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ABSTRACT.

By solving thewave equation for theradial electricfield locally around the resonance layer of the
fast Alfven wave, some complex characteristics of mode conversion physics can be elucidated
and analyzed in theion cyclotron range of frequencies. Thevalidity of the Budden and tunnelling
model for the conversion studiesisexplored, and the conversion coefficient for theion-ion hybrid
resonance in the presence of cyclotron damping is found in closed form. The analytical results
are compared with the numerical solution of the full wave equations expanded to second order in
ion Larmor radius. It isfound that the standard tunnelling sol utions can be erroneous, not only in
the case of strong damping, but also when the linearization of the plasma parameters around the
resonance, peculiar to the tunnelling model, becomes inaccurate. The effects of the damping and
cavity resonances on the conversion are separated in the derived analytical estimates, and the
limits of the local theory of conversion are determined.
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1 Introduction

The recent success of ion cyclotron resonance heating (ICRH) has stimulated interest
in detailed theoretical models for calculating the wave absorption for relevant heating
scenarios. A number of numerical codes have been developed to solve the global energy-
conserving wave equations inside the tokamak chamber. While the codes written in a
slab geometry [1-5] have confirmed most predictions of the analytical theory of absorption
mechanisms, the two-dimensional codes [6-8] including the poloidal and radial variation
have been of great value in resolving the wave field spatially and finding the effects of
cavity resonances and the poloidal field on coupling resistance and absorption.

According to the analytical theory, the fast wave power is absorbed by ions at the cy-
clotron resonance or by electrons via Landau or Transit Time damping. The cyclotron
damping is also accompanied by mode conversion [9] which, at the plasma center, con-
verts the fast wave power to that of ion Bernstein waves. In many heating scenarios the
latter mechanism may be as important as the cyclotron absorption. This follows because
the cyclotron absorption becomes weaker, and mode conversion stronger, for smaller par-
allel wavenumbers for which the antenna coupling is more effective. The absorption of
the converted wave power is not well understood because of the complex propagation of
the ion Bernstein waves in a toroidal geometry. In particular, the relative amount of the
absorption to ions and electrons, respectively, is poorly known.

The mode conversion process [10] can take place in an inhomogeneous plasma where
two different wave branches have a similar dispersion at a particular spatial location.
This causes the incident wave energy flux to split into the fluxes of various emanating
wave modes. Fig. 1 shows a typical sketch of the spatial variation of the wavenumber
based on dispersion relations at local parameters. Far from the resonance the wave
branches propagate independently, while near the resonance the dispersion characteristics
get mixed.

For simplified cases it is possible to derive relations between the incident, converted,
transmitted and reflected wave energy fluxes [11]. Assuming a second-order model equa-
tion (Budden equation)

MzE"+ (M2 +4)E=0 (1)

for the time-independent wave equation, the amplitude coefficients of reflection (R) and
transmission (T') (i.e tunnelling) read

| B |=1— exp(—27), | T |= exp(—n) (2)
for the right going wave, and

| R |=0, | T |= exp(—n) (3)



for the left going wave. Here n =| #y/2A? | and z is the spatial coordinate. The prime
denotes the derivative with respect to z. v is a complex constant while A? is a positive
number. To obtain the results in Eqs.(2) and (3), asymptotic solutions of Eq.(1) at large
| z | have been matched to the local solution at small | z |. In bothcases | R |2 + | T |?< 1,
indicating absorption at the singularity £ = 0. An analysis of a higher order tunnelling
equation [12,13]

E"™ + XzE" + a)®E' + (Mz +4)E = 0, )

where a is a complex constant, gives the same reflection and transmission coefficients,
but here the absorbed fraction of the wave power 1— | R |> — | T |? equals the conversion
coefficient into the short wavelength wave mode which appears in the solution of Eq.(4).
In the present case 7 is given by 7 =| (7 /2)(1 +7)/2? |.

Eqgs.(1) or (4) are often used for estimating the conversion at ion-ion hybrid and harmonic
resonances at the plasma center. In the case of weak damping around the resonance, the
wave equations can be put into the form of Egs.(1) or (4) with linear coefficients, often
to a good accuracy, if weak gradients at the plasma centre make the equations valid for
a sufficiently large region around the resonance. There are several papers [2,3,5,14], in
which the reflection, transmission and conversion coeflicients are calculated for a large
range of parameters by solving numerically the wave equations around the resonance. On
the other hand, only few comparative studies of the Budden results, Eqs. (2) and (3),
and numerical solutions have appeared. By taking the WKB limit [15] in considering the
mode conversion process, Weynants [16] has been able to include the corrections to Egs.
(2) and (3) due to the damping decrements of the fast and slow waves and has found
a good agreement between the corrected formulas and all the published results given in
Refs. [2] and [3]. The numerical results show that the transmission is fairly well given
by | T |= e~". The reflection coefficient from the high magnetic field side remains zero,
while the other reflection coefficient and the conversion coefficients have the general form

[17]

, R ‘2= (1 _ e—zq)ze—zaun},

| C |2= (1 _ e-—2n)e—2ne—2ac1,n§, (5)

for the low field incidence, and
| C |2= (1 _ e—zn)ze—zacgn}, (6)

for the high field incidence, where for each case the function a depends on 5 and plasma
parameters, and xp is a function proportional to the Doppler- width of the cyclotron
resonance. kp can be found analytically for each case, but only empirical formulae,
determined from the numerical analysis, exist for a, the general behaviour of which is
unpublished. In the method used by Weynants, the damping corrections are found an-
alytically by following each wave inside the evanescent region around the resonance and
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by evaluating the damping decrements from the integrals of Im{k,} along the path. In
these studies, the wavenumbers k; for each mode are determined from the WKB approx-
imation of the dispersion relation. The good agreement with the numerical results in this
method for ion-ion hybrid resonances, as well as for cyclotron harmonics, emphasizes the
very simple nature of the mode conversion physics. However, the damping corrections
obtained by the WKB method are, in general, difficult to calculate; one has to solve
the dispersion relation for each branch wavenumber, find the right paths and make the
integrations. Furthermore, this method as well as the others do not definitely state when
they are valid and when not.

