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Abstract

The plasma energy flux is frequently equated to the
kinetic energy flux. However, the periodic exchange
between kinetic and potential energy in the gyratory
motion produces a spurious contribution, which is
balanced by a potential energy flux. The total energy
flux is more meaningful. This is equivalent to the
guiding centre energy flux. The convective part of this
is (3/2)I'T, not (5/2)I'T as for the kinetic energy flux.

1. INTRODUCTION

This study is intended to resolve differences between expressions used for
the energy flux in a magnetised plasma. These differences recently led to a
dispute on the separation of the energy flux Q into conductive and convective

components. Writing

_Q_=g+akT[ 1)

when [ = <ny> is the particle flux, opinions differ on whether o = 3/2 or 5/2.
The total kinetic energy flux for the jth species may be defined in terms of

the velocity distribution relative to the laboratory frame.
1
ij = jd3v5mjvzyfj (2)

and the thermal flux in terms of the particle velocity relative to the mean species

velocity, u

q; =Jd3V%m,-(z—u)2(z—u)f,- 3)



A straightforward evaluation of the difference between these two integrals gives

ij =q; +§kT£j+%m -nu2

AR g £+mj£-fd3V(z—z)(z—u)fj 4)

The last term is the rate of working by the pressure tensor. For isotropic pressure

0, =4 +§kT[j +—;—nmju24 (5)
This is the justification for a = 5/2.

Hazeltine and Ware [4], in a rigorous kinetic analysis, derived an energy flux
equal to the guiding centre energy flux plus a term P (n x V®)/B. This is con-
sistent with Eq. (5). Ross [6,7] confirms the relationship in Eq. (5). He points out,
however, that the full energy balance equation for electrostatic fluctuations
contains a term J'L_-j 1d3r which cancels part of Q, so that the same result is
obtained by choosing o = 3/2 and ignoring the work done by the field on the
current. (This cancellation, first shown in [4], will be discussed later.) He
concludes that we can take either o = 5/2 or 3/2, provided it is used with the
appropriate form of energy balance equation, but that a = 3/2 is the more
convenient for transport simulation codes [7]. In an Appendix to a recent paper,
Balescu [1] gives a careful comparison of different forms of the energy and
thermal fluxes, pointing out some inconsistencies.

In the transport analysis for TFTR, Zarnstorff et al. [8] recently found that
the conductive heat flux derived from the measured total flux, using Eq. (5), is
some-times in the same direction as the temperature gradient, giving a negative
thermal diffusivity. To avoid this they used o = 3/2.

The most frequently used form of the energy conservation equation is the

fluid form [2]

d(3 5
b-t—(—z-nkT)+ V. (5kT£+ g)— u-V(nkT)= P, ©)



where P}, is the heat input. This equation may be obtained from the second
velocity moment of the kinetic equation, using Eq. (5) and the fluid equation of
motion. Diichs [3] points out that the above equation can equally well be written

in the mathematically equivalent form

-gt-(%nkT)+V-(%kT[+g)+nkTV- u=P, %
This has the form of an energy conservation equation with a flux q + (3/2)kTT.
This energy flux, of course, differs from that defined in Eq. (2), and its physical
significance is not obvious. In the core region of a large toroidal plasma, the
particle source is small (except perhaps when beam injection is used). Then
V.mw) = W.V)n + nV.u = 0. Hence u.V(nkT) = - (1+n)nkT V.u, where n =
d{T/d{n n. Since a typical value for 1 is 2-4, the compressional term in Eq. (6)
may be a few times larger than that in Eq. (7). Neither should be omitted [3]. On
grounds of physical intuition, and minimisation of computational errors, Diichs
favours Eq. (7).

Section 2 examines the simple example of the Ex B drift of a single charged
particle. Since a particle with energy 1/2mv? is convected with velocity E/B the
kinetic energy flux of 1/2 m(v2 + v3)E/B, is clearly misleading. In fact, the v1
contribution is cancelled by an opposing potential energy flux. Section 3
expresses the v2 moment of the Boltzmann equation as a conservation equation
for the total energy. When this is transformed to guiding centre variables, it has
a simple and physically transparent form.

