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MAGNETIC TURBULENCE SELF-SUSTAINMENT BY FINITE LARMOR RADIUS EFFECT

P.H.Rebut and M. Hugon

JET Joint Undertaking, Abingdon, Oxon, 0X14 3EA, United Kingdom

ABSTRACT

A mechanism is proposed for the self-sustainment of a magnetic
turbulence resulting from an equilibrium between islands and a chaotic
region in a collisiconless plasma. It is based on the different behaviour of
electrons and ions in the presence of the islands as a result of their
different Larmor radii. This effect leads to a difference in their drift
velocities and hence to a current which maiﬁtains the islands. The mechanlism
operates for island width smaller than or comparable to the ion Larmor
radius. The condition for the self-sustainment of the magnetic turbulence is

derived.

I. INTRODUCTION

The particle and energy transport in tokamaks is still not
understood. One possible cause for the observed 1losses is magnetlc
turbulence (Rechester and Rosenbluth, 1978; Kadomtsev and Pogutse, 1979). In
the presence of such a turbulence, the chaotic magnetic field lines provide
a radial link between different regions of the plasma. When the turbulence
is driven by a mechanism depending on the presence of the turbulence itself,
it is self-sustaining above some critical threshold. The self-consistency of
this type of turbulence has been recently studied in the case of non-linear
microtearing modes. In the collisional regime, these modes are unstable, but

they cannot significantly affect the confinement (Garbet et al., 1988)., In a

"collisionless plasma, they can be unstable, when the poloidal B is of the

order of unity; they tend to be stabilized by the electric potential
associated to the magnetic perturbation, when their non-linear scale is

larger than the ion Larmor radius {Garbet et al., 1990).




As shown in an earlier work (Rebut et al.,1987), the magnetic
turbulence could result from a mixture of small islands and a chaotic
region. This topology may be self-sustained by the difference of resistivity
between the chaotic region and the islands, when the electron temperature

gradient 1s larger than a minimum value.

In this paper, another mechanism is proposed for the
self-sustainment of this topology in a collisionless plasma. It is based on
the different response of electrons and ions to the islands as a result of
their different Larmor radii. This differential effect leads to a difference

in their drift velocities and hence to a current which sustains the islands.

II.MAGNETIC TOPOLOGY

The calculation is carried out in a slab geometry with the

following coordinate system:

-7 - : = -2 =g
X=r-r ; y =T [9 q R] T (1)
s b4
where r, 8 and z are the cylindrical coordinates. T is the radius of the
resonant surface, R is the plasma major radius and q; = q{rs) is the safety
factor at r = Ty The polcoidal wave number ky is given by ky = m/rs, where m

is the poloidal mode number.

As computed in Rebut and Brusati (1986), islands are embedded in a
chaotic zone, when the overlapping parameter ¥ is between 0.75 and 1.50. For
7> 1.50, the islands are destroyed and the region is fully chaotic. ¥ is the
ratio of the virtual island width 2¢ to the distance between two island
chains, 4 = 1.5q2/q’m6m, where q’ = dg/dr is the shear and 8m is the range
of poloidal mode numbers around m. Fig.1-a shows a part of a Poincaré map
computed by integrating the field line equations with ¥ = 1.05. The island
is defined by itsrpoloidal extension 200/1(y = Zn/ky and its radial width
2b0(®0) = 2e. It is assumed to be thin, that is ky bO(ED) « 1.

A first integral does not exist in the chaotic zone shown in
Fig.1-a. To calculate the effect of the finite ion Larmor radius on the

self-sustainment of the turbulence, the region outside the island is



modelled by nested surfaces as represented in Fig.1l-b. This defines an
approximate magnetic flux A;, which is only used to calculate the perturbed
electric potential imposed by the presence of the island. The magnetic flux
and field describing the island and the chaotic zone are function of @0. In
what follows, the dependence on @0 is not ShOﬁn explicitely. The magnetic
flux (or z-component of the vector potential) 42 is defined by:
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where B is the amplitude of the perturbing radial field and the shear factor
Ba is given by:

B

= : (3)
R q
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Bz being the toroldal field.

