I: !_II=
JOINT EUROPEAN TORUS m

JET-P(91)03

J.P. Christiansen, J.G. Cordey, O. Kardaun, K. Thomsen
and JET Team

Application of Plasma Physics
Constraints to Confinement Data



“This document contains JET information in a form not yet suitable for publication. The report has been
prepared primarily for discussion and information within the JET Project and the Associations. It must
not be quoted in publications or in Abstract Journals. External distribution requires approval from the
Publications Officer, JET Joint Undertaking, Abingdon, Oxon, OX14 3EA, UK".

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available
to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options.
The diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards.




Application of Plasma Physics
Constraints to Confinement Data

J.P. Christiansen, J.G. Cordey, O. Kardaunl, K. Thomsen
and JET Team*

JET-Joint Undertaking, Culham Science Centre, 0X14 3DB, Abingdon, UK

'Ipp Garching, Germany
* See Appendix 1

Preprint of Paper to be submitted for publication in
Nuclear Fusion






Application of plasma physics constraints to confinement data

J.P. Christiansen, J.G. Cordey, O. Kardaun*, K. Thomsen
JET Joint Undertaking, Abingdon, Oxfordshire, OX14 3EA, England.

*IPP Garching, Germany.

Abstract

A subset of the ITER L and H-mode confinement data is tested against the constraints
imposed by various theoretical models for thermal plasma transport. Matrix algebra is
used to facilitate such tests. A new result obtained is that the fundamental constraint
imposed by the High-B collisional Fokker Planck equation (Kadomtsev) is satisfied by
the data. An additional constraint on the characteristic scale length associated with
thermal diffusion can also be satisfied by the data. Dimensionally correct empirical
scaling laws embodying theoretical constraints can thus be derived.

1. Introduction

Studies of data from one or more Tokamak experiments have produced a large number
of empirical scaling laws for the energy confinement time Te. When such scaling laws
are used in extrapolations to proposed experiments like ITER [1] or CIT [2] a wide range
of estimates for tg will arise in the sense that some scaling laws predict ignition while
others do not. A high level of confidence in an extrapolation requires a considerable
variation in the values of the data used. The largest such variations can be found in
the ITER L-mode data base [3] and the ITER H-mode data base [4]; these two data bases
represent the most comprehensive Tokamak data assembled so far. However,
extrapolations to the proposed ITER experiment [1] based upon these data bases embody
significant uncertainties. The L-mode data extrapolations are discussed in {5,6] while an
analysis of the H-mode data has been presented recently [7].

Empirical scaling laws like the Goldston scaling [8] or the Kaye-Goldston scaling laws [9]
as well as those of [1-6] are usually cast as a power law expression involving
"engineering" variables

1p =C a% n* IV PP g% xix BB A%A ... (1)

The constant C and the exponents zy are determined from statistical fits of data on tg to
the data on minor radius a, density n, current I, power P, inverse aspect ratio ¢,



elongation x, field B, ion mass A etc. There is no theoretical justification for the power
law form (1) and many authors have instead employed an off-set linear form [10,11].

A recent study [12] has shown that most empirical scaling laws expressed in the form
(1), each law having particular values for the exponents zx, possess a set of common
physics features. Such features are derived from the Connor-Taylor scale invariance
approach to confinement scaling [13] and they are expressed by

Tg = C TB f(p"" V""ﬂ’ £ K, 4, A’AD’XT’A'I’) (2)

In this dimensionally correct scaling expression for the confinement time C is a
constant, tg is the Bohm time and f is some function of the dimensionless physics
variables which will be defined later; p» and v» denote normalised Larmor radius and
collsionality; B is plasma beta; Ap, AT, An, As denote Debye length, profile length scales of
T, n and B all normalised to minor radius a. Several of the variables in (2) depend on
1g such that Eq. (2) is an implicit equation for 1. A previous study [12] has
demonstrated that with minor changes dzy to zx, many of the empirical scaling laws of
type (1) can be cast in the form (2) with specific dependencies upon p+, v« and . Plasma
physics theories for thermal transport predict specific dependencies of tg upon the
arguments of the function f in (2) as explained in the review by Connor [14]. The work
presented in this paper addresses the question whether the constraints imposed by
theories are satisfied by the data presently available.

The main result obtained from a comprehensive series of analyses of L and H-mode
data from a variety of Tokamak experiments is that global confinement data satisfies
the fundamental constraint imposed by the High-B collisional Fokker Planck equation.
This constraint, which was first derived by Kadomtsev [15] requires that tg can be
expressed as (2) but without any dependence upon the Debye length Ap [6]. Thus
plasma physics effects characterized by scale lengths of order the Debye length are not
important for thermal transport. The scaling of the energy confinement time in a
Tokamak thus has a firm physic foundation. It also puts on a firm basis the "wind
tunnel like" experiments proposed by Waltz [16]. Additional theoretical constraints on
the dependence of Tg upon p+, v+, B etc. are also tested against the data. The scaling
expression used to implement such tests is a power law expression

T = C 1% e wrv B8 g% iFx g1 A%A .. (3)
Imposing theoretical constraints on the form (3) corresponds to assigning definite

values for the exponents xx: the Kadomtsev constraint [15] requires x; = 1 as an
example. The methods of analysis and six theoretical models for thermal plasma



transport are presented in four Appendices and many numerical results are given in
five Tables while the paper itself describes the main results of our analysis.

