {x1 = oi/k V1. Obviously, the impurity drift modes result in a particle outflow of the
impurities (a self-limiting process for the instability). Note that we do not give an explicit
expression for the primary ion flux; that is not necessary. As these perturbations maintain
plasma neutrality, i = fie - Zjfi], then I'j = T - Z1I'] results automatically to verify
ambipolarity of the flow. In particular, as k)V1e — oo, the electron flux disappears and thus
I =- ZiI'1: primary ions flow inward as the impurities flow out. This is the "mixing mode"

process first proposed by Coppi and Spight [17], and later elaborated in [3], using the ITG



(ion temperature gradient mode) to control the accumulation of impurities. Note that the slight
"inconsistency” in taking an adiabatic electron response in the linear theory and a non-adiabatic
response in the expression for quasilinear fluxes arises because all in-phase terms cancel out of
I'j (and Qj, the energy flux), thus non-adiabatic electron terms contribute to zeroth order in the
quasilinear calculation but represent only small corrections to the linear eigenvalue problem.
For cases relevant to JET, ne 2 2, we predict (from Eq. (9a)) an inward flux of electrons, and
hence of primary ions. In fact, the inward flow of these ions (the fuel for thermonuclear
reactions) would be stronger, as it scales with Zj.

We compute an effective diffusion coefficient for the impurities, Dy = - I'1/(dny/dx), as
follows. We use a mixing length estimate for the saturated mode amplitude: when the mode
E x B driftin the y-direction exceeds the speed characteristic of the source of free energy (in
our case VT = VTipi/2LTj), the growth is stopped. Hence, led/Tel ~ (Ziny/ne)(1/ksLTi). The
impurity concentration multiplier is inserted because the mode growth depends (at least for
small concentrations) linearly on this parameter. Since the modes under consideration have
relatively short wavelengths, kyp;j ~ 1, isotropy in k| space can reasonably be assumed (kx =

ky=k,). Then we have:

2 2 2 - 2
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Continuing our order of magnitude estimate, we refer to Figs. 2-3 and take my/m; = 2Zj = 16,
Ziny/ng ~ 0.2, kjLpi ~ 0.1, nj ~ 2, {k1 ~ 2 and obtain Dy ~ 2-104cm?2/sec for a T, = 2 keV,
B = 3.5 Tesla, Lp; = 100cm discharge (note that Dy o< T;3/2B-2L;-2, the usual gyro-Bohm
scaling). This crude estimate is in the range inferred [18-19] for the q(r) > 1 region of JET (r/a
> (.5) and may represent a minimum effective transport rate for impure plasmas. Note that this
diffusion coefficient is one order of magnitude lower than the corresponding quasilinear
coefficient inferred for ITG turbulence. Hence an increased threshold for ITG instability (to,
e.g., i 27 for Ziny/ne = 0.4, cf. Fig. 1) means that this low level of transport, associated with
impurity drift modes, is all that one encounters (in the "anomalous channel") for

im ITG
Ml <M <M .
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Turning our attention to the energy transport, we again use Manheimer's approach [16]

and compute the energy flux in the x-direction ("radial") as:

Q-—< E [ &% f( v2+v’-)> 11)
This expression (more precise than simply ExB convecting the pressure perturbation) is
computed by balancing the lowest order terms in the quasilinear energy evolution equation. It
contains both the convection of the kinetic energy by E x B motion and the cross-field flux of
internal energy (per species) 7 -E. Note that we compute the kinetic energy flux of the plasma
Q=Jd3Vv Vx(mV2/2)f(V). As discussed by Stringer [20], this is one of several possible
representations for the "energy flux"; each is acceptable provided it is used in the appropriate
form of the energy conservation equation. The energy equation which corresponds to Eq. (11)
is

for each species, where 7 = Ze [d3V Vf. The first term can be evaluated, in the quasilinear

approximation and related to the particle flux. For each species, this term is given by the
associated particle flux weighted by (Zw/w.j))Td¢n nydx, e.g.

2
B) =— ed 1 W \dinn,
=g s g R (5wl o

compared to V-a ~ dQ/dx, this term is apparently of order lavw.l(1/k Ly) << 1 for impurity

drift modes.