Since the kinetic energy and total energy fluxes are different, Section 4
considers which corresponds to the energy flux derived from experimental
energy analysis codes, and which corresponds to theoretical prediction. In both
cases it concludes that the guiding centre total energy flux is usually the

appropriate one.



2. IS Qg A GOOD MEASURE OF ENERGY FLUX?

The kinetic energy flux, defined in Eq. (2), is generally identified with the
total energy flux. To illustrate how this can be misleading, consider the simplest
example of an ion moving in a uniform magnetic field B along the z-axis, in the
presence of an electric field, E = - V@, in the y-direction. The perpendicular
velocity of such an ion varies as

v,=E/B+v,cos{

Vy==v,sin{

where { = Qt + o and Q is the ion cyclotron frequency. The mean kinetic energy

flux is

1o .m E? E E
O = -2—7;§dC-5(v(2, +-§7 + 2V0—Ecos§+ vfIE-i-vo cosC)

2
_m 2 2 E°\FE
—7(2"0 +V, +F)E 8)

When extended to an isotropic velocity distribution, this gives the familiar flux,
(5/2) kTT'x, assuming E/B << vy,

A single ion has constant total energy, (v +v2+E?/B?), and its mean x-
velocity is E/B, so Eq. (8) is clearly not the total energy flux. The time variation
in 1/2mv2, which gives rise to the additional contribution to Eq. (8), results from
the conversion between potential and kinetic energy. Since kinetic and potential
energies are continually being converted into each other, it is more meaningful

to evaluate the total energy flux. For the single ion example
Ot = L§d¢(-1-mv2 +ed>)vx
2r 2

=z v2+v2+E2£
2\ 2" BB



since mv2/2 + e® = v2 + v2 + E2/B2 is constant during the motion. This agrees
with physical intuition. Thus the extra flux, (mv?,/ 2)E/B, in the kinetic energy
flux is exactly balanced by an opposite flux of potential energy.

An analogous system is a pendulum whose kinetic energy is large enough

to produce monotonic rotation about the fixed centre. Evaluation of the kinetic

energy flux, §dt mv2y /27, gives a mean kinetic energy flow mg a2/27 in a

direction perpendicular to gravity, where m is the mass, a the pendulum length,
and 7 its period. This flow has no physical significance. It is balanced by an equal

and opposite flow of potential energy.

3. A TOTAL ENERGY BALANCE EQUATION
We will now express the energy conservation equation in terms of kinetic
and potential energy. Starting from the kinetic equation for the jth species, its
1/2 mv2 moment is
LB <L+(v-V)f; +-L(E+yxB)-=L|==L[d? 2(—) +P 9

where (9f/9dt)¢ is the collision operator and P,q is the additional heating. After

integrating by parts this may be written
%[Idsv%mjvzf}]+ V. [J’d3v%mjv2lfj:|—ej§. Idsv‘_’fj =Py + Py (10)

where Pjk is the equipartition with other species.
After separating the electric field into an electrostatic part, - V@, and an
externally induced part, EaA, Eq. (10) may be expressed as a conservation equation

for the total energy. (See the Appendix for details.)

%[]d%[%mjvz + ejd>] fj]+ V-[ j d%[%mjvz +ejd>]gfj:|



P
=Pj,‘+njej§A-gj+njej—é-t—+Pad (11)

The physical significance of Eq. (11) is obvious. The change in the total energy,
i.e. the sum of the particle kinetic and potential energies, results from the total
energy flux, energy exchange with other species, the increase in potential energy,
ohmic heating by the induced electric field, plus additional heating. When Eq.
(10) is interpreted as a fluid equation, the last term on the left appears as the work
done by the electric field on the plasma flow. As may be seen from Eq. (11), that
part which results from electrostatic field can be re-expressed as the flux in
potential energy.

Equation (11) can be expressed in terms of the guiding centre velocity V|,
where

v,=V,+v,e,, and e, =(cos{,sin{,0).