Recently, a more rigorous theory of the interplay between the mode conversion and cy-
clotron absorption was developed by Chow et al. [18], who consider the mode conversion
in the Budden formalism keeping the cyclotron damping as a small perturbation. The
damping corrections obtained by them show a good agreement with numerical solutions,
provided the Budden resonance and the ion cyclotron resonance are well separated. With
this method it is not possible to separate the converted power from the damped power so
that only the reflection and transmission coefficients can be obtained analytically. In an
earlier work by Swanson [19], the conversion coeflicient was calculated using the Green’s
function approach. This method leads to an integral equation which can be solved numer-
ically by iterative methods. In that work it was possible to study the effect of localized
absorption on the mode conversion. A remarkable reduction in the numerical effort was
achieved by Kay et al. [20], who solve a second order mode conversion equation, by
taking advantage of the localised nature of the slow mode and treating it as a driven
response to the fast Alfvén wave. This equation is integrated numerically, and the results
agree well with those obtained using higher-order equations. The effect of damping on
the conversion was studied for the case of harmonic heating of deuterium and D(H) mi-
nority heating. The models of Swanson and Kay et al. do not give analytically derived
estimates for the effect of damping. Moreover, the validity limits of these models are not
studied in detail.

In the present work we do a local analysis of the mode conversion process to study the
validity of the Budden formalism. By inspecting the wave equation for the radial electric
field (E,) near the ion-ion hybrid resonance, we are able to express the converted power as
a function of the local poloidal electric field (E,) and plasma parameters. The validity of
this estimate and its relation to the Budden coefficients in Eqs. (2) and (3) are explored.
The effect of cyclotron damping is analysed in the same context, and the corresponding
analytical correction to the conversion coefficient is found. A systematic comparison of
the analytical results with the numerical solution of the full wave equations is presented
for three relevant minority heating scenarios; D(H), D(®He), and T(D) ion cyclotron
heating with JET like parameters.

In Section. 2 we present our local theory of the mode conversion process. Section. 3 is
devoted to the description and the results of the numerical method and to the comparison
with the analytical estimates. Finally, in Section 4 we present our conclusions and discuss
the validity of the Budden formalism in real experiments.



2 Local theory of mode conversion for ion-ion hy-
brid resonances

2.1 Basic equations and the connection to the tunnelling equa-
tion

In the case of the ion-ion hybrid resonance, we write the wave equations for the radial
(E:) and poloidal (E,) electric fields in a simplified form

oE’+ (S —n))E, —iDE, =0 (7)
E"+ (S — n?)E, +iDE, = 0, (8)

where the dielectric tensor elements are given by

S =1+ w{2(ax) + Zo-) (©
D=3 xlZ(ax) - Z(a-s)] - ;"2’; (10)
Ap = —Zn,-r?Z(a,.;) (11)

with 0, = (A_n + X2)/2 and 0 = 02 — ;. We have defined x; = wic/(2w?n,vry),
a; = (1 — jQ%/w)/(n,v7i/c) and ao. = ¢/n,vr.. Z denotes the complex-valued plasma
dispersion function, and summation extends over all ion species. vr;, wpi and Q; are
the thermal velocity, plasma frequency and cyclotron frequency, respectively, of the i-th
species (i=e, for electrons), c is the speed of the light and w is the angular frequency of
the radiation. All the lengths are normalised to c/w. r; denotes the ion Larmor radius
(vri/v2¢)(w/Q). In Egs. (7) and (8) the prime denotes the derivative with respect to z,
the radial coordinate. We have neglected magnetic shear and toroidicity and write the
equations in a plane stratified limit. n, denotes the wave refractive index in the direction
of the magnetic field. The corresponding index, n, in the poloidal direction is taken to be
zero. We note that o gives the kinetic correction to second order in ion Larmor radius, and
electron inertia effects are neglected, i.e E, is assumed to be small for each wave branch.
The latter approximation is often valid at the high density plasma at the plasma centre.
We have neglected various kinetic corrections as well as a number of terms arising from
the gradients of the background plasma parameters [1-7]. The numerous assumptions in
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obtaining Eqs. (7) and (8) are inspected in the numerical study of the more complete
equations (28)-(30), to be presented in the next Section.