In section 2 we present a summary of the ITER L and H-mode data. For clarity we
emphasize the data selection criteria we have employed; these criteria largely
correspond to those of [6,7,12]. The difference between the scaling of thermal

(TE = Tthermal) and total (Total) energy confinement time is emphasized. The
Appendices present some features of multivariate analysis techniques [17] required for
our analysis.

Section 3 and Appendix 1 defines the variables of Egs. (1) and (2) used in the analysis. If
a power law expression such as (1) is assumed to depict variations in confinement time
then all the algebra relating one set of variables to another becomes linear. Appendix 2
presents features of the regression techniques.

Section 4 describes some shortcomings of the L and H-mode data. A principal
component analysis is made to investigate collinearities in the data on both
dimensional and dimensionless variables.

The statistical method employed to test whether a theoretical constraint is satisfied, is
the F-test [17] and the problems associated with this test are discussed in section 5 and
Appendix 3.

In section 6 and Appendix 4 we consider six theoretical models for thermal transport in
a plasma; the models are described in more detail by Connor [14]. The constraints
imposed by each model are examined and tested against the ITER L and H-mode data.

The results obtained in section 6 lead to the conclusion: i) global confinement data can
always be represented in dimensionally correct physics forms [13, 15]; ii) careful
estimates of the global thermal energy content enable us to determine the length scale,
associated with thermal diffusion; iii) the dependencies of confinement time upon
additional parameters describing collisionality v+, B, safety factor q etc. cannot accurately
be determined from global data in its present form; a more refined analysis based on
local data [18] is required.



2. Summary of data bases

The ITER L-mode data base contains 1431 sets of data (observations) from JET, TFTR,
JT-60, DIII-D and JFT2 and it has been assembled by S.M. Kaye [3]. This data base has
already been used for confinement analysis [5,6]. The ITER H-mode data base [4]
contains 3482 data sets of data from JET, DIII-D ASDEX, PDX, PBX and JFT2 and has been
assembled recently. This data base includes per dataset a more extensive list of
variables than the L-mode database. The variable set used for the study presented in
this paper is therefore the common subset of the two databases; it means that variables
like electron temperature, wall-limiter material, plasma shape (except elongation) etc.
will be excluded. Table I summarizes the data on a number of relevant plasma
parameters by giving their range, i.e. the minimum and maximum values found in the
data bases, and the associated symbols used in this paper. Also included in TableIis a
number of dimensionless parameters which will be defined in the next section.

The data to be used is selected from both databases as follows. Only data with neutral
beam heating (NBI) as auxiliary heating is considered; H-mode data with ELM's is not
used. Furthermore we impose the following conditions adopted in {4, 6, 7, 12]

W
2fc04 , —005<+ W 035, Bat g6 | gs>31 4)
W P dt P

The fast ion energy Wy will be defined below. The total plasma energy W is based on
MHD fits but for JET and ASDEX we use W = Wj,, the latter being based on
diamagnetic measurements available only for H-mode data. The net input power P is
defined as

dw W

P=P o+t P abs — =
dt Tiotal

where P,ps denotes the absorbed beam power. There is no data in the L-mode data base
for the time derivative of W nor is there data for the radiated power Praq. The
following number of datasets for each machine, which results from the conditions (4)
becomes (the total number is denoted by N):

For the L-mode data base N = 680 distributed as JET (353), TRTR (67), JT-60 (209), DIII-D
(5), JFT2 (46).

For the H-mode data base N = 693 distributed as JET (246), DIII-D (34), ASDEX (16),
PDX (24), JFT2M (218), PBXM (155).



The restrictions (4) omit TFTR supershots (L-mode) and extreme non-steady H-mode
data.

In order to prepare data on thermal confinement from the selected subsets of data we
need to estimate the fast ion energy content. This energy content is obtained using the
approximate expression

3/2 3/2
Wf =Py T, /2 , 1,= l 37 1013 Z‘—ﬁ log| 1+ ﬂ (5)
3 n E,

The expression for the slowing down time 15 can be found in the literature, e.g. [19].
The critical energy is given by

ﬁ_

E.=148 T —of

For the L-mode data the average temperature T is defined as

W
2.1lenV

, V=2nta’ke! (6)

The factor 2.1 arises from a fit to both JET and ITER H-mode data for T. Values of Wg
given by Eq. (5) agree very well with the estimates made for the ITER H-mode data base
even though Eq. (5) is only approximate, i.e. no profile effects etc. are included. The
total and the thermal energy confinement times are defined by

W W-W
1tota1=F s Tthermal = TE = P ! =71 (7)

For L-mode data we use Eq. (5) for W¢; for H-mode data we employ the estimates for
Wi given in the database. For brevity we use 71 instead of g in the following.

