I: !_II=
JOINT EUROPEAN TORUS m

JET-P(91)14

H. Bindslev
and JET Team

Dielectric Effects on Thomson
Scattering in a Relativistic
Magnetized Plasma



“This document contains JET information in a form not yet suitable for publication. The report has been
prepared primarily for discussion and information within the JET Project and the Associations. It must
not be quoted in publications or in Abstract Journals. External distribution requires approval from the
Publications Officer, JET Joint Undertaking, Abingdon, Oxon, OX14 3EA, UK".

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available
to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options.
The diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards.




Dielectric Effects on Thomson
Scattering in a Relativistic
Magnetized Plasma

H. Bindslev
and JET Team*

JET-Joint Undertaking, Culham Science Centre, 0X14 3DB, Abingdon, UK

* See Appendix 1

Preprint of Paper to be submitted for publication in
Plasma Physics and Controlled Fusion






Dielectric effects on Thomson scattering
in a relativistic magnetized plasma,

H. Bindslev
JET Joint undertaking, Abingdon, Oxon, 0X14 3EA, UK.
Permanent address: Risg National Laboratory, DK-4000 Roskilde, Denmark.

24/4-1991

Abstract

The effects of the dielectric properties of a relativistic magnetized plasma
on the scattering of electromagnetic radiation by fluctuations in electron den-
sity are investigated. The origin of the density fluctuations is not considered.
Expressions for the scattering cross section and the scattered power accepted
by the receiving antenna are derived for a plasma with spatial dispersion. The
resulting expressions allow thermal motion to be included in the description
of the plasma and remain valid for frequencies of the probing radiation in
the region of w, and w., provided the absorption is small. Symmetry be-
tween variables relating to incident and scattered fields is demonstrated and
shown to be in agreement with the reciprocity relation. Earlier results are
confirmed in the cold plasma limit. Significant relativistic effects, of practi-
cal importance to the scattering of millimeter waves in large tokamaks, are
predicted.

1 Introduction

The modelling of Thomson scattering is traditionally split into two major parts:
(A), the determination of the fluctuations in electron density and other quantities
which give rise to scattering and (B), relations between incident and scattered
fields, given the fluctuations. (A) typically deals with the spectral density function
S(k,w) while (B), the subject of this paper, is concerned with scattering cross
sections and equations of transfer between launcher and receiver in a scattering
diagnostic system. If vacuum propagation is assumed the task is a relatively
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straightforward summation of Lienard—Wiechert fields (see e.g. Hutchinson, 1989).
Dielectric effects in a cold plasma have been investigated by a number of authors
(Akhiezer et al., 1958, 1962 and 1967; Sitenko, 1967; Simonich, 1971; Simonich
and Yeh, 1972; Bretz, 1987; Hughes and Smith, 1989). The present work extends
the theory of dielectric effects to hot and relativistic plasmas.

A major motivation for the present work is the fact that collective Thomson scat-
tering diagnostics, intended to measure alpha particle and other fast ion velocity
distributions in tokamak plasmas, are presently under development (Costley et
al., 1988, 1989a and 1989b; Woskov et al., 1988; Machuzak et al., 1990). In these
diagnostics the frequency of the probing radiation is in general not large relative to
the electron plasma and cyclotron frequencies. This means that a number of sim-
plifying assumptions, which are well satisfied for the majority of laser scattering
experiments, are not valid. Most notably, vacuum propagation cannot be assumed.
In the work by Hughes and Smith (1989), the Thomson scattering cross section
and the scattered power accepted by the receiving antenna were investigated for a
cold plasma. It was shown that, in the parameter ranges relevant for the planned
alpha and fast ion Thomson scattering diagnostic at JET, it is necessary to take
the dielectric properties of the plasma into account. The dielectric effects mani-
fest themselves in the term referred to as the geometrical factor, G. Relative to
predictions based on vacuum propagation, large increases in the scattered power
were found for X to X mode scattering, with a singularity at the R-cutoff (ordi-
nary and extraordinary mode are referred to as O and X mode respectively). X
to X scattering may therefore be an attractive option. At the high temperatures
found in large tokamaks, the scattering theory based on the cold plasma model is,
however, not reliable in this regime: relativistic effects must be taken into account.

In this paper the theory of Thomson scattering in a magnetized plasma with
spatial dispersion is developed ab initio. Spatial dispersion, which is caused by
thermal motion, must be taken into account when describing the plasma by hot
or relativistic models. Expressions for the differential scattering cross section and
the geometrical factor G are derived. Earlier results are confirmed in the limit
of no spatial dispersion (cold plasma). In the transparency regime (when the
anti-Hermitian part of the dielectric tensor can be neglected) the expression for
G can be written in a compact form which is symmetrical with respect to incident
and scattered fields. It is shown that this symmetry follows from the reciprocity
relation. The earlier result by Hughes and Smith (1989) lacks this symmetry. It
does, however, become symmetrical if care is taken to preserve invariance under
time reversal when introducing the perturbations to the dielectric tensor caused
by the density fluctuations.

The paper is organized as follows. In Section 2 a homogeneous plasma is first
assumed and the field resulting from an embedded current is found. The far field
is identified with the propagating modes. An inhomogeneous plasma is then con-



sidered and the field at the detector (e.g. the mixer for heterodyne detection),
resulting from a point current source embedded in the plasma, is derived. In Sec-
tion 3 the source currents for a scattered field are identified as the currents arising
from the interaction of an incident field with density perturbations. The equa-
tion of transfer is derived for a complete scattering system and the geometrical
factor, G, is identified. The differential scattering cross section is derived sepa-
rately. In the transparency regime, G is put into a compact symmetrical form.
Section 4 contains the results of numerical computations of G for cold, hot and
weakly relativistic plasmas. In Section 5 the impact on scattering diagnostics is
discussed.

Some material has been placed in appendices to ease the flow of the development
in the main body of the paper. In Appendix A the Fourier-Laplace transformation
used throughout the paper is defined. In Appendix B the energy flux associated
with a broad-band field in a spatially dispersive medium is derived from Poynting’s
theorem and presented in a convenient form. A useful relation between the energy
flux and the derivative of the Maxwell operator with respect to the wave vector
is also shown. Appendix C discusses the étendue of an antenna which is looking
at an anisotropic plasma. Appendix D discusses preservation of invariance under
time reversal, the symmetry of the equation of transfer and the reciprocity relation
for a scattering system. A list of symbols is given in Appendix E.

2 Field due to current source in plasma

In a medium with spatial and temporal dispersion Maxwell’s equations can be
written in the form (Landau, Lifshitz and Pitaevskii, 1984, §103 ):

0B
VxE = —E N (1)
oD

where j refers to externally induced currents and

B(I‘,t) = [J,oH(l‘,t) ’ (3)
dD(r,t) _  OE(rt?) ' Nt B ol
= ey +/a(r,t,r,t)E(r,t)dr dt. (4)
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The rank two tensor, o(r,t,r',t'), is the kernel of the integral operator which
describes the current response of a general inhomogeneous non-stationary medium.