From symmetry, A(x,y) is an even function of y with a period 2n/ky

and satisfies the normalisation conditions:

2
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The last closed surface of the island is defined by ﬁz(x.y) 0. From this

condition and Egs. (4), Eq.(2) can be written as:

P
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Eq. {(5) corresponds to closed surfaces within the island for -2 = A = 0 and
to periodic surfaces for A > 0 as shown in Fig.1-b. The conditions imposed

L 3
on Az(x,y) assume that the following inequality is satisfied:

] R

<0 (6)
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The function A{x,vy) varies slightly with x inside the island and

exhibits a slow exponential decay with x olutside the island. For

-@/k =y =8/k, it can be written:
oy oy
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E a, cos(nkyy] = aly) . for -b(y) = x s bly)
Alx,y) n=0 (7)
o -nk_{ix]-b(y))
a e Y cos{nk y) , for x = -b(y) and x = b(y)
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where *b(y) are the radial coordinates of the island last closed surface

given by:

b(y) = b0 [aly)/2 (8)

The x-dependence of A(x,y) outside the island is neglected in Sects.II] and
IV, but is taken into account in calculating the jump in the derivative of

the vector potential across the region associated with the island in Sect.V.

II11.PERTURBED EIECTRIC POTENTIAL ASSOCIATED TO A MAGNETIC ISIAND

The ion distribution function depends on the electric potential ¢
The electron distribution function depends on ¢ and on the magnetic flux ﬂ
In zero larmer radius MHD, ¢ is a function of & and the islands are
equipotential. When the finite size of the ion Larmor radius is included,
the ions experience an average electric potential ¢i different from the
potential ¢ experienced by the electrons. The electric potential is then no
longer a function of A The difference between ¢e and ¢i creates a current

along the field lines, and this current sustains the island.

The dependence of the jon denslty on ¢i can be demonstrated as
follows. In the reference frame at rest with respect to the islands and in
steady state, the continuity equation for the ion gulding centres is :

- V@i x B

V-(niv"i + nivpi) =qQ with: Vpi = ____;;;__ {9)

where B is the total magnetic field, taken to be constant in magnitude. The
ions are assumed neot to be in thermodynamic equilibrium along the magnetic
field lines because of their mass inertia. Neglecting the average parallel

velocity v with respect to the drift velocity Vpi’ Eq. (9) can be written

Hi
as:



V- [ni(qui x B)l =0 (10)
In the limit of low B, Eq. (10) becomes:
(Vhi x V¢i)-B =0 (11)

Since n; and ¢i are independent of =z, Vhi x V%i is parallel to B. Therefore,
to satisfy Eq. (11), Vni must be parallel to Vbi and conseqguently n, is a
function of ¢i, that is:
n, = ni(¢i} (12)
Because their thermal wvelocity 1is much larger than the drift
velocity Vpe = (- Vbe x B} / Bz, the electrons are in thermodynamic
equilibrium in the electric potential ¢e along a magnetic field line. As
only the part of the electric potential, which is odd with respect to x,
contributes to the current sustaining the island (see Section 1IV), the
functien of A:, on which depends the electron density, is assumed to be odd
with respect to X. Such a function is given by the square root of A(x,y)
defined by Eqs. (5) and (7). A{x,y) is even with respect to x, being negative
inside the island and positive outside. The electron density is then assumed
to be independent of A inside the island, but to depend on the odd function
:JfE" outside, where the upper symbol refers to x = b(y) and the lower
symbol to x = -b(y).

For y > 0.73, quasi-neutrality is maintained in the chaotic region
by equating the electron to the ion flow. This defines the radial electric
field Eo in the reference frame rotating with the islands (Rebut et
al.,1986):

e 1 Te
+___] e (13)
X
e

K is the Boltzmann constant. né and Té are the average gradients of electron
density n and temperature Te' When taking into account the magnetic island
structure explicitly, quasi-neutrality leads to the determination of the

perturbed electric potential ¢.