3. Variables

The variables used in our study are those 8 independent variables of Eq. (1). The
variable set denoted by a vector Z in the Appendix is referred to as the engineering set.
The data range for these variables is given in Table I. From the set Z we can derive

[9, 16] the following variables used in Eq. (2)



1/2
T ~ a‘nlx po=pla~ EPTA / (®)
B ePt ’ anllx
732
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£ =— , K = — R ~ 10
R a q I (10)

The ranges for these variables are also given in Table 1 together with their associated
variances sk defined in Appendix 1. The choice of a timescale (8) g ~ a/I p+2 is
equivalent to the conventional choice which replaces tg by B-1 or a/I [6,16]. The set of
variables (8 - 10) is denoted by a vector X and it is referred to as the physics set.

Many more variables may be relevant to confinement studies, e.g. Zegf or Ap, AT, Ag Of
Eq. (2). In addition the neutral beam heating efficiency n [20] could be included to
account for the degree of beam penetration in the various Tokamaks; 1 depends on the
density profile and an assumed heat diffusivity profile. Such variables are however not
available in the databases.

4. Collinearities in the data

Considerable simplifications occur if the regression analysis (see Appendix 2) is made
on a set of orthogonal variables. It means that the variables of (1) should have been
varied completely independently of each other. For practical and experimental reasons
this is however not the case. Both ITER L and H-mode data exhibit inner relations or
collinearities. For instance

i) Density n is proportional to current I for one Tokamak
i1) Power P and current I are correlated with machine size R
iii) Field B and current I are also related to R

As an example of data collinearity we show in Figure 1 the L-mode data on B plotted
against that of p»; Figure 2 shows H-mode data on B versus that of v+, both Figures are

log-log plots. The tilde symbol, e.g. B, means that 1 is omitted from the definitions (8-9)
such that the variables plotted in Figs. 1 and 2 are the actual regressor variables (see
Appendix 1). It is clear from these Figures that the variables are not orthogonal and
that a "trade-off" between the associated exponents xx of Eq. (2) is possible in regression
fits. To asses the influence of collinearity on estimates of the exponents xx (or zx) we
carry out a principal components analysis on the L and H-mode data separately; the



details are given in Appendix 1. The analysis yields a set of orthogonal components
and Tables II and III summarize their content. The relations of Appendix 1 can be
employed to express the orthogonal components in terms of the four sets of variables
considered. Tables II and III also include the results for the regression fits described in
Appendix 2.

5. Does the data satisfy a theoretical constraint

A theoretical constraint on the scaling of the thermal confinement time requires that
the expression (2) can be cast as the product of a leading term Ttheory in place of 1g and
some function f of dimensionless plasma parameters. The leading term Ttheory
embodies K constraints which arise from the scale invariance of the plasma physics
equations used. The most fundamental constraint is that of the collisional High-B
model of Kadomtsev [15] based on a Fokker-Planck equation which yields the scaling
expression (2). This constraint eliminates effects on thermal plasma transport arising
from radiation, atomic physics and high frequency (@ ~ wp), short wavelength (A ~ Ap)
oscillations; wp is the plasma frequency.

As mentioned in the introduction Eq. (2) is an implicit equation in t and regression fits
are therefore made to the explicit form derived from (3)

T=C &7 P W BP gl K¢ g’ Ad (11)

where the tilde symbol denotes the omission of t from Egs. (8-9). Egs. (3) and (11) are
equivalent and the fundamental constraint of Kadomtsev [15] can be expressed as

x;=1 or  2y.—% y,+2y,-ys=1 (12)

All theoretical models include this fundamental constraint but impose additional
constraints on the exponents xp, Xy, xg etc. Appendix 2 shows that the x and y exponents
are linearly related. Hence all theoretical constraints can be expressed via linear
equations such as (12) and imposed on the regression equation (11). Appendix 4
presents several constraints equations. Formally these are expressed by

Cx=0 (13)

where for the general case of K constraints C is a K by M + 1 constraint matrix acting on
the vector of M + 1 exponents x. The example (12) thus corresponds to C = (110000000).
Two constraints can be imposed by the short wavelength gyrokinetic scaling which
requires a dependence as p»1 in (11); in this case C becomes (see Appendix 4)



c - 110000000

= 1011000000
and so forth. From the relations of Appendix 2 Eq. (12) can also be expressed in terms of
the exponents for other variable representations. The fundamental constraint (12) is
equivalent to the representation

42,-82,—2;—-32,-523=5 (14)

The coefficients 4, -8, -1 etc in (14) are the constraint coefficients arising from the
definitions (8-9). To assess if (14) can be satisfied by experimental data the dimensional
parameters a, n, I, P and B must show significant variations; this is the case for the
ITER L and H-mode databases.

If K constraints are imposed on regression fits involving M independent variables then
the number of degrees of freedom in the fits is reduced from M to M-K. From a
statistical point of view such a reduction is acceptable if

(Cx)f[C'sC']" Cx < F(K,N-M+K,a) (15)

The inequality represents the F-test [17] for a confidence level a in a fit to M-K
independent variables with N data values. § is the data covariance matrix associated
with x; to apply the test (15) we need to substitute x by y or z via the relations of
Appendix 2 and substitute S by the appropriate covariance matrix. Equivalent, but
simpler forms of the test (15) can be derived for large N [17], say N > 100. The F-test can
in this case be expressed as

2
AG? = oE-ob < %— = Ao, (16)
s

where subscripts C and U refer to mean square errors for constrained and
unconstrained regression fits respectively. The mean square error is defined as

1 N

S S
N-M+K

(log T—1log Tﬁt)?
&

—

where 14t denotes the value obtained from e.g. (11).