Using the WKB approximation E' = in, E and Fourier analyzing Eqs. (7) and (8) gives
a dispersion relation

n{ + An% + B=0, (12)

where A = (n?2 — §)/o + 2(n2 — S — D), B = [(S — n?)* — D?]/o and n, denotes the
perpendicular component of the refractive index. The resonance is obtained at A =
0. By linearizing A and B around the resonance (at z = 0) and using the inverse
transform in, E = E’, Eq. (12) yields the tunnelling equation (4) with a = 0, A? =
—A'(—B'/A")~3/% and 4 = B(—B'/A’)~%. Note that B and the derivatives B’ and A’ are
calculated at z = 0. It has been shown for experimental parameters [21] that the roots of
the dispersion relation obtained by linearizing A and B in Eq. (12) can well match the
roots of Eq.(12) around the resonance including the region from the resonance at A = 0 to
the cut-off at B = 0. It is obvious from the asymptotic analysis of the tunnelling equation
that the linearization has to be done accurately near the resonance to obtain the correct
conversion coefficient, but it is not clear how well and how far from the resonance the
linearized dispersion relation has to match the true dispersion behaviour. We note that
the asymptotic analysis of Eq. (4) leading to the expressions in Eqgs. (2) and (3) is valid
provided A2 > —1, i.e A and B have to be real-valued, at least.

Far from the resonance, the roots of Eq.(12) are well separated and can be approximated
by

_(§—-n)?-D?
niy= S (13)
S —n?

Near the resonance at Re{S} = n? the roots coalesce and form a complex-conjugate pair
as is shown in Fig.1. This is true even for real S, D and 0. We note that | ¢ |<| S |,| D |
so that the ion Bernstein wavenumber n ) p is in general much larger than that of the fast
wave, ny ¢, far from the resonance.

Fig. 2 shows S, D and o around the resonance for D(*He) minority heating scenario in
the JET-plasma. We have chosen N = 5 x 10!°m~3 for the electron density, T = 5 keV
for the temperature and n, = 4. In this case S, D and o are clearly complex in the
region from the cyclotron resonance up to the 3He-D hybrid resonance which makes the
asymptotic analysis of Eq. (4) questionable in the present case.



2.2 Conversion coefficient and solution for F,

Solving Egs. (7) and (8) for general S, D and o by analytical means is clearly hopeless.
Noting the long wavelength of the incident fast wave we make an assumption that DE, /o
is constant around the resonance. In this case Eq. (7) becomes

E:’c, + f(z)Ez =9, (15)

where f(z) = (S — n2)/o and g = ¢D(0)E,(0)/0(0). Expanding f(z) around the reso-

nance at z =0

f)=(f; +ifd)=z+ £, (16)

where f, and f; denote the real and imaginary parts of f evaluated at z = 0, one can
put Eq.(15) into the form

Ej + sE, = g(f; +if})*?, (17)

where the substitution
s=(fl+3if) Pz +i(fl +if) (18)

is made and the prime indicates the derivative with respect to the new variable s. Eq.
(17) can be solved in terms of the Airy functions. To obtain meaningful asymptotic
solutions we model f(z) with a bilinear curve, as shown in Fig. 3. We assume o = ¢(0),
and consider the spatial variation of S only. f(z) is described by Eq.(16) for z < —f;/ f!
(region I) while f(z) = flz for z > —f;/f! (region II). This model accounts for the
increase of f; from z = 0 towards the cyclotron resonance and for the attenuation of
fi as # — oo. Note that we underestimate the damping in the neighbourhood of the
confluence, while the damping at £ = 0 is correctly described. Note also that we have
assumed f] and f/ to be positive at the resonance.

The solutions of Eq.(17) can be written as
I E, = —ngd?[Gi(—s) + R, Ai(—s)] (19)

II E, = —1ga2{Gi(—s) — iAi(—s) + C,[Bi(—s) — iAi(—3)]} (20)



in the regions I and II, respectively. We have defined a; = (f! + if!)"*/3, ap = (f!)"/®
and s is defined by Eq. (18), separately for each region. R, and C, are the integra-
tion constants to be determined from the condition that E, and E are continuous at
z = —f;/f{. Note that E, vanishes at z = —oco and describes an oscillatory backward
propagating wave for large positive z. From the matching conditions we find

— At} (Giy — iAiy) + 2 A (Gih — 1A7p) + ‘;’%(GilAi’l — G} Aiy)
Ail(Biy — iAiy) — 2 A (Bi} — i Aip) ’

Co = (21)

where we have defined Ai; = Ai(—s,), Ai; = Ai(—s;) with s; and s, denoting the limit
values of s at z = —f;/f!;

___LRIE
T F e (22)

in the region I, and

in the region II. The primes in the Airy functions in Eq. (21) indicate the derivatives
with respect to the argument of the function.

We are now able to calculate the kinetic power flux I, =Im(oE:E.), which also gives
us the converted power flux in the mode conversion. A simple calculation of I}, for large
positive z gives

D(0) |2
o = - PO B0 P11, (24)

where S, denotes the derivative of the real part of § at the resonance. In the case of no
damping, f; = 0, ¢; = a; and 8; = s; = 0. This gives C, = 0, and Eq. (24) reduces to
Eq. (7) in Ref. [22] derived for the converted power flux with real S and o. With large
| fi/fl |, 81 and s; become large and the asymptotic value of C, approaches -1. In this
limit the converted power appears to vanish according to Eq. (24). We therefore conclude
that the term | 1+ C, |? gives the effect of the ion cyclotron damping of the ion Bernstein
wave on the conversion, and the radial field of the converted wave is correspondingly
described by Eqs. (19) and (20). E,(0) is, of course, unknown and is determined by Eq.

(8).