As shown in the Appendix, it then takes the form

J 3 1 2 3 1 2

=Py +njeu;-Ep—nje;V, -VO+Fy. (12)

In the present model, V| = - V®xB/B2, and hence V;.V® vanishes, leaving the

ohmic, njeju;.EA, and additional heating terms. Equation (12) is equivalent to Eq.
(29) in Ref. [7].

This analysis does not distinguish between the particle density and the

guiding centre density. These differ by a term of order (pj/rn)2, where pj is the

Larmor radius and ry the density scale length. The guiding centre kinetic energy

is usually negligible compared with thermal. Thus if V) is of order the

2
diamagnetic drift, then mij /ij ~ (pj / rn) .

We now consider the relationship between this guiding centre energy

equation and the fluid-type equations in Egs. (6) and (7). Although the total



species energy is the most natural quantity for the guiding centre description, it is
not so for the fluid description. The key difference is that the total particle energy
can be expressed in guiding centre variables in the simple form, (see Eq. (A2) in

the Appendix)

1 1

-imjv2+ejd>=—2-mj(VJ2_+v§+vf)+ejd>gc. (13)
The fast variation in v2, due to the gyration, gives rise to a kinetic energy flux
nkT(ExB)/B2, as shown in Eq. (8). The fast variation in ®, seen by the gyrating

particle, contributes to the potential energy flux,
e; v
[d*ve;dyf; = —2-17;Idv,dv2§dC[d>Gc +52 V- Bxe l](y L+Veey)

= ne[®gcV, - nkT—E-I-;%L—; (14)

In the guiding centre model the fast variation cancels out in the total energy. In
the fluid description, however, the guiding centre potential has no role, and it
loses the simplifying relation, Eq. (13). Now the fast variation in v2 contributes
to the kinetic energy flux. The balancing potential energy flux reappears in the
term -ej E-uj in Eq. (10). After combining with the bulk kinetic energy, this gives
rise to the u-Vp term in Eq. (6). This is the physical origin of the cancellation
between ej E-uj and the divergence of the additional energy flux, nukT, pointed
out by Ross [6,7].

The alternative form of fluid energy equation in Eq. (7), favoured by Diichs
[3], is closest to the guiding centre energy equation. We can now see that the flux,
3/2 KTIT + q, which enters Eq. (7) corresponds approximately to the total energy
flux. (An exact equivalence cannot be expected, because the thermal flux is
relative to the mean fluid velocity in one case, and the mean guiding centre

velocity in the other.)



4. MOST SUITABLE FORM OF ENERGY FLUX
The guiding centre energy flux due to fluctuating fields, when averaged

over a flux surface, can be split into convective and conductive components as

follows
3 3/ \,= 3= t.=¢
<5"j"TfY-j>=5< iV T *3 (kT3
3 .

where angular brackets or an overbar denote an average over a flux surface, and
a tilde denotes the variation over the surface.

The separation of the kinetic energy flux into convective and conductive
components is useful if it is easier to separately predict the conductive heat flux
and the particle flux. However, this is not generally true. Thus neoclassical
analysis evaluates the guiding centre drift of the total energy. For example,

Hinton and Rosenbluth [5] evaluate

0; = 5Jas(c—B)Vse, as)

where € is the total particle energy, V| is the guiding centre velocity, and D is

the flux surface averaged potential. (The effect of a mean electrostatic potential is
excluded from Q) since it is already taken account of in the nje;V _L-V5 term in Eq.
(12)). Thus the neoclassical flux can be substituted directly for the total energy

flux in Eq. (14). The energy flux resulting from drift instabilities is generally
estimated from an integral of the type <Jd3v%mjv,2,(ﬁ9fj/8). This again

corresponds to the total energy flux.

Thus when comparing predicted and experimental heat fluxes, the total
heat fluxes should generally be used. The experimental flux can be derived from
the guiding centre energy equation, Eq. (12) (neglecting the 1/2 m; VvZ bulk

energy), or approximately from the second fluid energy equation, Eq. (7). Since



experimentally the particle convection and heat flux may be individually
controlled, by adjusting the sources, there may be advantages in separating the

total flux into convective and conductive components.