The islands are assumed to be thin and the ion Larmor radius Py is
assumed to be of the order of the island half-width bo' but much smaller

than 1/ky. Under these conditions, the potential ¢i experienced by the ions




can be expressed as:

¢, = - Ex + $ (x,y) i $,xy) =b E Ii: Glx~x') p(x’,y) dax'  (14)
$i is the average electric potential felt by the ions having a finite and
constant Larmor radius Py at thermal equilibrium in the perturbed potential
¢. The integral containing G{x-x') is the finite ion Larmor radius operator:
it is derived in the Appendix by averaging the Fourier components of the
perturbed electric field over a gyroperiod and the phase of the motiocn of a
single ion and over a maxwellian distribution of velocities. G(x-x") lIs

defined by Eq. (A.5) and ¢(x,y) is dimensionless.

As the electron Larmor radius is much smaller than bo' the

electric potential ¢e felt by the electrons is given by:

¢e = - on *+ b E0 plx,y) (15)

The perturbed electric potential ¢(x,y) is now determined from the

requirement of quasi-neutrality inside and outside the island.

I11.1.Sclution inside the island: -b(y) = x = b(y)

The electron temperature is assumed to be constant and equal to
Teo inside the island. The electron density is a function of ¢e only and is
given by:

-({q ¢ /KT_)
n = ne(¢ )=n e °° *° (16)

By expanding n, and n, as functions of ¢i and ¢e in the vicinity

of 0, the quasi-neutrality condition can be written:

dni dne
qini(O) + qene(O) +q, 332[0) ¢i +q, aa;(o} ¢e +....=0 (17)

The sum of the first two terms is the quasi-neutrality at the zeroth order
and is equal to zero. From Egs. (12} and (14) and bearing in mind that n, is
mainly a function of x, it can be shown that, whatever ¢i' the derivative of
n, with respect to ¢i is given by:

dni

__ i
rﬂ‘?’i" E]

’

e

(18)



Replacing the derivatives of n with respect to ¢ obtained from Egs. (16) and

{18) into Eq. (17), using the equalities q, = 9 and n,=n and dropping

i
the subscript inn _and T , we obtain:
0 eo e0

N %5
n, %1 kT, %e T ° (19)

o

The combination of Eq. (19} with Egs. (13-15) leads to:

-~

T/ n
1 e £
~ 2 Te x ng +e0 .
Puy) = o2 v o [ Glex’) B0, y) ax (20)
e,1l e0o e,1 e’
n 2T n 2T
e e e e

II11.2.S0lution outside the island: x = -b(y) and x z b(y)

In this region, the electron density is a function of ¢_ and

/A . It is given by:
-lq ¢ /KT (£ /B ’
n, =n(¢_,t/E) =n(+t/F) e ee € (21)

with: n (0) = n__ and T (0) = T
e eo e eo
+ i :
order in ¢e and = /A yields:

The expansion of Eq.(21) at the first

9efe 9Ny
n (4,t/F) =n_ - n_ goC + (0) [: e ] (22)
€0 d /ﬂ

By following the ©procedure wused inside the island, the

quasi-neutrality condition leads to an expression similiar to Eg. (19}, but
containing the additional term depending on * /A4, that is:

né quo E :
e LB gy (i) e )
e e

du
Eq. (23) can be transformed with the help of Egs. (13-15) to an equation feor
.6(x.y}. The derivative of ne with respect to /A at zero is determined by
taking the limit of this equation for small Larmor radii (G{x—x’) = 8(x-x’);

see Appendix) and for x infinite (p = 0 and /& = /2 x/bo}. The expression

obtained for dne(O)/d./A is replaced in the equation verified by @(x,y),
which becomes:




1 e né
~ 2 T; X E; e s
pix,y) = =7 T 5 1 * T I Glx-x') o(x',y) dx’
e, 1 e e,l e’
n 2T n 2T
e e e e

(24)