2.1 Homogeneous magnetized plasma

In a stationary and homogeneous medium the kernel of the integral in (4) simplifies:

aD(r’t)_ aE(r)t) Py oy T, 'yt
% = 5 +/a(r——r,t thE(r',t') dr' dt’. (5)

Taking the curl of (1) and eliminating B gives the wave equation:

1D 1 9

VXVXE-{-gatz——aE’ét— . (6)
Fourier transforming (see Appendix A) yields:
u?k x (k x E(k,w)) + K(k,w)E(k,w) = ik,w) (7)
WEg
@ 1s the scalar refractive index, u = kc/w. K is the dielectric tensor:
io(k,w)

Kkw)=T+———= 8
(kw) =T+ 2 (®)

where I is the identity tensor and o(k,w), the conductivity tensor, is the Fourier
transform of the kernel of the integral in (5). It is convenient to introduce also the
susceptibility tensor, Q(k,w):

Q(k,w) = to(k,w) (9)

WEp

= K(k,w)-1I

The tensor acting on E on the left hand side in (7) will be referred to as the
Maxwell tensor, A:



Alk,w) = p? {Rxﬁx}+K(k,w) (10)
With this tensor the wave equation can be written compactly:

AE=—5 . (11)

WEg

The fields resulting from a set of externally induced currents can be found by
solving for E in equation (11). To this end it is useful to introduce the eigenvalues,

Aj, and unit eigenvectors, g;, of the Maxwell tensor. Let the columns of the tensor

th

gi; be the unit eigenvectors (index j identifies the ;' eigenvector). Let A;; be a

diagonal tensor containing the eigenvalues:

A 0 O
/\ij = 0 /\2 0
0 0 X

The eigenvalue equation for A can be expressed as

Aij gk = ga A - (12)
Solving for A,
Ai; = 9a Mg} (13)
where
95 95k = ik

Note that A is in general not Hermitian and therefore g,}l # 95

The inverse of A is
A =guri ol (14)

MY 0 0
AZb=4 0 A7t 0
0 0 X!

Solving for E in (11) and inserting (14) we obtain

where



. -1 -

—1 9ij 95k Jk
E; = o , 15
WEQ %: Aj (15)

where there is no implicit summation over repeated indices.

E is analytic in the four complex arguments (k,w), except on a number of singular
surfaces, which will play an important role in the Fourier inversion of (15).

Assuming j(r,t) is physically reasonable then j(k,w) will have no singularities for
finite values of (k,w). g;; and g;;' can also be assumed to be analytic for all finite
values of (k,w). The only singularities of E are therefore the poles where one of
the eigenvalues, ),, equal zero. When ), = 0, the eigenvalue equation for g, (ref.
equation 12) is identical to the homogeneous field equation

Ae=0 . (16)

A solution to (16) only exists when Det{A} = 0, which is the dispersion equation
for electromagnetic waves in the medium. This implies that, for values of w and
k which satisfy the dispersion equation Det{A(k,w)} = 0, there will be at least
one eigenvalue A,(k,w) which is equal to zero. In this case g, is identical to the
polarization vector, &, of the electric field of the mode (k,w):

é=g,, {e”l}z_ =g when )\, =0 . (17)

For the subsequent analysis it is convenient to express k in polar coordinates:

k = kk (18)

where

ke >0 for Re{k-fn} >0

kn. <0 for Re{k-A}<0 (19)

k=vk k ; {

n is for the moment an arbitrary unit vector. Note that if the complex conjugate
of k had been used in the definition of k£ then E would not have been an analytic
function of k and k. With the definition given in (19) E is an analytic function of
(%, ﬁ), which is important for the subsequent analysis.



The surfaces in (k,w) space, on which E(k,w) is singular, are the surfaces where
the dispersion relation,

Det{A(k,, k,w)} =0 (20)

is satisfied. Solving for k,, in (20),

km = km(k,w) (21)

gives the location of the pole in the complex k plane as a function of (k,w). (21)is
of course simply a parametric representation of the singular surfaces, with (k,w)
as the free parameters.

To define the inverse Fourier transform of (15) it is necessary to specify the contours
for the w and k integrations. E is the response of a causal system to the driving
force j. From the condition that the system response be causal, it follows (see
Appendix A) that the path of integration in the w plane must pass above all sin-
gularities in the finite w plane. For sufficiently large values of the imaginary part,
wim, Of w the integration over k space can be confined to the three-dimensional
real space, R>. Let C, be a contour for the w integration on which the values of w
satisfy this criterion. The inverse transform of E(k,w) can then be written

1

E(r,t) = 2y

/f/m&mﬂ“wﬁﬁﬂm. (22)

C, 27 G

Here C; = R and k is integrated over the half sphere for which k - A > 0.

Since we are dealing with a boundary value problem, as opposed to an initial
value problem, it is preferable to integrate over real values of w. For this to be
possible the medium must be assumed to have no absolute instabilities (see Bers,
1963 and 1972). Furthermore, when the imaginary part of w is reduced to zero it
may happen that one or more of the poles in the k£ plane cross the real axis. The
contour of integration in k, Ci, must then be deformed to keep the poles on the
same side of the contour. In order to identify the far field in the direction f from
the sources, the contour for the k integration is lifted a distance :8 up from the
real axis. The expression for the field then takes the form



1
(2r)?
1
@)

M‘ dk dw (23)

E(r,t) = ()

/ /ZEfn(f(’ w)ei(kmfbr—wt)

R 2

e—ﬁfc.r/ / /E(w,k + iﬂ)ei(kﬁ-r—wt)(k + lﬂ)2 dk dk dw
R 2r R

where the summation includes the poles which are situated above the contour C
and below i3. E? (k,w) is defined as

B(knk)| ™

EP(k,w) = ik2,
a(k)

Res{E(k,w)dk; k., } (24)

in which Res{E(k,w)dk; k,,} is the residue of E(k,w) at a singular point k = k,,
when the integration is with respect to k:

Res{E(k, w)dk; kn} = % § Bkk,w)dk (25)
km

The Jacobian, |8(k,,k)/d(k)|, of the transformation k,k — Kk, gives the ratio
between a differential surface element, 6(kmk), on the singular surface and its
corresponding element, 6k, on the unit sphere. While the Jacobian is defined
for complex values of k,, we will generally only be interested in situations where
lIm {k,,} | < |Re {km} | and Im {k,, } is a slowly varying function of (k,w), in which
case the physical interpretation of the Jacobian is straightforward. The Jacobian
is introduced at this stage to give a definition of E? which facilitates an intuitive
understanding of the physics contained in subsequent expressions. The expression
for the Jacobian is

Ia(kmfc) _ B (26)

ak) | k-v,

where v, is a unit vector normal to the singular surface in k space. Let A(k,w) =
Det{A(k,w)}. On the singular surface, where A = 0,

oA AA
6= k4 o—bw=0 . (27)

For éw = 0,



OA
5 0k=0 . (28)

It follows that the vector OA/0k is normal to the singular surface in complex k
space. Dividing by the scalar —9A /0w we find that Ow/0k is normal to the surface:

—BA/Bk _ Ow
“ /0w Ok (29)
and hence that
., Ow
Vol 3k (30)

With the assumptions made about k we will generally have that (0w/0k),, :
(Bw/0Ok)s, and bk, : kg, are of the same order as ki, : kg.. Thus, ignoring the

term Im {—gi‘f} - 6Ky, which is of second order in ki, the real part of (28) reads

Ow
(E)Re . 6kRe = 0 B (31)

(Vg)re (3> (Vg )im) is therefore parallel to the group velocity, (Ow/0k)g., hence the
notation.

At large distances from the source the second integral in (23) vanishes, the field

there being due only to the poles which represent the propagating modes. In the
direction fi from the source the expression for the far field thus takes the form

1 L Ko
- p i{kmk-r—wt)_"m
B(rt) = G IZ 2/ S B (k,w)e o dkdy (32)

.vg

where it must be remembered that k., is a function of (k,w).
To express EP, in terms of the source currents and the dielectric properties of the

medium, (15) is inserted in (24):

k-v, 9;1'1 JJ}
WEo

E?, (k,w) = Res {Ai dk; km} {oa (33)

k=km



In (33) there is implicit summation over the index j but not over v.