Neglecting o E in Eq. (7), one finds from Egs. (7) and (8)



(S —n2)2 - D?

_ o2
S —n?

E!'+ E, =0. (25)

This equation describes well the long wavelength fast wave and, in the absence of damp-
ing, can be transformed into the form of Eq. (1). Making the linearizations § —n? = S’z
and D? = D%+ (D?)'z we find Eq. (1) with n = —(x/2)(D3/S")/[—(D?)'/S']*/2. 1t is not
difficult to find from the analysis of Eq. (1) that the ratio of | £,(0) |? to the incident
power flux I; is given by [23]

| E,(0) P _ e7(1 — e*)
I,' - 27]11,!

(26)

where ny = [—(D?)'/S']/%. Substituting | E,(0) | from Eq. (26) to Eq. (24) gives
I./I; = e 27(1 — e727) for the converted power fraction in the case of no damping. This
is consistent with the Budden result for the absorbed power. In fact, direct integration
of the derivative of the Poynting flux of the fast wave I; =Im(E; E;) over the resonance
gives the same result as Eq. (24) with C, = 0 [22].

Supported by the fact that the converted wave is damped more strongly than the fast
wave around the resonance and that the evanescence of the fast wave dominates over its
attenuation in interesting cases where the converted wave is not completely damped, we
postulate the approximation

LjL~e™1—-e)|1+C,|° (27)

for the converted power fraction. I; denotes the incident power flux towards the resonance
calculated at the cut-off. Since the cyclotron damping of the converted wave is accounted
for by the term | 14+C, |?, Eqs. (24) and (27) obviously give that fraction of the converted
power which will be damped by other mechanisms like electron damping.

2.3 Validity of the analytical estimates

In the conversion analysis presented in this Section we have been able to identify in the
conversion physics three relatively independent mechanisms. The first one is the growth
of the electric field of the converted wave which is driven by a local value of the poloidal
component of the fast wave electric field. The second one is the cyclotron damping of
the converted wave which counteracts the fast wave drive. The asymptotic result in Eq.
(24) which accounts for these two mechanisms is valid provided the linearizations and
the assumption of constant E, (and constant D and o) are good approximations over the
region | z |< L, where we demand L >| a, |, a,.

| a; | and a; are usually of the same order of magnitude, and are about 0.005 in the case
of Figs. 2 and 3. At the plasma edge these are much shorter due to the lower temperature
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and steeper gradients. The basic mechanism of the conversion is, therefore, limited to a
very short region around the resonance, defined by | a; | and a;. The damping of the
converted wave may take place over a longer distance, if | f;/f! | much exceeds a;. In this
case it may often be necessary to solve Eq. (15) numerically to account for a particular
form of f; (e.g. a Gaussian for a Maxwellian distribution).

The local value of E, at the resonance is not so much affected by the conversion itself but
is determined by a number of external conditions like the length of the evanescent region
in front of the resonance, damping, wall reflection and cavity resonance formation in a
real tokamak chamber geometry. In the analysis of the conversion at the edge plasma
[22,24], Eq. (24) was found useful because | E, | at the edge resonances is strongly
affected by the boundary conditions at the wall or antenna, and in most cases is easy to
calculate as a function of the incident power flux. At the resonances in the plasma centre,
the value of | E, | should be mainly affected by the length of the evanescent region but
may in some cases be strongly influenced by the other effects listed above. The scale
length for the variation of | E, | is clearly much longer than | @, | which separates the
third mechanism, the effects affecting on | E, |, from the other two.

3 Comparison of analytical theory with numerical
results

3.1 Basic equations and the numerical method

In this Section, we test the physics described in the last Section by solving the more
advanced wave equations {1-7] which include the effects of the gradients in the plasma
parameters, finite ion Larmor radius and electron inertia. We assume a plane-stratified
model and write the equations

(cE.) —i(8E)) + (S —ni(1+ p) — n?)E, —in E,
—i(D — 6n2)E, — in, B! = 0 (28)

W(8E,) + (pE,) +1(D — énl)E, — in,E_ + E;
+(S —nl —on)E, + nyn,E, — n,(¢E,) =0 (29)

—in. E, + nyn,E, + n.E, + E] + (P —nl)E, = 0, (30)

where E,, E, and E, denote the electric field components perpendicular to the magnetic
field (x,y) and along it (z), respectively. A plasma slab inhomogeneous in the radial
direction (x) is assumed. The terms proportional to o, § = 8§, —28; and p = 2A¢— 30,4+ 02
with 6, = (A_, — A.)/2 give the finite ion Larmor radius corrections. The Transit
Time damping is introduced by the terms proportional to { = €o — (&1 + £-1)/2 with
én = YiKir}agiZ'(an;). The last equation (30) accounts for the electron inertia effects
with finite



P=1- (%) Z'(ac). (31)

Assuming that | o |, | § |, | p |[< 1 hold, we have neglected a few terms proportional
to the second derivatives of o, and 8, and to the products of in, and the kinetic terms.
We note that Eqs. (28)-(30) are still energy conserving [4]. Some kinetic corrections
proportional to E, are also neglected (7].