The expressions for the energy fluxes of the three species in the limits by < b; ~ 1,

kyVTe >> lol, Iyl > lool and ki VT > lodl > ky Vg follow:
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where Ay = - (1 - 2b;8)(2 - b/(1 - bi8) + ({ki2/2)(3 - 2bidy) is positive in the region 0.8 < b;

< 5.0, namely the region of interest. Thus, we find that these impurity drift modes entail

0 =2V Y |2
k>0 T,

(4

outward energy fluxes for all three species: particle thermal energy is carried out. In contrast,
note that inward particle and energy fluxes have been theoretically predicted before for

collisionless trapped electron dynamics in ITG turbulence [21-22].

IV Conclusions

The linear stability theory of collisionless drift-type modes in multi-ion plasmas with
temperature gradients is analyzed in a shearless slab geometry. Electrostatic perturbations are
assumed (i.e. low-f} plasmas). It is shown that the presence of one impurity species can cause
the appearance of a new instability, co-existent with the well-known ion temperature gradient
(ITG) instability, but propagating in the opposite direction, @ ~ Wse(Zny/ne)(d¢n ny/d¢n nj).
This impurity drift mode is driven by the free energy in the primary (not impurity) ion
temperature gradient, VT;j, and has a threshold lower than the modified threshold for ITG
instability. Indeed, the substantial increase in the threshold value (nj-critical) of the ITG mode

by the presence of impurities and the simultaneous instability of waves propagating in the 4,
and w, directions (when both threshold conditions are exceeded) fit in naturally with observed
trends in toroidal experiments. In particular, we note that experiments [11-13] aimed at

verifying the "standard" threshold for ITG instability returned negative verdicts: no qualitative

changes in transport occurred for the range n; = 1 — 2. Since impure plasmas have n};‘“ 23
for Zini/ne 2 0.2, this may provide an answer to this paradox: observed lower rates of
transport were due to the impurity drift modes and modified ITG threshold was in fact never
reached. We note that there exists an alternative explanation [23] for the failure of standard
ITG theory: toroidal ITG may be dominated by trapped ion dynamics which would also raise

TNjc upward.
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When the impurity thermal speed is much lower than that of primary species, the
instability tends to be robust (see Section III-a). This case is characterized by impurities
contributing three fluid-like terms to the particle balance (quasi-neutrality), the dominant of
which is VE-VnI. This case will be of relevance in the outermost plasma region where the cold
impurities have been introduced and have not had the opportunity to thermalise. In the main
bulk of the plasma, however, one may expect that Tj = Ty and thus the impurity response to the
perturbation is kinetic (for all but the heaviest, A; 2 50, impurities). In that case, the same
effects that are responsible for the appearance of the instability (which is a variant of the ITG
instability and obeys the same physics), namely parallel compression of the primary ion fluid
and/or Landau damping, appear also in a stabilizing fashion in the impurity response. In other
words, given that the instability appears when the drift wave (W.j) couples to the ion sound
wave (k| VTj), it also necessarily entails coupling (albeit more weakly) to the impurity sound
wave (kyVrp). These considerations explain why, for equal temperatures, the instability
resides only in a finite region of multi-dimensional parameter space (W;, Ziny/ne, kiLnyi, ki py).
We have three main frequency benchmarks: (s, kyVTi) whose combination determine at
what frequency the destabilization from the primary ions is greatest (cf. Section III-b) and
- 0+1(Z12ny/ne) which is the impurity drift wave "natural” frequency. Unless these two
imposed values for m are congruent, the mode cannot grow. Furthermore, coupling to the
impurity sound mode ® ~ k) V71 introduces stabilization due to impurity Landau damping,
hence there is a lowest frequency (¢> lowest @ o< kj p) below which the instability
disappears.

Quasilinear particle and energy transport have been examined, under the assumption
that the saturated spectrum has frequencies and wavelengths of the same order of magnitude as
the linearly unstable spectrum. We find an inward electron particle pinch when Ne 2 2 and an
outward impurity particle flow. The energy fluxes are outward for all three species (as

expected, since VT; is the source of free energy for the instability).
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Fig. 1  Marginal stability diagram for ion temperature gradient modes (ITG, dashed lines)
and impurity drift modes (solid lines) for the case of fluid impurities. Crosses
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(d¢n Tj/dx)/(d¢n ni/dx) and b; = k| 2Ty/m;Q;2. Fully ionized impurities with my/m;
= 27Z; (hydrogen = main ion) are considered with d¢n ny/dén n; = Zesr and kjLpi =
0.1. Impurities with Ty << T; = T are taken as examples. The charge state is Zy = 8
(oxygen) for all curves, except for two (marked "c") where Z1 = 6 (carbon).
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