The F-test assumes that the error e; on 1 is of order oy and that the number Ny of
independent measurements is N.



The test (15) or (16) is rather strict as emphasized in [5]. We believe (but cannot prove)
that e; > oy and that Ng << N. Reference [5] suggests NT < Ng < N, where N1 denotes
the number of different Tokamaks. The problem of choosing appropriate values for e;
and Ny remains presently unresolved and we proceed with the conservative estimates
that the errors on T are not systematic but random and characterized by oy; we also
assume that the number of independent measurements Nj is the number of data
values N. The implication for the ITER L and H-mode data for which oy = 0.096 and
0.124 respectively is that (A62max)1/2 = 8.0 10-3 and 9.0 10-3 respectively; therefore (15) is
indeed a strict condition.

6. Results for transport models

In Appendix 4 we present the constraint equations of the type (12) and (14) for 6
theoretical models of thermal transport. In this section we just discuss the results from
a wide range of computational exercises some of which are listed in Table IV. In the
range of exercises we have both included and omitted subsets of data characterized by
individual Tokamaks and H-mode data characterized by the presence of ELM's or Giant
ELM's etc. The first constraint, that of the High-p collisional Fokker Planck model of
Kadomtsev presented in the previous section, is common to the 1 scaling expressions
derived from the six theoretical models considered. The second constraint concerns the
scale length which characterises the turbulent diffusivity x and it is imposed by fixing
the p+ dependence xp in (3). A third constraint describes the dependence of ) upon
collisionality v+ and it is imposed via xy of (3). Further constraints, not considered
here, could impose an n; [21,22] dependence etc.

Let us first consider the difference between the total and the thermal energy
confinement times both defined by Eq. (7). From the algebra of Appendix 1 it can be
shown that

Ty = Cp Tgplvale™ 17)

where Cs is some constant. We insert (3) and (17) into (7) and impose the fundamental
constraint x; =1 0N T = Tthermal- This gives

inat = Ta[ F(Po Ver- )+ Cp ol vl (18)

The results shown in Table IV confirm that the fundamental constraint is very well
satisfied by both the L and the H-mode data for Tthermal. Table IV also confirms that the
same applies to the data on Tyotal just as Eq. (18) predicts.

We see however from Eq. (18) that to satisfy the additional constraints concerning the
scale length P+ and collisionality v+, we require an accurate estimate of Cg, i.e. the fast



ion energy. Cf, though formally treated as a constant, will depend on spatial plasma
profiles via the neutral beam heating efficiency parameter 1 [20] and such a dependency
has been excluded. The second constraint on the p, dependence can be written as (see

Appendix 4)
—22z,+142,+82,+92,+1025=G (19)

where for the short wavelength, long wavelength and resistive MHD scalings G
becomes 5, - 5 zp and - 5/ (1 + 3 zp + 2 z) respectively; typical ranges for G are
respectively 5, 3-4 and 1-2. Eq. (19) shows us that changes 6z to the exponents zy of
order only 0.03 - 0.06 are sufficient to change the p« scaling exponent x, from - 1 to 0 or
from 0 to 1. Such changes 6z can arise from i) lack of accuracy of Cg, ii) different data
selections, iii) omission of the least varied principal components. The sensitivity of the
constraint on p+ can also be seen from Eq. (A2.4) of Appendix 2. The typical values for
Xo are -1/5 (L-mode) or -1/4 (H-mode); the errors dxy on xy are thus 4 to 5 times those of
dzy. In addition the data collinearities shown in Figs. 1 and 2 permit a "trade-off" in the
fits between xp, xy and xg.

The sensitivity problem just described is brought out by the results in Tables IV and V.
For the L-mode data the additional long wavelength gyrokinetic constraint can be
marginally satisfied by the Tthermal data but only if the least principal component no. 8
is retained. On the other hand the resistive and ideal MHD constraints, both predicting
a ps1 scaling, are satisfied by the data on Tita). For the H-mode data the additional
short wavelength scaling constraint is marginally satisfied by both Tthermal and by Tiotal.
Hence the variation of Cy with the beam heating efficiency 1 is more pronounced for L
than for H-mode data.

In summary the ITER L and H-mode confinement data, as well as subsets thereof, is
well described by scaling expressions which embody the fundamental High- Fokker-
Planck constraint of Kadomtsev. The scaling expressions also embody constraints on
the turbulent diffusivity form whose characteristic scale length is somewhere between
the ion Larmor radius (short wavelength gyro-kinetic scaling) and minor radius (long
wavelength Bohm scaling). Further scalings of © with v+, B etc. remain speculative in
view of the strictness of the F-test employed in this work.

Dimensionally correct scaling expressions for the L and H-mode data can be obtained
from the values in Table V. Applying the constraints of various theories will yield a set
of scaling laws which, if expressed in the form (1), appear different [12]. Yet their
common root is the form (2) embodying the High-B Fokker Planck constraint. With
this constraint the L and H-mode scaling are very similar and differ only in the € and B
dependencies due to the shortcomings of the data as described in this paper:

10



T(L—modc) = 0.095 a2.02 n0.41 10.79 P—0.79 8_0'56 K0'73 A—O.OZ BO.29 (20(1)

In the two expressions (20a) and (20b) the units are:

©(s), a(m), n (10°m™), P(MW) and B (Tesla).