Assuming that 1/A, has a simple pole at k = ky,,

Res{i dk; km} = (aA”

-1
Ay ok k=km) ' (34)

Solving for A in (12):
Ao=90 Mg (35)

Differentiating with respect to k¥ and making use of the fact that A;;g;.l,_, =0

and g;;' Ay e =0 (the latter is easily seen by substituting in (13) for A;;), we
find o

oA, -1 0A;

2% = 9n a9 (36)
Summation is implicit, except over v. From (10),
ON  2u® (- JK

With (34), (36) and (37) and making use of (16) and (17), the expression for E,,
takes the form

k-v,(e71-j)

E? =eé
mEeT (-21( 6K) o
wege - | —m + -€e

(38)
RS
where k£ = k,,. In the subsequent development the index m will be dropped.

The energy flux associated with the field Ep(ﬁ,w) is analysed in Appendix B for
modes where |ky,| < |kg.|. A finite observation time T is assumed. It is shown
that the power, 3°P/ dkdw, carried by a mode (ﬁ,w) per unit angular frequency
and per unit solid angle of k, is given by

10



#P(k,w) 2 k2 [
gree) _ F - E"‘E”] , 39
ok A @R kv, r (39)

(- (452) {2} ) s

where w takes only positive values. F is the energy flux, associated with a field
in the plasma, normalized by the flux of a vacuum field with identical amplitude.
S.;, referred to as the Poynting tensor (see equation B.16 in Appendix B), is a
rank three tensor which is Hermitian in the indices ¢j and has the property that
its bilinear product with the electric field vector is equal to the real part of the
Poynting vector:

F= =

; (40)
EpC

S E’E; = Re {E x H}

Superscript h indicates the Hermitian part of the tensor concerned. [EP*EP|,/T
is the power spectrum of E? in the observation period which has a duration 7. It

should be noted that
8K \" K"
Ok | = Okg.

With expression (38) for E? the power spectrum takes the form

k-9, -1-[|e—‘ 3

g

— | EP*EP| = . 41

T - —2K 0K\ 2 (41)
“welt \Tk T ok

Inserting (41) in (39) we obtain
. s, 7 25
PPy VI T 7 e §| "

9k Bw _(2 Peoe et —2K 0K N

7 ) eoC (€ : 3% -e
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To reiterate: this is the energy flux per unit solid angle of wave vector and unit an-
gular frequency of the far field resulting from a set of source currents, j, embedded
in a spatially dispersive medium.

2.2 Inhomogeneous magnetized plasma

In this section a stationary inhomogeneous magnetized plasma is investigated. It
is assumed that the sources are in a homogeneous region of the plasma which is
sufficiently large that the results of the previous section can be used in that re-
gion. In the inhomogeneous region gradients are assumed to be small enough for
the WKB approximation to be a valid description of the propagation of electro-
magnetic waves. k will be assumed to be real. It should be noted that assuming
that k£ and w are real does not imply that the the dielectric tensor is Hermitian.
The main aim of this section is to derive an expression for the power received at a
detector outside the medium in which the source currents are embedded. To this
end it is necessary to introduce a number of new quantities.

Let I be energy flowing across a surface, A, per unit area. It should be noted that I
is an integral over directions of propagation. The energy flow, in a beam emanating
from an antenna with an aperture which is large relative to the wave length, can
have a very small spread in directions of propagation. I, with A perpendicular to
the beam, is a convenient way of describing the energy flow in such a beam. We
will refer to I as the intensity in accordance with the definition given by Born and
Wolf (1987). Let Z, the normalized intensity, be the intensity of a beam divided
by the total power, P, of that beam:

I=1I/P . (43)

When describing radiation emanating from sources in the plasma it is convenient
to differentiate with respect to direction of propagation. We will write the intensity
per unit solid angle of wave vector as 8%1 /al} In an anisotropic medium the ray
direction, identical to the direction of the group velocity, is in general not parallel
to the direction of the wave vector. We shall therefore also define an intensity per
solid angle of ray direction: 902I/8V,. Bekefi (1966), amongst others, has shown
that

82 1/dv,
2

= constant (44)
p’ray

along a ray trajectory. u.,, is the ray refractive index which, for (44) to hold, takes
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the form

ok | Ok
2 2
y‘uy =V #’ an 5 . I * (45)
g Bv_q Bw k
Noting that
o 1 _ 1
Owlp  (Bw/ok)-k v,k ’
(45) may be written as
ok |lﬂ{ Volp
—_ ray . 4
5 |= (46)

Given the power radiated per unit solid angle of wave vector (equation 42) the
power radiated per unit solid angle of ray direction is found by simple multiplica-
tion with the Jacobian, |0k/0V,|.

At a detector located outside the medium the power, P®, received from a point
source embedded in the anisotropic medium is given (see Appendix C) by

oP* 2T 0°P(k,w)
Ow — ph, V0w

(47)

k-3 3B3P(k,w)
pe? Ak Bw

= T

(48)

where Aj is the vacuum wave length of the received radiation and Z° is the nor-
malized intensity of the beam pattern of the receiving antenna at the position of
the source. Note that in vacuum k° - v¢ /u*? = 1, reducing (48) to the well known
vacuum relation.

For coherent detection of the field resulting from an extended source the fields
at the detector resulting from each point in the source must be added up to give
the total field, from which the total power follows. The field at the detector, E5
resulting from a point source
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j(r,t) =36(r — vyt —t,) & j(k,w) = je i KTrmwtr)
18

(B}, = C\[Tse™ - jemtkmrut) (49)

where C' is a constant of proportionality, which can be inferred from (48) and (42).
C is independent of (r,,t,) except for a possible phase factor which would appear if
neighbouring ray paths had different optical lengths (i.e. if waves emitted from the
detector antenna had buckled phase fronts). Assuming that the refractive index
of the plasma varies slowly across the detector beam, it follows that the optical
lengths of adjacent rays will be equal at planes perpendicular to the rays and no
phase factor enters the constant of proportionality. In this case the field at the
detector resulting from a distributed source is

ES

det

=CJ (50)

where

J(k,w) = / ST, t)et - §(r,, b, e e Tomt) gy gt (51)

We let T depend on ¢, to account for the finite extent, T, of the observation period.
In the observation period, 7 is defined in (43), outside it is identically zero. From
equations 42, 48 and 50 it follows that the total power at the detector is

2|1 & IJ‘z
aPS 2A02|k . Vg|2 f
L I, f{keR} . (52
w (277)36 e_l . il_{. + a_I<.. . é
o k| ok

3 Scattering by density fluctuations

In this section we will derive an expression for the power scattered from an inci-
dent field by fluctuations in the conductivity tensor caused by fluctuations in the
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electron density. (Scattering by fluctuations in other parameters have been con-
sidered amongst others by Akhiezer et al., 1967 and Aamodt and Russell, 1990.)
Let E! be the incident field, E* the scattered field and in general let upper index i
or s signify that the quantity refers to the incident or scattered field respectively.

