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ABSTRACT

A new charged particle orbit following code HECTOR is
described. The code simulates the behaviour of thermal particles,
and high energy particles, such as those resulting from the ICRF
wave field interactions or from thermonuclear reactions within the
confining magnetic fields of non-circular axisymmetric tokamak
plasmas. The particle trajectories are traced in the (C.O.M.) space
using a new, fast, and efficient hybrid orbit following scheme based
upon the drift equations in the guiding centre approximation and
the constants of motion. The Monte-Carlo technique is used to
describe the Coulomb scattering processes of dynamical friction,
pitch angle scattering, energy diffusion, and ICRF interaction
processes. The code is specifically designed to operate within the
experimental environment.

L INTRODUCTION

The operation of large tokamaks (JET, TFTR) with substantial levels of
additional heating or close to ignition conditions leads to the occurrence of
supra-thermal ion tails and of significant concentrations of fusion products
within the plasma volume. These charged particles have energies in the MeV
range, have 19ng slowing down times which are typically 1 sec in systems close to
ignition, have large Larmor radii and, especially for particles trapped in the

toroidal field gradients, make large radial excursions across the minor cross-

¥ Lappeenranta University of Technology, Finland and National Research Council for Technology,
The Academy of Finland



section of the torus.. Large banana width particles will lead to a significant
broadening of the heating profile, and in addition can be produced on orbits that
intersect the vessel wall or enter the "loss cone” through particle-wave
interactions or Coulomb scattering on the background plasma, leading to
increased impurity production and wall loading. Furthermore, these escaping
fast ions can provide important information on the auxiliary heating efficiency
and thermonuclear activity within the discharge. A detailed knowledge of the
orbit trajectories is essential to the theoretical and experimental understanding of
tokamak systems close to ignition. The common use of small banana width
approximations in these situations is highly questionable and may lead to
serious erroneous results. An accurate description of the charged particle
behaviour is therefore of primary importance for reactor feasibility studies and
for diagnostic purposes.

A number of Monte Carlo codes or codes using the constant of motion
(C.O.M.) method have been developed either to classify the orbit topology or to
follow the guiding centre of charged particles moving in the magnetic field of a
tokamak or similar plasma containment devices [1-16]. Many of the codes have
only a limited number of applications, particularly those which relate to present
day experiments. The most severe problem, however, is that the timescale to
find the heating and diffusion rates is so long that the numerical uncertainties
often dominate any perceived physics, or the demand for the computational
resources is so large that such codes are far too expensive for routine use in the
predictive or experimental environment. It is clear that there is a pressing need
for a fast céde which can be used to address a number of important charged
particle problems.

In this work we describe a procedure for tracing charged particle orbits in
non-circular tokamak containment systems. The code was originally designed to
study the behaviour of fast ions residing in the tail of ICRF distributions or

resulting from fusion reactions within the discharge. However, many
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applications require an accurate description of the thermal particle behaviour,
consequently, a treatment of low energy particles is also included in the code.
The consideration is restricted to systems exhibiting toroidal axisymmetry and
includes the Coulomb scattering processes of dynamical friction, pitch angle
scattering, and energy diffusion due to collisions with the background electrons
and ions, and the resonant ion interaction with ICRF wave fields. A hybrid
integration scheme based upon the drift equations in the guiding centre
approximation and the (C.O.M.) method is used to follow the test particles. In
this numerical technique, the problem of error accumulation is avoided, the
invariance of the toroidal canonical momentum enables arbitrarily large
integration steps to be used, and particle trajectories obtained in this way remain
close to the actual orbit throughout the integration.

The structure of this work is as follows. In Section II, the methods for the
investigation of charged particle behaviour in the confining magnetic field of a
tokamak plasma are reviewed and their areas of application discussed. In
Section III, the Monte Carlo operators, describing the Coulomb collision and
ICRF-wave interaction processes of ions moving .in the confining field of a
tokamak, are presented. Then in Section IV the procedure for mapping the
charged particle source distribution from the local phase-space coordinates to the
(C.O.M.) system is described. In Section V, the code input data specification and
modes of operation are detailed, and finally in Section VI the test results are

presented.

II. METHODS FOR THE INVESTIGATION OF CHARGED
PARTICLE TRAJECTORIES
In this section we first review current methods and areas of application for
tracking charged particles in tokamak containment systems. Then a new method
based upon the drift equations in the guiding centre approximation and the

constants of motion is described. The coordinate system used is shown in Fig. 1.
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(i) Full Orbit Calculation
The full equation of motion for charged particles is:
mv = q(E" +Vx E)
where m is the particle mass, v is the particle velocity, q is the particle charge,
and E,B are the electric and magnetic field strengths, respectively. This equation
is solved in HECTOR with a 2-step predictor-corrector method.