111.3.Computation of the complete solution

As the main Fourier component of i(x,y) in x has a wave number

k= 1/bo, the finite ion Larmor radius cperator can be approximated by:

+60

. —=rP1\?] . .
j Glx=x") $(x',y) dx’ = Jz[[b—l sk y) = 2 9lx,y) (25)

-0

=]
Smcssset’
7
ONl

where the function Ji is defined by Eq. (A.3). This approximation is used in
both Eqgs. (20) and (24) and ¢(x,y) can be written as:

TI

p(x,y) =

(26)

with: P = { 0 for -bly} = x = b(y)
1 for x = -b(y) and x = bly)

As shown by Eg.(26), the perturbed electric potential p{x,y) is an odd
function of x and is independent of y inside the island.

The system of Egs.{(20) and (24) has been solved by numerical

iteration. The convergence towards a stable solution for ¢(x,y) occurs after
less than 10 iterations with a relative error smaller than 1072, The result

of such a computation is plotted against x/b0 in Fig.2 for the case y = 0,

py/b, = 1, n‘/n =1 m' and T'/T =2 m '. The vertical slope of §{x,0)
0 e e e e

just outside the island comes from the fact that the derivative of the term

in brackets in Eq.(24) is infinite for x =

ibo. The analytic expression of
¢{x,y) given by Eq. (26) agrees with the computed result to within 10%, when
p.l/bo > 1.



The islands behave as a foreign body in the plasma. Their magnetic

surfaces are equipotential for Jz = 1 in the limit of very small Larmor

radius from Eqs. (14), (15) and (26) as expected for zero Larmor radius MHD.

For Ji =0 {limit of large jon larmor radius compared to bo), inside the
island, the electrons only experience the part of the electric field E0
{Eq. {13)) due to the electron density gradient, whereas the ions experience

Eo as in the chaotic region.

IV.CURRENT DENSITY SUSTAINING THE ISLAND DUE TO FINITE ION 1.ARMOR RADIUS
EFFECT

In steady state, the current density conservation requires:

V- (Je +n

N } =0 (27)

.g.Vvo. + n v
1q1 D1 eqe De

JH is the electron current density along the field lines, being the sum of
the constant plasma current density and the perturbed current density,

BJ"(x,y), sustaining the island. e, is the unit vector parallel to B and is

divergence free, vni and vbe are the ion and electron drift velccities

respectively.

The x- and y-components of the magnetic field B are calculated

»*
from the curl of Az(x,y) e, (Eg. (2)). The leading term of V'(J"e") is:

Béx
V'(Jueﬂ) = - B Vy&J"(X,y) (28)

and consequently other terms in V- (J } are neglected. In the case of thin

e
[t ~
islands (ky b « 13, B;x is larger than the derivatives of B Alx,y) / ky

with respect to x and y in absclute value.

From the definition of Vpi (Eq. (2)} and in the 1limit of low B,

V:in.q.v is a function of ¢i. Under the same conditions

i"i'pi i
and taking account of quasi-neutrality n, =n., it follows that:

) is zero, since n

q

=-_23.
V-(neqevne) = - B [Vhixv¢e} (29)

The main component of the magnetic field B is in the =z-directien. Vni is
equal to dni/dqbi Vbi, where dni/dgbi is defined by Eq.{18). Using the




definitions of the poteniials given by Egs. (14-15), it can be shown that the
leading term of V'(neqevne) depends on Vyw(x.y).

After combination with Eq. (28) and the expressions for V- (n1 i Dl}

and V'(neqevne), Eq. (27) becomes:

quo bo ~ e ~
VyaJ“{x,y) = - Bé n, — Vy plx,y) - Ihw Glx—x") {x',y) ax (30)

The solution for 6J (x y) is equal to the integral of the right-hand side of
Eq. {30) w1th respect to y plus a functlon of A This functlon is taken to
be C (d } inside the island and C (d ) dlfferent from C (d ) outside. Both
functlons are defined by other phenomena such as collisions for example: the
resistivity is assumed to the same inside and outside the island. Then,
Cl(AZ) and C2(£:) are determined from the condition that the perturbed
current is zero on each magnetic surface Inside the island and is zero on
average in the chaotic region taking account of all island chains. Because
of the diffusion of the chaotic field lines, CZ(AZ) is chosen to be a
constant Cz' C2 has a sign opposite to the integral of the right-hand side
of Eq. (30).