The total field, E = E' + E®, satisfies the relation

1 O°E
VxVXE+ 55 = Eoczat{/a'(rtr \E(r', t)drdt} (53)

Assume that the medium is stationary and homogeneous, apart from the fluc-
tuating electron density. Furthermore, assume that the characteristic times and
lengths of the density perturbations are large relative to the response time and
lengths of the medium. (The response time and lengths are the maximum values
of [t —t'| and |r —r’| for which o remains significantly different from zero.) Finally
assume that o is linear in the electron demnsity, n.. The conductivity tensor, o’,
then takes the form

b (r, t) + b (r' t')) o(r =1t — ) (54)

2n,

o'(r,t,r',t') = (1 +

The expansion used in (54) preserves the symmetry of o' with respect to (r,t)
and (r/,t'). This symmetry follows from the symmetry under time reversal of the
underlying equations of motion. A discussion of this point is given in Appendix
D. Inserting (54) in (53) we obtain

VxVxE+ %%_E =
_L_Q &e(r’t) +&l°‘(r,1t,) ' ’ Y 1 740
€oc? Ot {/ (1+ 2n, o(r—r',t —t)E(r,t')dr' dt

(85)

In the absence of fluctuations, the total field would consist of the incident field
only:

i 162E1 1 a ’ AN 1 AN Y T
VxVxE +—8t2 ——60628t{/a(r—r,t—t)E(r,t)drdt} . (56)
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Subtracting (56) from (55) we find, in the Born approximation (neglecting multiple
scattering)

8 1 O°E 1 0 " INTSL S Ll nogn

VxVxE +—W+_3_{/d(r—r’t_t YE*(xr",t") dr" dt }-
1 a &I(r t) &l(r"tl) ! ! i Y / /
a5 {/( o o(r—r',t —t"E(r',t")dr' dt

(57)

Hence, the currents, associated with the incident field acting on the perturbation
of the conductivity tensor, are the source currents for the scattered field:

2n,

6’% ,t 6ne ,’t’ / ! ig 4t Ty
j(r,t) = / ( (r,8) + éne(r )) o(r—r',t —tEQ, t)dr'd .  (58)
Let the incident field be a monochromatic beam:
. .\/Ii I’,t . i x .10 i
El(r, t) - & ; ) (gxe:(k T-w't) + & e—t(k T—w t)) (59)
The total power P! in this beam is

P = €OCP|8‘|2 (60)

Inserting (59) in (58) and the resulting equation for j into (51) yields

J(k,w®) = ';'/\/Is(r,t)l'i(r',t') (&le(r,t);:ﬁze(r’,t’))

(e‘l)s co(r—r,t-t)- &

e—i(ks-l‘—wst) (giei(ki-l"—wit') + gi*e—i(ki.r'—wit')> dr’ dt’ dr dt
Assuming that the response length and response time of the plasma are short
relative to the characteristic lengths and times for I and I*, (61) can be simplified

to
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e o _ L[ t) + & (r,t)
Iw) = 3 /( o (62)
(e'l)s co(r—rt—t)- &
= H(KS T —5t) (giei(ki-r’-—wit') +£i*e—i(ki-r’—u;it’)) dr' dt' dr dt
where

bne(r,t) = \/T3(r, )Ti(r, t) bne(r,t) . (63)

The square root of the normalized intensity, VI, plays the same role here as the
“weight function”, w, in the paper by Holzhauer and Massig (1978). Carrying out
the integrations in (62) gives

J(k, W) = %gi

dno(k* — k', w® — o) ()" (a(k‘a w') *2- “(k“’“’s)) & (64)
*m(ks + ki, Wt + wi) (e_l)s - (a"(ki,wi) + U*(ksaws)> Y
2

Ne
1.
+ =&

2 N,

The two last terms represent the effect of density fluctuations at approximately
twice the probing frequency and generally propagating faster than the phase ve-
locity of the probing light. Such density fluctuations are unlikely to exist as noted
by Hutchinson (1987) in his treatment of scattering based on vacuum propagation.
Neglecting the two last terms in (64) we obtain

1 . e (oK o)+ okt e L]
2 _ _ 112 1 . ) ? L al
T2 = e €12 0, T S(k,w) |(e7?) ( 5 é (65)
where _
k=k*-k' , w=w®—w
Oy is the beam overlap (Bindslev, 1989):
Oy = / Ti(e, )T%(x, t) dr (66)
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and S(k,w) is the spectral density function:

[Bne(k, )

Sk,w) = 0T

(67)

Inserting (65) into (52) and making use of (60) to express |£1|2 in terms of the
incident power, we find

i s . 2
P' 0, S(k,w) N¥k® - v52 7 \(e-l)“- (" ;" ) e’
2 ] : (68)

-1, ____2K+_6£ .é
© k| Ok

opPs

ow

(27)3 n, (eoc)® F

With the classical electron radius, 7., and the plasma frequency, w,,

2 2
__ 4 e 1
T 4dmegmec? . "~ (4m)2ctn? (69)
(68) can be written
OP° _ i yiysp2, S(Kw)
o = POy o Xyrine == G (70)
where the geometrical factor takes the form
i 8 . iQi 8Os )2
Pl - 93 7 2 (o) (‘*’_—__Q +'Q ) @
w? 2w,
G = 5 . (71)

; k 0K ®
F el | K—-=—] &

(e (e-350)
Equation (70) gives the power received in a scattering system, given the incident
power, the beam patterns and the nature of the density fluctuations. If from
a statistical knowledge of the density fluctuations we wanted a prediction of the

received power the best estimate would be obtained by using the ensemble average
for the spectral density function,

< & (k,w)|? >
neObT

S(k,w) = (72)
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This definition of the spectral density function is identical to the definition given
by Sheffield (1975) when the beams have rectangular cross sections and uniform
intensities.

If the anti-Hermitian part of the dielectric tensor can be ignored, i.e.

K=K" |,
it follows that
e—l — é*
and we have (see Appendix B):
. kOK\ . <
e-(K—Qﬁ)-e—pk~vg}' . (73)

With this relation between the terms stemming from the residue and the flux, (71)
can be written in the compact and symmetrical form

C
G = FiFs (74)

where the coupling term, C, is given by

. 2
w'wt

= (75)

o (“’____iQi + WSQS) &

2w,

and the F’s are the normalized fluxes given in equation (40).

In the limit of no spatial dispersion, the expression for the geometrical factor, G,
reduces to that given by Hughes and Smith (1989), apart from a minor point about
symmetry, which is discussed in Appendix D. In the low density limit the term C
tends towards |(€7)* - &!|2, while F tends towards unity and consequently G tends
towards |(&%)® - &'|2,

The differential scattering cross section, 8% /0k dw, is often given as an interme-
diate result. From (47) it is readily seen that
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OP* XN POyn, O°F
Ow — pd OV 0w

(76)
and hence, with use of (46)

P _/\_f)rzs(k,w) pt?
Okdw N 21 |k ¥

G . (77)

In the limit of no spatial dispersion (77) is identical to the expression given by
Hughes and Smith (1989) after symmetrization, as discussed in Appendix D.

4 Numerical results

Equation (70) is the equation describing the power transfer in a scattering system.
The quantities which depend on the properties of the plasma are the beam overlap,
Oy, the spectral density function, S(k,w) and the geometrical factor, G. The beam
overlap was investigated by Bindslev (1989) while the spectral density function has
been the subject of many investigations, e.g. Hughes and Smith (1988). In this
paper the main new result is the generalized expression for the geometrical factor
which allows for spatial dispersion. This means that the dielectric tensor and
derivatives thereof, which enter into the expression for G, can be evaluated not
only on the basis of the cold plasma model but also using hot or relativistic models.

Computer codes have been developed, as part of this work, to evaluate G with di-
electric tensors and their derivatives derived from four magnetized plasma models:
(a) cold, (b) hot equilibrium, (c) weakly relativistic equilibrium based on Shkarof-
sky (1986) and (d) weakly relativistic equilibrium based on Yoon and Krauss-
Varban (1990). With a number of corrections to Yoon and Kraus-Varban’s work
(see Appendix F), the two relativistic codes give identical results.