The ranges of uncertainty arising from extrapolations to ITER parameters can be
established by applying the scaling expressions (20) together with those that satisfy other
constraints (see Table IV). The result is

1.01s < TITER (L_mOdC) < 148s , 4235 < TITER (H—mOde) < 4.95s

There is little experimental evidence for the strong B scaling in (20b); this is a
consequence of the collinearity in the H-mode data as already explained. If the B scaling
is fixed, e.g. B0-15 or B0:3, as made in [7], a scaling expression slightly different from (20b)
arises. However, the Kadomtsev and short wavelength constraints are in this case still
satisfied.

11



7. Conclusions

The ITER L and H-mode data bases incorporate the most extensive range of Tokamak
confinement data assembled so far. A subset of the data, characterized by steady state L
and H-mode confinement not too strongly influenced by radiation and sawteeth, has
been selected. We have demonstrated that this data always satisfies the fundamental
High-p Fokker Planck constraint arising from the Connor-Taylor scale invariance
approach. In addition we have shown that the thermal confinement time follows a
scaling associated with a diffusivity characterized by a scale length somewhere between
the ion Larmor radius and the minor radius. The H-mode data is closer to the former
while the L-mode data is closer to the latter. We have explained how the uncertainty
in pinning down this characteristic scale length results from shortcomings in the data
and the inaccuracies in the fast ion energy determination. Additional dependencies of
the confinement time on parameters such as collisionality, plasma beta cannot
presently be determined accurately from the data. Although no particular theoretical
model can be singled out as a best description of the data, it would appear that some
models can be discarded (the scalings of resistive and ideal MHD).

The main result of our study establishes a firm physics foundation for confinement
scaling. Any scaling law can and should be cast in a form which embodies the
fundamental theoretical constraint imposed by the High-B collisional Fokker Planck
equation.
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Appendix 1: Variable sets

This and the three following Appendixes present details of the matrix algebra used to
implement the theoretical constraints such that an improved understanding of the
content of the Tables should be possible.

All variables used in a regression analysis are standardized to a zero mean value, i.e. for
each variable vy we make the transformation

N
logv, — logv, —logvk  with log vk =% Y log Vi (AL1)
j=1

In (A1.1) log denotes the natural logarithm and N denotes the number of data values.
The variances sy of the data on the variables v are defined as the square root of the
k th diagonal element in the empirical data correlation matrix S, i.e.

N

N
where §;; = 2’logv,j logvy (AL2)

1
Sk = \Skk =
(5 >
Table I also lists values of sk and it can be seen that the H-mode data has in general
larger values of sk than the L-mode data. The use of standardized variables means that

the constant C of Eq. (1) drops out as a fitting parameter.

We consider four sets of variables each with one dependent variable 1 referred to by
subscript o in formulas and M (= 8) independent variables. The first set referred to as
the engineering set, is written as a vector

Z' =log{t,a,n,1,P, ¢k, A, B} (AL3)
In the power law representation (Eq. 1) for 1 the associated exponents are denoted by

zx, k =1, M with z5 = - 1. In the paper we use however g, n, etc, as subscripts. The
superscript t shows that Z itself is a column vector [17].

The set of physics variables is derived from Egs. (8-10) as
X' =log {7, 75, ps, V4. B, €, K, A, q} (AL 4)
In the power law representation (Eq. 3) for t the associated exponents are denoted by x,

k =1, M now with x, # - 1, although like above, we use xp etc. in the main sections of
the paper. Linear regression cannot be made directly on X since the independent
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variables contain 1. The omission of T from Egs. (8-10) (denoted by tilde symbol) leads
to the regressor variables

Y' =log {7, T, pv, ¥, B, €, K, A, q} (ALS)
The corresponding exponents are denoted by yy with yp =- 1.

The principal component set is constructed from Y by forming certain linear
combinations [14]

M
D= A, 7Y, (AL6)
=1

The covariance matrix S of the variables ®k is now diagonal. The results of the
principal component analysis are summarized by the values Ak given in Tables II
and III for L and H-mode data respectively. We notice that the first fwo components
are the same for L and H-mode data. These components involve only the parameters
with tilde in (A1.5) and they account for 97-98% of the accumulated data variation.
Tables II and III also give for each principal component the variance si, the
accumulative proportion of variation pk in units (%), the experimental error ey, the
exponent ¢x and its uncertainty 8¢x from unconstrained fits, and two "distances"
labelled DiTER, DciT. All these quantities are defined as follows:

1 1 &
S = ska Skk = 'ﬁ 2¢k¢k
f=

o -1
e = Sk (ESM)

m=1
ek = Ad)k/sk

The experimental error A®x on a component is computed from the following errors in
(A1.3): a (2%), n (10%), 1 (2%), P (10%), € (2%), x (5%), A (0%) and B (2%). The
exponents ¢, and & ¢, are described in Appendix 2 and so too is the change 3o to the

r.m.s. error caused by omission of a component. The distances DyTgr and D¢yt are
defined as e.g.

Direr,x = ®+(ITER)/ s,
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since the data base mean < ¢y >=0. ITER and CIT parameters [1,2] have been used to
evaluate DyTgr and Dcit.