5. CONCLUSIONS

1. The quantity of most physical interest is the total (kinetic and potential)
energy flux. Most theoretical estimates of the transport fluxes, in particular
those based on guiding centre equations, are for the total energy flux. Hence
comparison with these theories should use the experimental total energy
flux.

2. For the cases considered in this paper, using the guiding centre model the
total energy ﬂﬁx, when expressed as a sum of conductive and convective
components, is qj + (3/2) kTjTj. The kinetic energy flux is gj + (6/2) kTjTj.

3. The three forms of energy conservation equation considered here are all
mathematically correct. The guiding centre form is physically obvious, easy
to use, and gives the total energy flux.

4. The first form of the fluid energy equation, which is frequently used in
interpretive energy analysis codes, gives the kinetic energy flux if the u;Vp;
term is properly evaluated.

5. Comparing the second form of the fluid energy equation with the guiding
centre equation shows that the energy flux derived from this equation

corresponds closely to the total energy flux.
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APPENDIX
Derivation of a Guiding Centre Energy Equation

In Eq. (10) we make the following substitutions
E=-VO+E,

Vo [dvyf; =V [0fdvef)|- o[ Sv(v-V)S;
The last term can be simplified to

J‘d3v(y‘V)f]- = —J'd3v[-igft’;+ (E+¥ XQ).%-(%JJ = —jd3v%tf~

The integral of the collision term must vanish, since collisions do not change the

particle density. Equation (10) can then be written as
O (v Lmv? 40 )f; |+ [P 2mv? +ej0
—a-t-J' vijv +e;® |f; |+ I vimjv +e;® |vf

o
= jk+njej§A-gj+Pad+njej—aT (A1)

We now transform this into guiding centre variables, by expressing the particle

perpendicular velocity as a gyration superimposed on a mean drift
v,=V, +v,e,, where e, =(cos{,sin{,0) and {=Qt+a

The variation in potential energy is - r-E where the particle position r is given by
= Yo
c—zo+JZldt+QB.B.><gl

The particle energy is then

1 1 ExB
Emjvz +ejd) =-2—mJ(Vf +V‘2, +V§)+ ijo(_\ll - —B —)-gJ_ +ejd>GC (A2)
where
®ge = (1) -E- [V, dt

11



is the potential at the particle guiding centre.
To obtain an energy balance equation comparable to the fluid equations, the
particle energy, integrated over the velocity distribution, can be written in terms

of a temperature.

1 1 3
Idvzdv?,§dC(-2—mjv2 + ejtb)jj- = -EnjmjVi + EnkT +n;e;®@cc (A3)

since §d§g . = 0. The velocity integral is over all particles whose guiding centres

lie within an element of real space around the point r. Thus ®gc = ®(r). Strictly
speaking, in Eq. (A3) n is the guiding centre density while kT = m is
the thermal energy of particles whose guiding centres are at r. To avoid the
considerable analytic detail involved in retaining finite Larmor radius (FLR)
effects in the guiding centre and fluid equations (which are not essential for the
present problem), such terms will be neglected. Thus we do not distinguish
between particle and guiding centre densities.

The total energy flux is

1 ExB
Qtot = JdedV3§d(:|:—2-mj(Vi + Vg + V?) + mjvo(y.l. - :B_Z::) ey + ejcp:l(y.L + VoQJ.)fI'
=nj[% V2 +%1<T+e,-<1>]yl +nkT(_YJ_——E-§2§)
The last term vanishes, since the guiding centre drift is wholly due to the electric
field. The total energy flux thus equals the energy density multiplied by the
guiding centre velocity. When expressed in terms of the guiding centre velocity

Vi1, Eq. (A1) therefore becomes
d 3 1 3 1
E[nj(ikrj +5mjvj’; + e,.db)]w-[nj(Eij +5mVi +ejd5)¥_,_]

P
= jk+njej_E_A-gj+Pad +njej-§-.

12



Because the O(pj/rp)? difference between guiding centre and particle density is
neglected, the divergence operator pruces the same results in either description.
By invoking the continuity equation for guiding centres, this may be rewritten as

Eq. (12).
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