In the low temperature limit the relativistic, the hot and the cold codes all give
identical results. For propagation close to perpendicular to the magnetic field,
both the real and the imaginary part of the refractive index found with codes ¢
and d agree accurately with curves given by Batchelor, Goldfinger and Weitzner
(1984). The location of cutoffs are shifted by relativistic effects. The density at
which the O-mode is cutoff, is given by
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“p ___3K(p)
( 2)O—cutoﬂ" Pl /Ooo(p4/72)e-p‘70b (78)

while the density of the R—cutoff is given by

wy 3Ka(p)
p —_
(E) a2, Q) _ple” (79)
R-cutoff P2 / 1 =) - C&)
0 v) pP+1-02
where
Wee m.c?
Q=— ’ pP= ) Y= 1 + p2 )
w T,

and K, is the modified Bessel function of second order. Equation (78) is identical to
equation (43) in Batchelor, Goldfinger and Weitzner (1984) (subsequently referred
to as B.G.W.) while (79) is derived from B.G.W.’s equations 39 to 41. (Please
note that there is a miss print in B.G.W.’s equations 38 and 39, X-mode. They
should read ni — (e;c€yy + €2,)/€zx = 0 and ezz€y + €2, = 0.) The locations of
the O-mode cutoff and the R—cutoff found with codes ¢ and d (see figures 1 (d),
3 and 4) agree accurately with those found with equations (78) and (79).

In the investigated range of electron temperatures, T, = 0 to 18 keV, G as well as

i iQi |2
the terms %‘gs (e71)*- (ﬂ%gi) -e'| |, F, and (e'l . (K — %%I;f-) -é) appear

to depend on the norm of the anti-Hermitian part of the dielectric tensor, ||K?|| =
v/ 25 | Kij|?, only to second order (the author has been able to show this result

analytically for (e_1 . (K - %%I—,f-) . é) but not for the other terms) and the effect
of K* is negligible except in the vicinity of resonances. We will therefore discuss

numerical results in terms of equation (74).

Parameter space is clearly very large and a comprehensive survey of it is outside
the scope of this paper. Here we will only present some illustrative examples with
parameters relevant to the planned scattering experiments at JET (Costley et al.,
1988, 1989 a, b) and TFTR (Woskov et al., 1988).

To describe the geometry of the scattering let

(ki xB) - (k, x B)
lk; x B| |k, x B|

cos P;jy = l};/, .B , cosy =
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and

cosd = k; - k, , cos¢=ﬁ-]§

The angles v;, ¥, and x are the angles used by Bretz (1987) and Hughes and Smith
(1989) to describe the scattering geometry. We shall only present data resulting
from geometries where ¥, = 180°—1);. With this symmetry the scattering geometry
is fully described by 6 and ¢.

The plots given in figure 1 are calculated with parameters relevant for scattering in
JET (parameters are given in the figure caption). The curves show the geometrical
factor, the coupling term (equation 75), the normalized flux (equation 40) and the
refractive index as functions of electron density. F and p are identical for incident
and scattered fields due to the symmetry in the direction of propagation relative
to the magnetic field. Both incident and scattered fields are in the extraordinary
mode (X to X scattering). The frequency of the radiation is higher than the
cyclotron frequency. This implies that the R-cutoff determines the maximum
density to which the radiation can propagate. The effect of the R—cutoff is clearly
visible in the plots. While the hot plasma predictions tend toward the cold plasma
predictions at the R—cutoff, the relativistic plasma model produces a shift in the R-
cutoff toward higher densities. This shift can be attributed to the relativistic mass
increase of the electrons. Although the hot plasma model does produce a change
in predictions relative to the cold model, in this regime much more substantial
effects are found with the relativistic model. It is noteworthy that a nonvanishing
imaginary part to the refractive index is found with the relativistic model and not
with the hot model. This absorption is attributable to the relativistic smearing of
the cyclotron absorption.

In figure 2, cold and relativistic versions of the geometrical factor are plotted
against w* for a range of electron densities around n., = 6.5-10m™3. It is evident
that as the R-cutoff is approached the shape of the curves become increasingly
sensitive to the electron density.

The reliability of the analysis of light scattered for diagnostic purposes depends,
among many factors, on the accuracy of the model. Figures 1 and 2 clearly il-
lustrate the need for a relativistic model. Another factor of importance to the
reliability of the analysis is the sensitivity of the spectrum of scattered light to
various plasma parameters. Sensitivity to quantities which the diagnostic seeks to
measure is beneficial while sensitivity to other quantities like the electron density
reduces the reliability of the analysis. As the R—cutoff is approached the geometri-
cal factor and hence the spectrum of scattered light for X to X scattering becomes
increasingly sensitive to the electron density and other parameters, making reliable
analysis impossible in the vicinity of the R—cutoff. The practical consequence of
the relativistic shift of the R—cutoff is therefore to increase the upper limit on the
density range in which reliable measurements can be made with X to X scattering.
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Figure 1: (a) Geometrical factor, (b) coupling term, (c) flux term, (d) and

(e) real and imaginary part of refractive index, as functions of n..
Parameters: X to X scattering, w' = w® = 27 - 140 GHz, 6 = 30°,
¢ =30° (¢! = 103°, ¥* ~ 77°, x ® 15°), B=34 T, T, = 12 keV.
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Figure 2: Geometrical factor, (a) cold, (b) relativistic, as functions of w?*.

Parameters: as in figure 1 except that n. = 6.2, 6.4, 6.6,
6.8 - 10®m™3.
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At any given electron density, the reduced sensitivity found with the relativistic
model, which 1s illustrated in figure 2, implies that the reliability of the analysis
will be better than expected from the cold plasma predictions.

In figure 3 the geometrical factor and the real part of the refractive index are
plotted against electron density for a range of electron temperatures. The rest of
the parameters are the same as in figure 1. Only relativistic curves are plotted, the
T. = 50 eV curve being indistinguishable from the equivalent cold plasma curve.
The dependence of the R-cutoff on temperature is evident.

50 —+
S To /KkeV =0.05
8
Ey)
g 25 |
[+}]
£
3
S
0
0 1 2 3 4 5 6 7 8 9 10
1.0 1
MHpe 05+
To 7keV = 0.0 10\ 15
0.0 + ' ' ' ; ' ; _—
0 1 2 3 4 5 6 7 8 9 10

. 19 4
Electron density / 10 m

Figure 3: Relativistic geometrical factor and real part of refractive index as

functions of n..
Parameters: as in figure 1 except that T, = 0.05, 5, 10, 15 keV.

For O to X and X to O scattering the difference between cold and relativistic
predictions are similarly dominated by the shift in the R-cutoff.

Figure 4 shows plots for O to O scattering with the other parameters identical
to those for figure 3. Radiation in the ordinary mode is cut off at the plasma
frequency. Again a relativistic shift in the cutoff frequency is found. Attention is
drawn to the different scale for the density. At densities found in JET the difference
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between the cold and relativistic predictions are of little practical importance.
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Figure 4: Relativistic geometrical factor and real part of refractive index as

functions of n..
Parameters: O to O scattering, otherwise as in figure 3

Figure 5 shows plots similar to figure 3 with parameters relevant for the scattering
experiment planned at TFTR (Woskov et al., 1988). Here the frequency of the
probing radiation is below the cyclotron frequency. This implies that the radiation,
which is in the extraordinary mode, is cut off at the L—cutoff.