The normalised distances DjTgr and D¢yt measure the statistical uncertainties
associated with extrapolations from the data base average along each of the eight
principal directions. For the L-mode data components 7 and 8, proportional to a3/x4B2
and a2/R3x respectively, there is insufficient data variation to warrant extrapolations to
both ITER and CIT in the associated directions. For the H-mode data extrapolations to
CIT along component 8 proportional to 1/B should not be made.

From Table II we notice that the normalised error eg > 1 and component 8 should hence
be discarded in data analysis.

Appendix 2: Regression

The vectors Z, X, Y, @ of Appendix 1 are linearly related by

X=GY , X=HzZ , X=(AG")"® (a2.1)
The M + 1 by M + 1 matrices are easily derived from the exponents of a, n etc. in Egs.
(8-10). The matrix A contains the M by M values Ajk of (A1.6) plus a column and a row
of zeros with a 1 on the diagonal. This matrix is data dependent (see Tables II and III).

Since the variable vectors of (A2.1) are linearly related a regression fit on any of these
will yield equivalent results. A power law scaling is formally expressed by any of the
following identities

<xX>=0, <yY>=0, <zZ>=0, <¢&>=0 (A2.2)

The angular brackets refer to data set means and the vector of exponents y denotes

{Yo. Y1, ..... y8} and similarily for z and ¢; the regression eqs. correspond to respectively

setting yo=-1, Zo=-1, ¢o=- 1. Itis advantageous (see below) to carry out a regression
analysis on the principal components @ since their covariance matrix is diagonal; this
avoids matrix inversion. From the solution ¢ the other vectors of exponents can then
be calculated from

x=(G")"ATe , y=A'¢ , z=H'(G) A'p (A2.3)
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However to obtain the physics representation (Eq. 3) in which t appears on both the left
and right hand sides we require x, = - 1. The values found from (A2.3) must therefore

be normalised via

Yi

X = where  x,= —1+y =%y, +2y3 -y, (A2.4)

A regression analysis minimizes the root mean square error which we denote by ¢ in
this paper. Regression on @ leads to the following simple relations if we augment S1
with the elements Spx and Sy, given by

1
Sok N

N
> o, 0, , ®, =1log T
j=1

The r.m.s. error is then simply expressed as
&2
0 =S, + Y, (‘/’k Sk — 20 Sok)
k=1

We follow standard rules of statistics and multiply quoted values of 62 by N/(N-M+K)
where K is the number of constraints imposed. The unconstrained regression yields for

L= . : —~2 .
the solution ¢, for its variance §¢, and for the minimum r.m.s. error.

- S, - 2
— Lk , 6¢i = Gmm , 01211in= Soo_

= 20, S (A2.5)
£ S NSk k=1

iz

Any constraint imposed will change the solution ¢x and hence change ¢ to

o? = o2, + 66> where

N
80 = 3 Su(:-8) (A2.6)
k=1

Table II and III give the values of ¢, and 8 ¢, and in addition the change 8¢ = (802)1/2

caused by omission of each principal component in turn; since these are orthogonal

omission of one component leaves the remaining values ¢, unchanged.
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Appendix 3: Constraints

Let L denote the number of theoretical constraints that are simultaneously imposed on
the exponents of a power law expression such as Eq. (1). Appendix 4 presents the actual
constraint equations for six theoretical models while this Appendix gives a formula for
the change 302 to the r.m.s. error given by (A2.6). The constraint equations (13) for the
physics variables x can be recast by substituting (A2.3). When z is substituted for x we
get the relations of Appendix 4. If we substitute for ¢ we get

Cx=C(¢) A¢=Dg=0 (43.1)
or

M

Y Dy =0, £=12..K (A3.2)

k=0

in which ¢o =- 1.

The coefficients Dyk are data dependent and need to be computed. The change to the

unconstrained solution ¢y (A2.5) becomes

K
- D,
80 = 9x — O = X Ar L5 (43.3)
=1 kk
The Langrange multipliers A; satisfy the linear equations for £=1, ... K
K
U[ + Z Wli A.“ = Dlo (A34)

i=1

where

M
U= Dy, and z Dy Dy (2 Slck)
k=1

The change 862 to the r.m.s. error arising from the constraint equations (A3.2) is
obtained by inserting (A3.3 into (A2.6)

M K 2
s = Y 1 sy (2 A D,k) (A3.5)

£=1
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The F-test [17] examines if 802 < 62in /N per constraint. This can be satisfied if for a
principal component n involved in the test, Shn << Skk, k = 1, M, k # n. In that case the
weight coefficients Wjj and hence the Lagrange multipliers A are largely determined by
the component n. Thus to satisfy a constraint with 18¢n | >> 180K |, k # n, requires

1
862 = Spn 8¢2n < 62min N - To illustrate this point we consult Tables I and IV. We
notice that the long wavelength scaling constraint is satisfied by the L-mode data. This
is achieved via 8¢g = - 0.43 while 13¢x | < 0.005 for k # 8. Table I shows however that
component 8 can be omitted; without the principal component 8 the constraint can no

longer be satisfied. Thus artefacts in data can lead to false conclusions on statistical
grounds.