The self-sustainment condition is independent of the addition of
any constant current density everywhere in the plasma (see Section V).
6J"(X,y) is taken to be equal to the above solution minus the constant C?
Using the data of ¢(x,0) shown in Fig.2, GJH has been computed and
normalised values are plotted as a function of x/bo in Fig.3. It is an even

function of x.

By neglecting the variations of 6J“(x,y) as a function of x and y
inside the island and by using the approximation for the finite lon Larmor
radius operator (Eq.(25)) and the definition of ¢{x,y) {(Eg.(26)), 5J“(X,y)

can be written as:

10
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aJ(x)--qu°'1Te [1 J°]
ey = B e T W — T’
o e e 2 1 "e
S -3+ 5=
n [ [+] ] 2T
e €
1 for x < -b(y) and x = b(y)
(31)
nC(@o)-n+2
— for -b(y) = x = b(y)
with:

8 aly)
4]
T - 2b_ Io f d(k y)

The perturbed current density sustaining the island, BJ"(x,y),

results from the difference between the electric potentials experienced by
the electrons and the ions,

V.MAGNETIC CHAQS SELF-SUSTATINMENT

Ampére's law for thin islands (ky bD « 1) can be written as:

K‘I e

- VeAGK,Y) = - i, 83, (x,¥) (33)

Integration of Eq.(33) over x across the region associated with the island
yields:

?‘:‘[ o

+X
_ o

VXA(xo,y} VXA{—xo,y) = - K I‘x aJu{x,y) dx (34)
0

y

The boundary X, is infinite here,. since 6J“(x,y) is zero at

infinity. In the case where pi/bo > 1, the perturbed current is defined by
Egs. (31-32) and its integral is calculated to be:

11
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2 7 ™ C(8) bly)  (35)
e e 2 1

n—( Jo]+§T"
By taking into account the x-dependence of A(x y) outside the

island only in the calculation of its derivative (see Eq. (7))}

. , the matching
between the internal and external sclutions for A(x,y) is expressed as

o
VXA(xo,yl - VXA(-X ,¥Y) = (—any] a, cos(nkyy) (36)
n=0
Combination of Eqgs. {34-36) leads to
2
® i nqkE T n’ {1 -J ] n C(8 )
} najcostky) =-2-5202 .82 O o bly) (37)
& B 2T n n — T 2
n=0 B 0 e e e [ 2 ] 1e .
R I
n 0 2T
e e

for —@D/ky =y = C%/ky.

Eg. (37) is solved by computing the Fourier components a, and using
the normalisation condition obtained from Egs. (4) and (7} (Rebut and Hugon,
1985):

z a (1 - cos(n@o))

=2 (38)
n=1
Eq. (37) is then equivalent to
ngE , T n 1 -J° 5
_ eqe o] l e’ e (4] - B (39)
b 7B 3T n o s T2~ b C(8_) D(O)
o e e e 2 1 "e o 0 0
L £ Rl
n { o ] 2T
e e
with:
1 & 1 - cos(n@o) @0 aly)
D(@0)=§ -————"—'—‘—“—n 5
n=1 0

40
cos(nkyy) d{kyy) (40)

C(® ) defined by Eq. (32) and D(@d) are computed by iterations starting from

12



a trial function. Usually, the calculation requires less than 10 iterations

to converge for an accuracy of 10"2. The plot of D[@o) against @0 is
presented in Fig. 4.