Though a small relativistic shift of the L—cutoff is observed, relativistic effects in
the geometrical factor appear to be negligible for the TFTR parameters.
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Figure 5: Relativistic geometrical factor and real part of refractive index as
functions of n,.
Parameters: X to X scattering, w' = w® = 27 - 56 GHz, § =
30°, ¢ = 80°, (¢! ~ 92.6°, ¥* ~ 87.4°, x =~ 29.6°), B = 5.0 T,
T. = 0.05,5,10,15 keV.
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5 Conclusions

A theory of scattering has been developed which takes the dielectric effects of the
plasma into account and, as a new element, allows for spatial dispersion. Thermal
motion results in spatial dispersion. This new expression is therefore required when
hot or relativistic effects are included in the dielectric properties of the plasma.

Symmetry with respect to incident and scattered fields has been demonstrated in
the limit where the anti-Hermitian part of the dielectric tensor can be neglected
and shown to be in agreement with the reciprocity relation. The source of asym-
metry in earlier results has been identified.

Earlier results are confirmed in the cold plasma limit.

Significant relativistic effects, of practical importance for the planned collective
scattering diagnostic at JET, have been found for the advantageous X to X scat-
tering. Due to the relativistic shift of the R-cutoff to higher densities, reliable
analysis of radiation scattered from X mode to X mode appears feasible in an
important density range which would not have been considered possible on the
basis of the cold plasma predictions.

For O to O scattering in JET the relativistic effects appear to be of no importance
to the signal level in O-mode. However, it is important, even for O to O scattering,
to stay clear of the R—cutoff, preferably at densities above it, in order to minimize
or eliminate spurious signals from X to X scattering. This requirement accentuates
the importance of an accurate knowledge of the location of the R—cutoff.

For the collective scattering diagnostic under consideration at TFTR (Woskov,
1988) no relativistic effects of any importance are predicted.

Finally it should be noted that relativistic effects are likely to be important for

reflectometry which relies on reflection of radiation by the R—cutoff or O-mode
cutoff layers.
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Appendix A Fourier—Laplace transformation

In this paper a spatial Fourier transform and temporal Laplace transform are used:

1 00 +17y ,
— i(k-r—wt)
A(r,t) @y —°0+|"7R[ A(k,w)e dk dw (A1)

Akw) = [ [ A, e r—Dgrgs (A.2)
y

The Fourier-Laplace transform is defined for values of v large enough for the inte-
gral (A.2) to exist. In the application, use will be made of the analytic continuation
of the transform. It is assumed that in the time domain only the asymptotic re-
sponse is of interest. Implicit in this is that the response to any initial conditions
can be neglected.

Appendix B Energy flux

The energy flux associated with propagating modes in a plasma will be derived
here. It is well known that in a spatially dispersive medium the energy flux is
the sum of the electromagnetic flux, accounted for in the conventional Poynting
vector, and a kinetic flux due to correlated movement of particles with the wave.
The expression for the kinetic flux associated with a quasi-monochromatic mode
has been derived by a number of authors, e.g. Bers (1963 and 1972) and Landau,
Lifshitz and Pitaevskii (1984). Here, however, a broadband field, propagating
in all directions, is investigated. To ensure that integrations over frequency and
direction of propagation are taken correctly, the expression for the energy flux in a
spatially dispersive medium is developed from Poynting’s theorem. The Poynting
vector is defined as

S=ExH (B.1)

From Maxwell’s equations (1) and (2) and the constitutive equations (3) and (5)
in section 2, Poynting’s theorem is readily derived:
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V-S = H-VXE-E-VxH

_ Ho 6H2 €o 6E2

— - = -E.-j,—E.j . B.2
2 ot 2 Ot I ! (B2)

Jp is the plasma current induced by E:
L@ﬂ:/dnwﬂ—ﬂﬂﬂﬂﬁm', (B.3)

while j represents externally induced currents. For most of the terms in (B.2) the
interpretation is straightforward: the term on the left hand side is the divergence
of the electromagnetic flux, the first two on the right account for the change in
electrostatic and magnetostatic energy while the last on the right accounts for
the exchange of energy with external sources. The term E - j, is the exchange of
energy between the field and the plasma particles. However, j, is a function of E
which complicates the interpretation of this term. In the limit where u;,, < ys.,
E - j, can be approximated by three terms which account for dissipation, change
in energy and divergence of flux associated with correlated particle movement. It
is this latter term, the kinetic fluz, which is of particular interest here.

For a field of the type given in equation (32) we have

1
(2m)°

E(r,t)-jo(r,t) = /mwhwgﬁdmwgmmmwg (B.4)

2 > 2
ei((k2—k;)'r-(“’2-“’l)‘) <A 2 ) (- kQA ) dfq duwn df(g dwo

k, - Vo 2" Vg2

where

k=kk , k=kk)

The summation over modes is dropped, implicitly assuming that the flux does not
contain cross—mode terms. Let

_k2+k; w _w2+w1
- 9 9 (1 2 )

ko

Integrating (B.4) over time and space (e.g. to find the time-averaged power cross-
ing a surface) the integrand will, due to the harmonic term, vanish except where
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(k2,w2) = (kj,w1). In this case expanding o around (ko,ws), retaining only zero
and first order terms, is a valid approximation:

o(ks,wy) = o(ko,wo) + ﬂg{w_o) (ko — k7)/2 (B.5)
Ba(ko,wo)
T(U)Q - wl)/2

+ O(k2 - k;,wg - wl)

Substituting (B.5) into (B.4) and adding the complex conjugate expression, making
use of the fact that the left hand side is real, we find

/ / E(r, t) - j,(r, ¢) dr dt

v T
= //E{ Ef‘(ﬁlawl) . 0'53 . E?(f(g,u&) } drdt
v T

" -\ @ R B.6
+ //V-L{Ef*(k,,wl)- (%) (6—6‘%) B2 (kyywn) } awar OF
VT
9 i —1\ (0o \" :
+ ffﬁﬁ{ EP"(ky,w;) - (-2—) (%) CEP (g, wn) } drdt |
VT
where £ { --- } is the integral operator:
£{--}= 1 / ... ei{(ka=k{)r=(w2-uw1)t) ( b ) < ke’ ) dk; dw, dk, dw,
(27r)6 k1 ' {,gl k2 ) {'92

The second term on the right hand side of (B.6) is clearly the kinetic flux leaving
the volume V.

For convenience we define a Poynting tensor

1 (_{k2}i6j[ _ {k;}j b + {k;}z‘sij + {kZ}z‘Sij) , (B.7)

Si;}, =
{ J}l 2p0 Wo W w1 Wy
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which has the property
Si; Ef (ky,w1) Ej(ks, w2)

E(k;,w;) x (ki x E‘(kl,wl)) E*(ky,w;) % (ky x E(ks,ws))

N 2,“/0‘-01 2#0&)2 (BS)

E(kg,b)z) X H*(kl,wl) + E“(kl,wl) X H(kg,Wz)
2

From (B.2) and (B.6) it follows that the average power, P, carried across a surface,
A, over a period, T, is given by

oo [3 T e (504 (2) ) sormocnmsien ) aar
(B.9)

where N is a unit vector normal to the surface A. Integrating over A and T,

(23@3% (s"f+( ){a;:}a) i (B.10)

* 2
Ep (kl,wl)E (kg,(.dg) (k kl ) (A k2 ) ei((kQ‘k;)'Pa-(wz—wl)T)

1 vgl k- Vg2

62 (0 x (kg — K2)) bp(wa — wy) dky dw dk; dw,

In the integration over r, it was assumed that k,, < (L|k x ii|)~! where L is the
dimension of A in the dlrectlon of (k X ). p, is the position vector of the centre of
the surface A and 7 the midpoint in the time interval. ér(w) is a peaked function
with a maximum of T/2m, a width of the order 27 /T and [ ér(w)dw =1

6% is defined similarly, only in two dimensions.