Appendix 4: Transport models

In this Appendix we list the constraint equations for six theoretical transport models in
terms of the x, y, z exponents. To make the interpretation easier we use subscripts

a,n, I etcfor z. (Notice that yo = - 1 in the equations and that f denotes some function
as expressed by Eq. (2)).

The High B collisional model:

Ttheory = TB f. This constraint expressed by Eq. (20) and first derived by Kadomtsev [15]
applies to all the theoretical models considered. The resulting scaling of © becomes

dimensionally correct [13] and can also be expressed as ;! p»2 where Q_ is the
cyclotron frequency. The constraint implies the following relations between the x, y, z
exponents

Xo+x1=0 , yo+2y-1/2y,+2y; -y, =0

4z, -8z, -8z, -z, -3z, - 525 =5

Gyro-Bohm scaling:

Ttheory = T8 P+ f. This scaling has been derived by Hagan and Freeman [23] and by
Connor [14]. The transport arises from turbulent fluctuations with frequencies

o << Qg and it is described by the ion gyro-kinetic equation of Freeman and Chen [24].
The scale lengths of the fluctuations are of order p;j and the confinement scaling has
been referred to as the short wavelength gyrokinetic transport scaling. The additional
constraint is
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X1+X2 =0 , y1+y2 =0

6z, - 222, -9z -122, -152p =0

Bohm scaling:

Ttheory = TB p+0 f. This scaling is similar to the one above but the fluctuation scale
lengths are of order a, hence it can be referred to as the long wavelength gyrokinetic
transport scaling with the additional constraint.
Xy = 0 y Yo = 0

22,14z, -8z, -142,-10z3 = 0
Resistive MHD:
Ttheory = B p+1 p1/2f. This scaling derived from MHD equations by Connor [14] and
Thomas [25] replaces v+ in the f function by v« p+2. Unlike the gyrokinetic models the
MHD scalings imply a positive exponent for the p+ term. This corresponds to

Xg + x2—2x3 =0 , Yo t+ ) T+ 1/2y2—y4 =0

4z, ~182,-62; -132, - 10z = 0
Ideal MHD:
Ttheory = T8 p*1 p1/2v+0f. The ideal MHD scaling is similar to the resistive MHD one
but it imposes one extra constraint since collisional effects are eliminated. This scaling
has been studied by Bickerton [6]. The first constraint is

-x =0, -y =0

22,-6z, + Tz; + 162, + 5z = 0

The absent scaling with v+ is expressed as
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Resistive fluid turbulence:

Ttheory = T8 P+ 1 172 v+1£. This model derived from fluid equations has basically the
same form as that of gyro-Bohm scaling but with a specific v» dependence. Thus

x+x=0, y3+y=0

Il
o

6Za - 222’1 -2 - 321 - ISZB
and the fixed scaling with v+ corresponds to
Xo=x3 =0 , yo +n-1/2y; + y3-5, =0

2, + 22,-2,-3z, =0

Variable L-mode Sk H-mode Sk
Minor radius (m) a 0.24-1.21 0.34 0.24-1.21 0.62
Density (1019 m-3) n 0.83-11.9 0.48 0.56 -12.5 0.28
Plasma current (MA) I 0.11-5.10 0.62 0.12-5.16 1.15
Total power (MW) P 0.33-23.1 0.84 0.37-18.3 0.88
Elongation K 1-19 0.18 1-20 0.30
Aspect ratio 3 0.21-0.37 0.18 0.17 - 0.37 0.22
Ion mass number A 1-2 0.33 1-2 0.18
Beam mass number Ap 1-2 1-2

Safety factor q 1.46-9.10 0.25 0.51-5.83 0.23
Toroidal field (T) B 0.64 - 5.15 0.37 0.77 - 3.71 0.29
Plasma energy (M]) w 0.004 - 5.23 1.22 0.013 - 10.2 2.21
Confinement time (s)| <t 0.005 - 0.95 0.86 0.015-1.43 1.36
Bohm time (ms) 1B 0.027 - 0.60 0.60 0.009 - 0.56 1.25
Larmor radius p* 0.005 - 0.27 0.44 0.005 - 0.09 0.87
Collisionality v 0.0014 - 0.3 0.91 0.0017 - 0.7 1.01
Beta poloidal B 0.08 - 2.3 0.35 0.09-2.3 0.53
Tablel. Ranges of basic parameters in the ITER L and H-mode data bases. The

variances sk (see Appendix 1) are larger for most of the H-mode data than for the

L-mode data.