Egs. (28)-(30) in a reduced form or even in a more complete form have been solved
numerically by a number of authors for a variety of cases. The popular approach has
been the use of finite elements to discretize the equations and the implementation of
global boundary conditions to include a maximum amount of physics. In the present
work our interest is in the local behaviour of the solution around the resonance. To make
the integration length short and to simplify the physics, we only look for a solution near
the resonance. A widely used method [2,3,5,14,24] is to decompose the total field at
the boundaries into the wave branches obtained by a WKB analysis of Eqs. (28)-(30).
The total field includes the incident fast wave branch, the corresponding energy flux of
which is normalized to unity, the reflected and transmitted fast wave branches and the
converted and evanescent slow wave branches. The details of the numerical method are
presented in Ref. [24] and will not be presented here.

3.2 Numerical analysis

Solving Eqgs. (28)-(30) with a cubic finite element method and using the wave decom-
position at the boundaries, we can calculate the conversion, reflection and transmission
coeflicients for an incoming fast wave with sufficient accuracy and with reasonable com-
puting time for routine runs. The energy flux of the i-th mode is given by

Ii; =| 7; |* {Re(E;;B,; — E;;By;) + Im[Ey(oE;; — i6Ey;) + E;(16E}; + pE)]},  (32)

n

where 7; denotes the amplitude of the i-th mode, B,; = ——iEL,- —nyE,i and By; = n,E,; +

iE;, and E;, E,; and E,; are the components of the polarization vector E.‘ of the i-th
mode. The latter term in Eq.(32) represents the kinetic power flux and the former one
is the usual Poynting flux. We define

I:x:B(L)

= I1.5(0)

(33)

for the conversion coefficient, where z = 0, L define the left and right boundary, cor-
respondingly, and the indices ¢ = f, f_ denote the rightgoing and leftgoing fast wave,
respectively. The definition in Eq. (33) allows only the low field incidence but includes
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the conversion of the fast wave reflected from the outside of the calculation region. We
have | R |*)= —1I,;_(0)/I.4(0) for the reflection coefficient at the left boundary and
| T |*= I.4(L)/1,4(0) for the transmission coefficient at the right boundary, for the low
field incidence.

To solve Eqgs. (28)-(30) across the resonance, we have chosen model profiles for the density,
temperature and the magnetic field near the resonance with JET-like parameters. For the
magnetic field we have B = By /(1 — ¢/ Ry), where By denotes the magnetic field at the
major radius Ry (at the left boundary). The electron density (n.), the temperature (T')
and the ion concentrations are assumed to be constants in our basic choice of parameters.
Only the low field incidence is considered and the results are shown for three minority
heating schemes; D(*He), D(H) and T(D). The basic parameters are given in Table I.

Table I BASIC PARAMETERS FOR THE CALCULATIONS

D(®He) D(H) T(D)

w 1.91 x 108 s=* 2.87 x 10% s™! 1.44 x 10% 57!

n, 0 0 0

n, 4 4 4

B, 2.90 T 290 T 290 T

Ry 3.1m 3.1m 3.1m

T. =T 5 keV 5 keV 5 keV

Ne 5x10®m=% 5x10¥m3® 5x10¥®m3

Nage/Ne 0.03 0 0

nyg/n. 0 0.03 0

np/ne 0.94 0.97 0.5

nT/n, 0 0 0.5

L 0.6 m 0.3 m 0.75 m

With our parameters, the cyclotron resonance lies at R = 3.0 m, where the magnetic field
is 3 T. The parameters to be altered are n,, ny, minority concentration, plasma density,
species temperatures, and the reflection coefficient of the transmitted fast wave from the
inner wall. Separate effects to be studied include the impurity concentration and the
gradient effects.

3.2.1 Minority concentration and n,

The parameters which most strongly affect the distance between the cyclotron resonance
and mode conversion resonance are the species’ charge to mass ratios and the species’
concentrations. For the minority heating schemes, in this paper, the cut-off and the
conversion regime are both on the high field side. The distance between the resonances
with our parameters varies between 0 and 54 cm, depending on the scheme, and is roughly
proportional to minority concentration v,y,.

Fig. 4 shows the conversion, reflection and transmission coefficients (in power flux) as a
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function of n, for D(H) minority heating scheme. For this particular case we have chosen
the parameters of PLT; w = 2.87x 108 s, B=3Tat R=13m,T. =Tg = Tp = 2
keV,ng = 1.5x 10 m™3 np = 2.85 x 10'®* m~> and n, = 0. The left boundary is set at
R=14m, and L = 45 cm. The same case (with a possibly different calculation region)
has been calculated by Romero and Scharer [14] and Jaeger et al [5]. We find a good
agreement with their calculations, in spite of differences in the codes which have been
used.

The prediction given by Eq. (27) is shown in Fig. 4. Note that in the following 7
is calculated with the real parts of S, D and o. A good agreement at low n, and a
satisfactory agreement for high n, is found with the numerical results. We have also
calculated the power coefficients from the Budden estimates in Eq. (2) without the slow
wave damping correction. While the reflection and transmission seem to be less affected
by the damping for the chosen n, range, the conversion is strongly reduced for large n,
above n, ~ 6. For n, = 10, we find | C |>= 0.249 from Eq. (2). The corresponding
numerical result from Fig. (4) is 0.04, while Eq. (27) gives 0.175. By integrating Eq.
(7) numerically, without linearizing S, with a constant E,, we find | C |*= 0.145. Hence,
an almost perfect agreement with the numerical result can be obtained if, in addition,
we account for the electron Landau damped fraction of the converted power flux which
is about 8% of the total incident power flux. Therefore, we conclude that the Budden
formalism in the present case is sufficiently accurate to account for the gross behaviour of
the power coefficients provided the slow wave damping for n, > 6 is included according to
the theory presented in Sec. 2. The dominant effect of cyclotron damping on conversion
is due to the damping of the converted wave, and not that of the fast wave.