Carrying out one of the k and one of the w integrations,
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11/ [ o o E* | |8(ke X B)
P —_— e e 2kImk Pa ~ —
@rPT /_%[ kb | o)

(s,-,- + (5) {a""} ) [E”"E”] (pm) i dk dw

|—1 (B.11)

5 ka’};(’)‘n |, stems from the integration of 6% over k:
3 k e X n a k e X ﬁ a k elw
|| (R ) l’gi ) (RA|)| (B.12)
a(k) (Keel,) || (k)
P -
= In | )
k- ¥,

where |, means for fixed w.

[Ef "E? ] is the power spectrum of EP around the location p and time 7. Sub-
AT
scripts A, T indicate that the power spectrum is obtained from knowledge of E(r,t)

on the surface A and time period T'. It is therefore also indicated that the reso-
lution in the power spectrum is approximately 27 /T in w while the resolution of
k x 1 is (27)?/A. The resulting resolution in k is

o ak)
Ak - |’a(kRe 'I A{kRe X n}

K‘)
<)

Vo

- k2A| < (B.13)

5)
<>

Inserting (B.12) in (B.11), integrating only over positive frequencies and making
use of the fact that the direction of the power flow is parallel to the group velocity
(see for instance Bers, 1963), we find that
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1 1 g ; k
P - — e—2k1mk‘pa ———— Re (B.14)
(273 T /.ool k- v,
WE oK h
U Bt R I Badiinl’] P P
(S” ( 2 ){ ok } ) [E Ef]f,f;‘."r)

Note that the difference between |k|? and kg.? is of second order in k;, and hence
not included here. The dielectric tensor was substituted for the conductivity tensor
in (B.14). Letting A extend to infinity in both directions and neglecting damping,
we find that the energy flux associated with a mode is given by

dk dw

FPPn(k,w,7) 2 K

.. h
(o)) slmsle

Okdw (272 |k-v,|
(B.15)
where the Poynting tensor now takes the simpler form
= {k}i 8 — {k*}; 6u + {k*}, 65 + {k}, 8
S}, = . 2 B.1
(8, e (B.16)
When K = K" we find the following useful relations:
k-(&"-S-&) = eocuk & x (kx &)
= —gocpé” -k x (k x &)
= 2. K-e |, (B.17)
7

~ (-UanK_S()C k 0K
k= %k = u 20k (B.18)

From (B.17) and (B.18) we find that the normalized flux

_ (weo) [OKLM] .
{S” (2){61(}}6’6’
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satisfies the following relation:

X 1., kOK\ |
k-7 = ~é ~(K——26k>-e (B.19)
—k__ OA
= e + —
2u ok

Appendix C Etendue

To obtain equation 48 in section 2.2 we first find the radiation at a point v in
vacuum resulting from a source at a point p in the plasma and then, at the point
v, we use the well-known expression for the étendue of a receiving antenna. Let
the power emitted from the source be represented by

&FPkw) I
MN,0w ~ BV, 0w

éa,, (C.1)

where éa, is the cross sectional area of the source perpendicular to the ray direction.
Along any ray, (44) gives the following relation between the vacuum intensity and
the intensity in the plasma:

oI
Ok Bw

(C.2)

¥ ‘ 1 &I
o OV Ow|  pl, OV 0w|
The ray tube with cross sectional area éa, at the source will, at a point v in vacuum

have the cross sectional area &a,. For the normalized beam intensity we have

T ba, = T, ba, (C.3)

The receiver would see no difference between a source with intensity I, and cross
sectional area éa, located at the point p and one with intensity I, and area éa,
located at v.

The power, P®, received from a source, which radiates uniformly across the beam
pattern of the receiver, can be related to the intensity, I, of the emission from the
source through
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oPs oI
=0——A4 C4
Ow Ok Ow (C4)

where A is the cross sectional area of the beam pattern and 2 is a constant of
proportionality with dimension of solid angle. Often (2 is visualized as the cone of
radiation from the source which is accepted by the receiving antenna. In vacuum
the product A, which is called the étendue, is equal to the square of the vacuum
wave length, Ao (Siegman, 1966):

Q= (C.5)

|

If the cross sectional area of the source is small relative to the cross section of the
beam then the above result is not applicable. Based on results given in chapter 4 of
Collin and Zucker (1969), an expression similar to (C.4) and (C.5), but applicable
for small sources is readily derived (Bindslev, 1989, Appendix A). The power
received form a small source with cross sectional area éu perpendicular to the
beam is given by

oPs o3I
= Q— C.6
Ow Ok 0w (C6)
Q = M\71 (C.7)

where 7 is the normalized beam intensity introduced in equation (43). Thus we
find that the power received from the point v is given by

oP® >rI
= M7, ——| &a, C.8
dw 07 fkowl, (C8)
Using (C.2) and (C.3), (C.8) takes the form
orPs NI, &I
= - ba, C.9
Ow  pl, Okow|, & (C9)

which, with (C.1), gives equation (48).
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Appendix D Symmetry

In this appendix the reciprocity relation for electromagnetic fields is extended to
a scattering system and it is found that the equation of transfer for a scattering
system should be symmetrical in incident and scattered fields. This provides a
convenient check on derivations of the equation of transfer. Earlier expressions for
the equation of transfer (e.g. Hughes and Smith, 1989) were slightly asymmetrical.
The step in these derivations which introduced the asymmetry is identified and
compared with the approach adopted here. It is further noted that assumptions
are made in the derivation given by Hughes and Smith (1989) and in the derivation
given here, which limit the range of validity of the expressions to situations where
w < ' and k « K. In this regime the quantitative difference between the
asymmetrical result given by Hughes and Smith and cold plasma limit of the
symmetrical result given here is negligible.

The reciprocity relation has been shown to hold in a generalized form in a magne-
tized plasma with spatial dispersion (see e.g. discussions by Ginzburg, 1970 and
Budden, 1985). To extend the reciprocity relation to a scattering system consider
the following fields and currents:

j!, j%: the source currents in antennas 1 and 2 respectively.
E!, E?: the fields resulting from currents j' and j? respectively.

j%, jb: the currents resulting from the interaction of fields E!, E? with the density
fluctuations.

E°, Eb: the fields resulting from currents j* and j® respectively.

The generalized form of the reciprocity relation states that
/ EY(r, —t) - j'(r,t)drdt = / E!(r,?) - j’(r, —t) dr dt (D.1)
/ E%(r, ) - j(r,—t)drdt — / E*(r,—t) - j°(r,t)drdt ,  (D.2)

where the quantities with superscript 2 or b refer to a plasma where the external
magnetic field is reversed. The fluctuation derived currents are related to the
incident fields through

Pt = / fo(r, ¢, ") - EN', ') dr' dt’ |
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where 8o = o' — o is the plasma response associated with the density fluctuations.
It is readily seen that the right hand sides of (D.1) and (D.2) are identical if

st —t'r, —t) = bo(x, 1,1, t') . (D.3)

Equation (D.3) is satisfied if st is the response due to fluctuations in a plasma
where the direction of time is reversed. Physically this means that the direction
of the external magnetic field is reversed and that the Fourier components of the
fluctuations propagate in the opposite direction. That this is the case is seen
from the following considerations. éor(r;,%;,r,,%,) can be regarded as the kinetic
coefficient which relates the electric field at the space-time point (r,,t,) to the
resulting current at the point (ry,?,). The equation of motion from which do is
derived is the linearized Vlasov equation with the velocity distribution associated
with the fluctuations, which cause the scatter, as the background velocity distribu-
tion. This equation is symmetrical under time reversal when time reversal includes
reversal of the external magnetic field and reversal of the temporal evolution of
the fluctuations. The latter implies reversal of the direction of propagation of a
Fourier component of the fluctuations. We shall refer to the plasma (or system)
with the external magnetic field and fluctuations reversed as the conjugate plasma
(or system). Since the equation underlying éo is symmetrical under time reversal
it follows, by Onsager’s principle (see e.g. Landau & Lifshitz, 1986, §120), that

50"‘-(1'0,7’0, rbaTb) = &T(I‘b,tb, rasta) 9 (D4)

where &' is the fluctuation derived plasma response in the conjugate plasma. 7,
and 7, correspond to the time points ¢, and ¢, respectively, but since the direction
of time is reversed in the conjugate system we have that 7, — 7, = t, — t,. It is

worth noting that in the conjugate system the causality requirement is ot =0

for 7, — 7, < 0 and hence if éo describes a causal response then 50'T, as given by
(D.4), automatically satisfies the causality requirement in the conjugate system.