L 18 pe Ve B 3 K A q

1 0.61 -0.35 0.51 -0.49 0.07 0.04 0.08 0.03
2 -0.25 0.19 0.85 0.42 0.06 0.02 -0.05 -0.07
3 -0.26 0.38 0.07 -0.38 0.15 0.34 0.68 0.25
4 0.33 -0.02 -0.04 0.46 0.11 -0.06 0.09 0.80
5 0.14 -0.29 -0.07 0.39 0.02 -0.27 0.71 -0.40
6 0.30 0.02 -0.10 0.31 0.26 0.80 -0.09 -0.28
7 0.49 0.77 -0.03 -0.01 0.11 —0.32 -0.03 -0.22
8 -0.20 -0.12 0.04 -0.03 0.94 0.22 -0.12 -0.03
L s M e ) 8¢ 60 (%) | Diter | Dcrr
1 5.64 91.5 0.15 0.372 0.001 79.09 292 1.39
2 0.30 4.95 048 -0.169 0.007 3.80 2.08 1.14
3 0.11 1.82 0.09 0.267 0.011 4.54 2.06 0.43
4 0.06 1.04 0.30 0.070 0.015 0.16 0.84 3.89
5 0.02 0.35 0.25 -0.355 0.025 1.35 4.81 1.51
6 0.015 0.24 0.32 -0.063 0.030 0.03* 517 0.58
7 0.001 0.02 0.70 0.122 0.096 0.004* 8.59 16.75
8 4104 0.007 1.15 -0.086 0.172 0.0* 19.3 12.5

TableII. The values of Ajx (see Eq. (A1.6)) for the principal components in L-mode

data are given in the top half of this Table. The lower half gives values for each
component of parameters defined in Appendixes 1, 2 and 3. The asterisks indicate that
omission of either component 6 or 7 or 8 satisfies the F-test.



H 1B p* Vs E € K A q

1 0.62 -0.37 0.52 -0.44 0.07 0.02 0.02 0.03
2 -0.25 0.26 0.82 0.40 -0.01 -0.03 -0.17 -0.01
3 0.36 0.08 -0.14 0.35 0.36 -0.21 -0.35 0.65
4 0.21 -0.28 0.0 0.58 -0.15 0.25 0.66 0.13
5 -0.16 0.38 0.10 -0.39 -0.05 -0.27 0.55 0.52
6 -0.03 0.09 0.0 -0.14 -0.48 0.68 -02.8 0.42
7 -0.28 -0.05 0.05 -0.12 0.77 0.53 0.14 0.06
8 0.51 0.74 -0.06 0.04 0.09 0.23 0.10 -0.33
H s m e ¢ 56 50 (%) | Drrer | Darr
1 20.1 97.8 0.08 0.335 0.001 139.1 2.29 1.46
2 0.31 1.5 0.45 -0.336 0.008 10.16 0.05 2.86
3 0.07 0.3 0.17 -0.404 0.017 4.17 1.12 2.53
4 0.03 0.1 0.36 0.440 0.027 2.16 2.95 2.28
5 0.017 0.08 0.20 0.571 0.035 2.13 4.28 0.21
6 0.010 0.05 0.50 0.805 0.046 2.48 1.55 0.24
7 0.003 0.02 0.51 -1.550 0.082 2.87 5.44 0.35
8 0.001 0.01 0.19 0.114 0.114 0.39 1.67 7.93

Table III The values of Ajx (see Eq. (A1.6)) for the principal components in H-mode

data are given in the top half of this Table. The lower half gives values for each
component of parameters defined in Appendixes 1, 2 and 3.



Data selected Tiotal (L) T (L) Tiotal (Lg) | Tiotal (H) T (H)
No. of data values 680 680 680 693 693

Unconstrained Gmin 8.85 9.60 9.60 11.65 12.42
Data selected do dc oo oo dc

High B collisional 0.02* 0.0* 0.0* 0.0* 0.01*
Short wavelength 1.98 0.65 2.36 0.28 0.24
Long wavelength 0.84 0.09* 0.65 0.40 1.57
Resistive MHD 0.02* 0.78 146 1.00 2.83
Ideal MHD 0.04* 1.83 191 3.49 3.03
Res. fl. turbulence 9.83 8.37 9.52 7.11 5.67

Table IV,  The changes in the root mean square errors 8o (in units %) caused by
imposing the constraints of six theoretical models. The top part gives the minimum
rmse obtained with an unconstrained fit to Tiotq] or T as shown. Lg means that
principal component 8 is omitted. The asterisks indicate those constraints satisfied by
the tests (15-16). The values for the exponents xr etc. of Eq. (3) which result from
imposing these constraints are given in Table V.

L-mode Xt Xp Xy X3 Xe Xy XA Xq

Unconstrained 1.13 0.71 042 | 230 ] -003 | 060 | -0.07 1.39
High-p coll. 1 0.56 042 | 228 | 0.14 059 | -0.08 1.40
Long 1 0 035 | 212 | 211 1.42 0.25 1.66
H-mode X1 Xo Xy X8 Xg X XA Xq

Unconstrained 068 | 221 | -008 | -1.38 | -746 | -1.58 1.13 2.39
High-B coll. 1 -1.77 | -0.12 | -1.33 | -749 | -1.53 1.16 2.19
Short 1 -1 -0.15 | -1.30 | -5.58 | -0.53 1.29 1.77

[able V, Values of the exponents xg etc. of Eq. (3) obtained when imposed
theoretical constraints are satisfied by the data.  Notice the difference in the v+
dependence between L and H-mode data.

25




2! 160
OFT2

32 40 1 2 3
Log o,

FIG. 1. Collinearity in the ITER L-mode data. The tilde
refers to the omission of T from f p, in Eqs.(8-9). Log
denotes the natural logerithm (data-base mean is zero).
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FIG. 2. Collinearily in the ITER H-mode date. The filde
refers lo the omission of 7 from f v, in Egs.(8-9). Log
denotes the natural logarithm (data-base mean is zero).
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