Figs. 5, 6 and 7 show the power coefficients for the T(D), D(H) and D(®*He) minority
heating schemes, with the parameters given in Table I. The results are presented for
various minority concentrations and are shown with the predictions given by Eq.(27) for
the conversion and by Eq. (2) for the conversion and transmission. We find that the
absorption is maximized at large n, and at intermediate values of minority concentra-
tion, as expected from the theory of cyclotron absorption. The transmission reduces for
increasing minority concentration, according to the predictions of the tunnelling equa-
tion. A satisfactory agreement with the Budden theory can be obtained for small n,.
However, for sufficiently large n,, 7 in Eq. (2) can not be estimated accurately from the
real parts of S, D and o, and Eq. (2) fails to give the correct transmission. This can
be observed, in particular, for the case of T(D) with v,, = 0.1 and for the other heating
schemes with the minority concentrations shown. Note that the model predicts a zero
transmission when the mode conversion resonance disappears (Re(S) becomes less than
n? everywhere).

As expected, the conversion decreases faster with n, for smaller minority concentrations.
For the whole range of parameters we find a satisfactory agreement between the estimate
in Eq. (27) and the numerical results for the conversion. For very low concentrations at
small n, we find larger discrepancies, which obviously are due to the rapid variation of
S around the resonance and due to the closeness of the mode conversion layer and the
cut-off. For D(®He) minority heating scheme with nsg./n. = 0.01 and n, = 2, | a; | is
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of the order of 0.003 which is of the same order as the distance between the resonances
(~ 0.005). This clearly makes the linearization of S or D invalid in our local analysis of
Egs. (7) and (8). For the same reason, the Budden estimates are not accurate in this
limit. Note that the Budden estimates can deviate from the numerical results even by
50 % in the whole parameter region. A main part of this deviation follows because the
location of the fast wave cut-off is not accurately obtained after linearizing Eq. (12) (see
Section 2.1). This leads to an error in | E, | at the resonance, and, according to Eq. (24),
to an error in the conversion estimate. Due to the particular spatial variation of S and
D around the resonance, this makes the Budden estimates usually to underestimate the
conversion. For increasing n,, the damping of the converted wave becomes strong, and
the conversion rapidly decreases for low concentrations. This is well predicted by Eq.

(27).

Because we underestimate the slow wave damping in linearizing the imaginary part of S
near the resonance, the decrease of the conversion for increasing n, is somewhat delayed
in our model. We were able to integrate Eq. (7) with the true S numerically over the
resonance, assuming a constant E,. For the converted power flux obtained in this way,
we found a much better agreement with the full numerical solution for large n,. The clear
difference between the analytical and numerical curves for large n, in the shown regime,
obtained for the case of DT-plasma with high minority concentration (vp > 20%), can
be explained by the electron Landau damping of the slow wave, which is not taken into
account in our analytical theory. In fact, by artifically setting P real in our numerical
computations, a good agreement with the analytical curves was found for vp > 20% in
the depicted parameter region. We also note that Eq.(24) works better than Eq. (27),
if the solution for E, from the numerical calculations is substituted into Eq. (24). This
demonstrates the error in the solution for E, which arises due to the linearization of Eqs.

(7) and (8).

3.2.2 Plasma density and temperature

For the ion-ion hybrid resonances, the distance between the fast wave cut-off and reso-
nance is roughly independent of the plasma density or temperature, while 7 in the Budden
solution increases with density. For a low density, we expect the conversion to increase
with density while for higher densities to decrease with density. As a function of the tem-
perature, the conversion at ion-ion hybrid resonances should remain relatively constant
in the region where the cyclotron resonance is well separated from the conversion region,
i.e | n, | vrifc < (1/2)v,,. These expectations are verified by the numerical calculations,
the results of which are shown in Figs. 8 and 9. Here we have altered the density and
temperature for the schemes defined in Table I. The results are shown together with the
conversion estimate given by Eq. (27). The effect of density on the coefficients is well
described by the Budden theory, and the dependence on temperature is satisfactorily well
described by the theory in Section 2. The large difference between the numerical and
analytical conversion fraction at low densities in Fig. 8a is due to the electron Landau
damping of the slow wave. In the case of Fig. 8a, n, is large, and the increase of E, with
decreasing density causes the Landau damping to be enhanced for the converted wave.
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By adding the Landau damped fraction of the incident power flux to the numerically
obtained conversion fraction, an excellent agreement with Eq. (27) can be obtained for
the low densities, too, in the present case.

Fig. 10 shows the dependence on the minority temperature with fixed majority temper-
ature. No essential changes, with respect to the case with equivalent temperature for
each species, can be found. In Figs. 8-10 we have kept the electron temperature fixed
(T. = 5 keV). For these cases n,vr./c is usually less than one, and weak electron Landau
damping and Transit Time damping results. In Fig. 11 we show the dependence of the
power coefficients on the electron temperature with fixed ion temperature. The results
indicate no large variations, which supports our model where the major temperature ef-
fect on the conversion is due to the ion cyclotron damping of the converted wave. It is
also concluded that the ion Bernstein wave has a weak electron Landau damping in the
shown temperature region. Note, however, the nonnegligible electron Landau damping
obtained for the parameters in Figs. 4, 5 and 8a. We also remind that corrections to
next order in electron Larmor radius may be needed to correctly describe the damping
of the ion Bernstein wave at very high temperatures (T, > 10 keV) [26].