ﬁ and bo are determined from Poincaré map computations (see

Fig.l1-a). The relationships between these parameters and those relevant to

the Poincaré map calculation, BHAP(@O) and bnAp(Eo]‘ are:

B )= B ; b (@J=E (41)
MAP O B,kAZ MAP O A
o'y
ﬁukpteo) is always negative because of inequality (6).
With Egs. {13) and (41), Eq.(39) is transformed into:
e 1 (.
n KT T n’ |n 2T o
c el e e_c¢ e L - Fe) (42)
bo ™ 22T n 1o = T KA 0
B) e e ef, 2} ,1e Yy
n 0 2T
e e
with:
-B,,.(0)
F(@o) S GBI CREWRCE) (43)
0 0° "MAP 0O

In the limit of very large Larmor radii, J° is zero and the

left-hand side of Eq.{(42) is maximum. This equation becomes:

B 5T n k& € (44)
B0 e e’y

The left-hand side of Eq.(42) is proportional to the poloidal B

and is independent of the sign of the shear q'. It is zero when: 1)-the

electron temperature gradient Té and consequently the perturbed electric
potential ¢(x,y) are zero; 2)-the electron density gradient né is zero;

. 3)-the radial eleciric field Eo is zero (this occurs for islands separated

by nested magnetic surfaces (¥ < 0.75) or for né/ne = - (1/2) Té/Te}; or

4)—J§ is equal to 1 as is the case for ion Larmor radii much smaller than
the island size.

13



The procedure to determine F(@o) is the following. A Polncaré map
is first calculated for a given value of the overlapping parameter y. The
poloidal extension 2@0 of the island is measured on the map. The
corresponding function a(y) (Egq.(7)) is obtained by computing the Fourier
components a_ with the iterative code. This function together with Eq. (2)
define the magnetic field, which is used to compute other Polncaré maps.
?HAP(EO) is determined by adjusting the amplitude of the perturbed field
§HAP to obtain the same value of 90 as on the first map. The island
half-width bHMJEB) is then measured. The results of computation of these
parameters f?f different values of 90 are reported in Table I with C(@O).
D(@o) and 7. ﬁuAP[GQ) increases with ¥ until it reaches a constant amplitude
for ¥ > 0.75. bHAP(eo) passes through a maximum at y = 1.0 before decreasing
at large values of y as a result of the destruction of the island by

chaoticity.

Table I shows that F(@o) increases as 60 decreagesg, that is as the
island is destroyed. Its minimum value compatible with the existence of
small magnetic islands embedded in a chaotic region is close to 0.20,
corresponding to y = 0,75, when the last nested surface between the island
chains is destroyed. The islands are self-sustained, when the left-hand side
of Eq.{42) is larger than 0.20.

VI.CONCLUSION

The magnetic turbulence, which may be responsible for the observed
transport in tokamaks, could be an equilibrium between islands and a chaotic
zone. A possible mechanism maintaining this turbulence has beéeen proposed in
this study. The current sustaining the islands depends on the cross product
of the density gradient and the electric field. It is produced by the
difference between the electric potentials experienced by the electrons and
the ions as a result of their different Larmor radil. The island width is of

the order of the ion Larmor radius.

The condition for magnetic turbulence self-sustainment is that the
left-hand side of Eq. (42) be larger than 0.20. The left-hand side of Eq. (42)
is proportional to the poleidal B and to the gradients of electron

temperature and density.
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APPENDIX; FINITE LARMOR RADIUS EFFECT ON THE ELECTRIC POTENTIAL EXPFRIENCED
BY THE IONS

The purpose of this Appendix is to calculate the average potential
experienced by ions with a finite and constant Larmor radius at thermal

equilibrium in an electric potential perturbation.

Let us consider an ion moving in a constant magnetic field
B =Be_ and an electric field E = Ex) e . Generally, the electric field E
can be expressed as:
+m N

J E, (k) S (A. 1)

-0

Elx') =

Sl
- |

k stands for the wave number k . By expanding e1kx in terms of Bessel

functions, it can be shown that the kth harmonic of the electric field E(x’)
averaged over a gyroperiod and the initial phase « of the ion motion is:
kv
o, ikx’ s ikx 2 1
<<Ek(k) e >0 = Ek(k) e J0[5;~] (A.2)
Jo(z) is the zeroth order Bessel function of the first kind. VL is the ion

velocity perpendicular to B and W, = 4 B/ m, its gyrofrequency.