Having shown that (D.3) holds when sot refers to the conjugate plasma, the
plasma to which also superscripts 2 and b refer, we find that

/WQ—meﬂa&=/W@ﬁj%wﬂaﬁ (D.5)

where the field E? is the scattered field at antenna 2 resulting from currents j'
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in antenna 1 while the field E® is the scattered field at antenna 1 resulting from
the currents j? in antenna 2 when the external magnetic field is reversed and the
Fourier components of the density fluctuations propagate backwards. This is the
reciprocity relation for a scattering system. It clearly has the same form as the
original generalized reciprocity relation. By the methods outlined in Collin and
Zucker (1969) the equality of the fractions of power transfer for forward and reverse
transmission is readily shown to follow from (D.5). From this it follows that the
equation of transfer, (70), must be symmetrical in the incident and scattered fields.

The equations of transfer given in previous work, e.g. Hughes & Smith (1989)
(referred to below as H & S), were not entirely symmetrical. It is shown here
that in the approximation used by H & S and others, it is not necessary to break
the symmetry. H & S implicitly expand the conductivity tensor in the density
fluctuations at the response point, (r,1):

o'(r,t,t') = (1 + i‘n—flr’—t)) o(t—t') . (D.6)

e

We find that the equation of transfer becomes symmetrical if the conductivity
tensor is expanded in the mean of the density fluctuations at the input point,
(r',t"), and the response point, (r,t):

14 &(r,t) + dn.(r',t)
2n.

o'(r,t,r',t") = ( ) o(r—r'jt—1t) . (D.7)

Even to first order in the density fluctuations, this is only an approximation: o

does not depend only on the values of the electron density at the end points, (r,t)
and (r',t').

Having assumed that the response length and time are small relative to the char-
acteristic length and time of the density perturbations (section 3) it clearly follows
that (D.6) and (D.7) are approximations of the same order. The relative merit of
(D.7) is that with this definition o' satisfies Onsager’s relations and a symmetrical
equation of transfer results. The two are of course linked. The choice of expansion
manifests itself in the coupling term. Expansion (D.6) leads to

@) (“’;Qi) @

: 2
w'w®

2
Wy

C =

(D.8)

while (D.7) gives
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(D.9) is symmetrical in incident and scattered fields while (D.8) is not. Since
the rest of the equation of transfer for a scattering system (70) is symmetrical in
incident and scattered field it follows that, with expansion (D.7), the equation of
transfer becomes symmetrical in incident and scattered fields.

An estimate of the response length and response time is given by ﬂaTT?‘i’leU and

ua%ﬁi”ﬂ. These have to be small relative to 1/k and 1/w for the above expansions

to be valid. From this it follows that the difference between Q' and Q®, and hence
between (D.8) and (D.9), is small when the expansion is valid.

The decision to expand the conductivity, o, rather than for instance the suscep-
tibility, Q, appears arbitrary yet the result depends on it. Again the expressions
converge to those given above in the limit where k¥ < k' and w < '

To find a theory of scattering in plasmas which does not require that k < &' and
w < W' it appears necessary to break with the conventional approach of treating
the fluctuations and the scattering separately. Treating the problem as a two wave
coupling may be the way forward.

Appendix E Symbol list

Ac Anti-Hermitian part of the tensor A.

A Hermitian part of the tensor A.

Al A, referring to the incident field.

A Imaginary part of A.

Ap. Real part of A.

A® A, referring to the scatiered field.

A Unit vector.

A" Complex conjugate of A.

c Vacuum speed of light. (6)
é Unit electric field vector. (16)
g Unit eigenvector of A. (12)
J Current. (2)
k Wave vector. (A.1)
k Complex norm of the wave vector. (19)
k Unit wave vector. (18)
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Ny ,ma

feay
o'(r,t,r't)
o(r—r',t—t)
o(k,w)

wCE

M >

Electron mass.

Electron density.

Classical electron radius.
Unit group velocity vector.
Elementary charge.

Magnetic flux density.

Electric displacement.

Electric field strength.

Electric field strength in polar Fourier space.
Geometrical factor.

Magnetic field strength.

Fourier component of weighted current distribution.

Dielectric tensor

Beam overlap.

Power.

Suseptibility tensor.
Poynting vector.
Poynting tensor.

Spectral density function.
Observation periode.

Coupling term.

Amplitude of monochromatic electric field.
Normalized energy flux.

Normalized beam intensity.

Vacuum permitivity.

Eigenvalue of A.

Vacuum wave length.

Refractive index.

Vacuum permeability.

Ray refractive index.

Kernel of conductivity operator.
Kernel of conductivity operator.
Conductivity tensor.

Angular frequency.

Angular electron cyclotron frequency.
Angular plasma frequency.

Determinant of the Maxwell tensor.

Maxwell tensor.
Differential scattering cross section.

4]

(69)
(54)
(54)
(30)
(54)

(1)
(2)
(1)
(15)
(71)
(2)
(51)
(8)
(66)
(39)
(9)
(B.1)
(B.16)
(72)
(B.9)

(75)
(59)
(40)
(43)

(4)
(12)
(47)

(3)
(45)
(4)
(3)
(8)
(A.1)

(69)
(27)

(10)
(77)



Appendix F Notes on Yoon and Krauss—Varban
(1990)

Yoon and Krauss—Varban (1990) (referred to below as Y & K) give expressions
for the dielectric tensor elements of a weakly relativistic plasma with a loss cone
distribution. Setting the “loss—cone index”, l, equal to zero reduces the loss—cone
to a Maxwellian distribution. Their result with [ = 0 and the corrections given
below formed the basis of one of the relativistic codes used here.

Y & K use the Shkarofsky function, F, (Shkarofsky, 1966) which is calculated by
means of the relation between F' and the plasma dispersion function (Fried and
Conte, 1961) given by Krivenski and Orefice (1983). With ¢ and ¢ as defined
by Krivenski and Orefice and h and z as defined by Y & K, the expression given
by Y & K assumes that ¥y = h and ¢ = —iv/z — h where the branch cut for the

argument of the square root is along the negative real axis. The correct relations

are ¥ = p\/m.c?/2T, = Vhand ¢ = VE—zfor (h—2)p. >0and ¢ = —ivz -k
for (h — z)g. < 0.

In Y & K’s expression for M3, (m — 1) should be replaced by (m +1) and in their
expression for M™, C! _,(m — 1) should for m = 1 be replaced by C' .

zz)?

With these corrections Y & K’s expressions give the same numerical results as the
expressions by Shkarofsky (1986).
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