3.2.3 Poloidal refractive index n,

We note that the coefficient of E, in Eq. (28) can be given by i6(n2 + n2) + nen, —iD
in the WKB limit. For the parameters relevant at the plasma centre this is dominated
by —iD, if n, is replaced by the fast wave wavenumber. Because E, is very small for the
slow waves according to Eq. (29) we do not expect large effects of n, on the conversion.
Our numerical results for the power coeflicients in the range | ny, |= 0 — 2 indicated no
larger variation than 1%. We remind that the conversion at the resonances situated near

the plasma edge are strongly affected by n, due to the nyn. term in the coefficient of EF,
in Eq. (28) [27].

3.2.4 Impurities

Various light impurities like Be, O or C may exist at the plasma centre to a large abun-
dance. Because (g, and §0p are somewhat smaller than Qp, we expect the ion-ion hybrid
resonance for the T(D) minority heating scheme to be affected by the impurities. Fig.
12 shows the graphs of S around the resonance for this case with and without beryllium.
The nearly isolated D-T ion-ion hybrid resonance is replaced by a couple of resonances
formed by the impurity and the two major constituents. In Fig. 13 we show the power
coefficients as a function of n, and minority concentration for the T(D) heating scheme
with 5% beryllium concentration and with the same parameters as in Fig. 5. Fig. 14
shows the coefficients as a function of beryllium concentration with n, = 10. We do
not give here any analytical predictions, although it would be possible to connect the
scattering and transmission coeflicients at the two resonances to find out the combined
effect. With respect to the results shown in Fig. 5, large effects of the impurity can be
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found for the absorption and the transmission coefficients at high concentrations and for
large n.. Significant changes in the conversion coefficient can be found for all the shown
concentrations at large n,.

3.2.5 Wall reflection

A nonnegligible transmission of power through the resonance-pair may produce cavity
modes with a complex field pattern over the cross-section of the plasma torus. Because of
the rapidly changing | Ey |, with consecutive minima and maxima in radial and poloidal
directions, the conversion coefficient varies strongly as a function of the spatial location.
In this case Eq. (27) is not valid, if a sufficiently collimated and intense reflection from
the walls takes place. Instead, Eq.(24) should be used to find the local absorption. For
multiple reflections in non-circular tokamaks, the phase of E, may well be described by
a random-phase approximation, and the connection of the average value of | E, |? to the
net power coupled by the antenna should be known. This is probably best done with
two-dimensional codes like LION [6] and will not be discussed further.

The effect of the wall reflection on the conversion coefficient is demonstrated by assuming
a reflected fast wave at the right boundary in our code. Fig. 15 shows the conversion
coeflicient as a function of the relative phase change between the outgoing and incoming
fast wave branches at the right boundary. We have chosen D(*He) minority heating
scheme and assume equal amplitudes for the outgoing and incoming modes. A good
agreement with the prediction given by Eq. (24) is found, which supports the idea of
separating the effect of | E, | in the conversion formula. The deep minima in conversion
point out the importance of the effect of cavity modes on the conversion. However, we
note that for the case of relatively strong single-pass absorption the reflected wave from
the inner wall is weak and may lose its amplitude further by beam divergence effects
in non-circular tokamaks. In that case, the conversion coefficient (averaged over the
resonance surface) should be well described by Eq. (27).

3.2.6 Gradients of background plasma

To test the validity of the predictions in Eqs. (24) and (27), it is important to alter the
gradients of the plasma parameters, too. From the formulae we expect the gradients of
D and S to be of major importance. However, when we compare our model equations (7)
and (8) to the full wave equations (28)-(30) in our code we would expect the gradients
of the kinetic corrections to play some role. In Figs. 16 and 17 we show the power
coefficients as a function of Vn, and VT with the parameters given in Table I. We find
some deviations from the prediction in Eq. (27) for large VT. This is because the
gradients of o become large in this limit and the integration of Eq. (7), as it was done in
Sec. 2, becomes less accurate. As a function of the density gradient Vn,, the deviations
are larger. For the T(D) case we find a reduction in conversion for the large gradient,
which is due to the decrease in the distance between the cyclotron resonance and the
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conversion layer which makes the Doppler-effect stronger. For the other schemes, we do
not find any pronounced effect of the density gradient on the conversion with the chosen
parameters. Note that the temperature and density are fixed at the left boundary in
Figs. 16 and 17. Hence, if the gradients increase, their values decrease at the resonance.
For the T(D) and D(*He) cases, the resonance lies relatively close to the left boundary
so that the decrease in n, and T at the resonance is largest for the D(H) case.

4 Conclusions

We have derived an analytical estimate for the mode converted power fraction of the
incident fast wave in the presence of ion cyclotron damping. The estimate is valid for
any strength of damping and is obtained by integrating the slow wave equation over the
resonance region assuming a constant fast wave drive. The conversion fraction is found to
be a function of the amplitude of the local fast wave electric field, local plasma parameters
and their gradients. The different scale lengths of the fast wave and slow wave variation
make it possible to separately consider the effects of the fast wave drive and slow wave
damping on the conversion, as well as the mechanisms affecting the fast wave.