For ions at thermal equilibrium at the temperature T, Eq.(A.2) is
averaged over a maxwellian distribution of velocities v, leading to the
average electric field, ﬁh(x). felt by the ions in the electric field of

Fourier component k, E(x) = ﬁk(k) eikx:
£ (x) = (k%) Ex) = KPS k%% E(x) (A.3)
L 0 i 0 i :

where Py = /KT/m1 / w, is the ion Larmor radius and Io(z) is one of the

modified Bessel functions of zeroth order. Ji(kzpi) is equal to 1 for very
small Larmor radii (pi « 1/k) and tends toward zero for very large pi
(pi » 1/k).

Taking into account all harmonics of E(x’], the average electric

field EL(x] can be written as:
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+m
E (x) = j Glx-x") E(x') ax’ (A, 4)

This equation defines the finite ion Larmor radius operator, where G(x—x")

2
_(x~x ]
i e 4pi

(2m)*?

is equal to:

sy 2
Gix-x') = Ko["'x ] (A.5)

4pi

The function G{x-x') is normalized to 1. It is plotted against x’ for x = 0
and py = 1 in Fig.5. Kb(z} is the other modified Bessel function of zeroth
order behaving as -1n(z/2), when z approaches 0. Eq. (A.5) shows that the
limits of G(x-x') are a delta function &(x-x’) for Py tending toward zero
and zero for Py infinite. The function G(x-x') is even with respect to x-x’

and the finite ion Larmor radius operator conserves the parity.

Assuming that EL(x) and E(x) are derived from the electric
potentials $L(x] and @(x) respectively, Eq.(A.4) becomes after integration
by parts:

. +o
Vg 00 = - [ 0.GHex) $6¢) ax (.6)
-0

When the ion temperature is constant, the derivatives of G{x-x')
with respect to x and x' are equal and opposite. Integration of Eq. (A.6)
over x yields the average electric potential aL{x):

+o

B0 = J Glx-x') $(x') dx’ (A7)
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Table 1

Numerical results for the perturbed magnetic field ﬁmw(ao) and the island
half-width bHAP(@O) obtained from the Poincaré map computation as a function
of @0 and of the overlapping parameter y. Also shown are the values computed
for C(@O) (Eq. (32)), D(Cg) (Eq. (40)) and F(E%) (Eq. (43) ).

¥ e, §,,8) | b (8) | cle) | D) | Fg)
0.4 0.91n 0.010 0.20 0.50 0.65 0.16
c.7 0.70m 0.030 0.37 0.61 0.67 0.20
1.0 0.44n 0.030 0. 40 0.50 0.50 0.30
1.2 0.32n 0.025 0.33 0.44 0.38 0.46
1.4 0.13n 0.030 0.24 0.38 0.16 2.04

Fig.1:

showing magnetic islands in equilibrium in a chaotic reglon;

is the distance between two island chains.

by nested magnetic surfaces to define an approximate magnetic flux outside

the island.
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{a) Polincaré map computed for an overlapping parameter y =
the island is
defined by its poloidal extension 2@0/1(y = 21:/1(y and its radial width 2bo; A
{b) The chaotic zone is modelled
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Fig.2: Computed values for the perturbed electric potential 6(X,D).
igland lies between x = -b0 and x = bo' The ion Larmeor radius pi to igland

half-width b_ratio is 1. n’/n_ =1 m ® and T'/T =2 m ..
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Fig.3: Current density, SJH(X,O), sustaining the island versus X/bo'

SJ”(X,O) is computed using the data of ¢(x,0) shown in Fig.2 and is

normalised to ~quoné/B6.
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Fig.5: Variation of G(x-x')} given by Eq. (A.5) with %' for x = 0 and Py = 1;
this function enters into the definition of the finite ion Larmor radius

operator.
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