The conversion is reduced for increasing ion cyclotron damping of the slow wave and for
decreasing fast wave field amplitude at the resonance. We show in Fig. 18 the absorption
profile for the T(D) case at n, = 6, where the cyclotron damping is not sufficiently strong
to attenuate the slow wave, and at n, = 10, where a significant damping of the slow wave
exists. We find that the decrease in the conversion from n, = 6 to n, = 10 (see Fig. 5c¢)
actually appears as a local increase in cyclotron damping at the resonance. From the
present analysis we are not able to predict what happens to the resonance absorption
as a whole when n, or T increases. The conversion fraction given by Eq. (27) is the
fraction of the resonance absorption which converts to the energy flux of the propagating
slow wave and will be damped by other mechanisms than ion cyclotron damping near
the resonance. Therefore, to first approximation that estimate can be used to evaluate
the electron damping arising from the conversion.

The fast wave field is relatively insensitive to the conversion process but may be strongly
affected by the length of the evanescent region in front of the resonance as well as by
the cavity effects. The present analysis shows that the conversion takes place in a very
narrow region around the resonance, the extent of which is determined to be of the order
of (¢/8")"/3. This is usually much less than the fast wave wavelength. The validity of
our results presupposes that the linearization of the parameters around the resonance is
valid over this length. This is also a necessary condition for the validity of the Budden
or tunnelling solutions.

The analysis in Ref. [20] is based on the use of second-order equations by treating the
slow wave as a driven response to the fast wave. We note that this approximation, which
is used to simplify the numerical calculations of the conversion, derives its origin from
the separability of the fast and slow wave behaviour, as demonstrated in the present
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paper. We note that the model used in our paper is applicable to the ion-ion hybrid
resonances, the Alfvén resonance [24] and to the lower hybrid resonance [27] in the ion
cyclotron range of frequencies. In the case of harmonic resonances, where the second-
order equations (7) and (8) are not complete, this model is not valid. However, it should
be noted that the theory of Kay et. al [20] has been applied with success in this case,
too. We believe that a similar analytical theory, as ours, can be derived for the case of
harmonic resonances from a more complete system of equations.

We have compared our analytical results to the numerical solution of the full wave equa-
tions, valid to second order in ion Larmor radius, for various minority heating schemes,
assuming inhomogeneous plasma parameters. A satisfactory agreement is found for a
large range of parameters n,, n,, Vm, plasma density and temperature. The largest dis-
crepancies are found when the cyclotron resonance and the hybrid resonance are close to
each other, which invalidates any linearization of the parameters in the conversion regime.
However, we note that deviations as large as 50 % are common for the whole parameter
range. For large n, or large 7', this follows from the incapability of our damping model
to fully simulate the cyclotron damping of the slow wave. For the case of weak damping,
the linearization of the plasma parameters, used for the Budden and tunnelling model,
fails to give accurately the location of the fast wave cut-off. The consequent error in
| Ey | at the resonance leads usually to an underestimate of the conversion coefficient.
The magnitude of the error depends sensitively on the precise value of 7 and the plasma
parameters. However, one should note that the direct dependence of the conversion on
| Ey | at the resonance, as predicted by Eq. (24), makes the conversion coefficient to de-
pend on many effects not described by the one-dimensional theory. An important effect
of cavity formation on the conversion by its influence on the local fast wave electric field
demonstrates the care which one has to use in exploiting the analytical estimates.
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line) and ion Bernstein wave (real part: dashed, imaginary part: chain dashed) modes
near the ion-ion hybrid resonance as a function of position along the midplane. z = 0 is
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Fig.4 A test case for PLT parameters (see the text). Solid curve with dots: total ab-
sorption as a function of n,. Dotted curve: mode converted part of the total incoming
power. Dashed curve: transmitted power. Chain dashed one: reflected power. Solid with
triangles: analytical estimate from Eq.(27).



Fig.5 The power coefficients as a function of n, for a T(D) heating scheme. Solid curve:
vp = 0.1, dotted: vp = 0.2, dashed: vp = 0.3, chain dashed: vp = 0.4 and solid with
triangles as markers: vp = 0.5. a) absorbed power; b) transmitted power; c) converted
power; d) the Budden estimate for the converted power; e) the Budden estimate for
the transmitted power; f) the Budden estimate for the converted power including the
damping (Eq.(27)).
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Fig.6 The power coeflicients as a function of n, for a D(H) heating scheme. Solid curve:
vy = 0.01, dotted: vy = 0.03, dashed: vy = 0.05. a) absorbed power; b) transmitted
power; c) converted power; d) the Budden estimate for the converted power; e) the
Budden estimate for the transmitted power; f) the Budden estimate for the converted

power including the damping (Eq.(27)).
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vsge = 0.001, dotted: vsg, = 0.005, dashed: vsg, = 0.01, chain dashed: sy, = 0.03 and
solid with triangles as markers: g, = 0.05. a) absorbed power; b) transmitted power;
c) converted power; d) the Budden estimate for the converted power; e) the Budden
estimate for the transmitted power; f) the Budden estimate for the converted power
including the damping (Eq.(27)).
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Fig. 12 The solid curve shows the logarithm of S as a function of position from R = 3.1
m to the high field side for a pure 50-50 % T(D) plasma, and the dotted one with 5 %
of beryllium.
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