The advantage of using the exact equation is its accuracy in describing the
orbits. However, calculations of this type besides having error accumulation are
time consuming and not well suited to simulation studies where a large number
of particle trajectories are to be examined. Consequently, the full orbit
representation is limited to situations where detailed information on the actual

particle trajectory is required, such as orbits for heavy ions with low charge state.

(ii) Guiding Centre Approximation
From the collisionless drift equations the velocity components of the
guiding centre are readily obtained, we have:

v = V"E - Vug X V(ﬂ)

g.c.
ci

where the component of the guiding centre velocity projected along the

magnetic field line is vy = £ [2(E - uB/m)]1/2, b = B/IB | is the unit vector in the

: 1
direction of the magnetic field, @i = qB/m is the ion cyclotron frequency, E = 5

. . 1 . .
mv? is the particle energy, p = 7 mv 12/B is the magnetic momentum, and v,v}

are the magnitude and perpendicular components of the particle velocity,
respectively. The numerical integration is done using the modified Euler second
order predictor-corrector method [17].

Whatever numerical integration method is used for the guiding centre

equation, there are two severe problems. The first is the accumulative



" numerical error which limits the integration step length to 10-20 times the step
length used with full orbit calculations. In order to be able to simulate thousands
of slowing down orbits, a greatly enhanced numerical acceleration (>10%) of the
slowing down processes must be introduced leading to a distorted orbit topology.
The effect of the accumulative numerical error on a typical orbit is shown in Fig.
2. It is to be noted that the error in flux coordinate appears to grow almost
linearly with integrated orbit trajectory. The second problem is the turning
peint, where vy changes sign. In order to implement the long integration step
procedure the actual coordinates of the orbit turning point coordinates, where (vy
= 0), can require a considerable investment in interpolation, and consequently, a
significant fraction of the computational time. In the following section, a

method of orbit integration is described which surmounts these difficulties.

(iii) Drift Equation and Constants of Motion Approximation (C.0.M.) Hybrid-

Method

In the absence of interacting processes three constants of motion, the
particle velocity v, magnetic momentum pu and toroidal canonical angular
momentum Py completely characterise the guiding centre motion of charged
particles moving within the confining magnetic fields of a axisymmetric
tokamak. In systems having arbitrary cross section [18]

Fy =mR vyBy /B —-qy
where B2 = Bg2 + By2 + Bz2, and vy is the poloidal flux function.

If a simple formula for y is used, the spatial coordinates of the charged
particle can éasily be solved. This, however, represents only a small minority of
cases relevant to present day tokamaks. In the general situation y is obtained
either as a numerical solution of the Grad-Shafranov equation for plasma
equilibria, or as a fit to the experimental magnetic measurements. Thus, an
alternative method to find the spatial coordinates has to be used. This is usually

done by writing the set of (Py,i,v) invariants as a function of R and v, and by
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assuming B = By [16]. The (R,Z)-coordinates can then be obtained by a 1-
dimensional interpolation of y. The resulting error in orbit topology when
compared with the case where the poloidal magnetic finite component Bg is
included is small if the plasma current is low [19], but will become significant for
current values used in the present large tokamaks currently operating
(JET,TFTR) or in future igniting tokamaks.

To include Bg the interpolation has to be done in 2-dimensional (R,y)
space. This is done in HECTOR with a hybrid integration technique which
combines the drift equations and the (C.O.M.) method. First, a long single
guiding centre step is taken to give predicted spatial coordinates. The coordinates
are then corrected by linear interpolation to find the actual coordinates that
satisfy Py = constant. The drift equation gives the optimum predicted spatial
coordinates, and consequently, increases the overall efficiency of the integration
procedure. The sign of vy is automatically included in the integration, numerical
error accumulation, and the problem of locating the spatial coordinates of the
turning points are avoided. With this method the integration step length can be
up to two orders of magnitude longer than the step length used to solve the drift
equations using standard corrector-predictor methods. This enables the slowing
down enhancement factor to be significantly reduced and, thus, the orbit
degradation that occurs in other integration schemes is avoided. An example of

a first orbit using long integration steps is shown in Fig. 3.

IIL. SLOWING DOWN AND ICRF-INTERACTION

PROCEDURE

The inclusion of the effects of Coulomb scattering and ICRF-interaction on
the particle trajectories is straightforward and conceptually simple. Collisions are
taken into account by calculating new values of particle velocity, the magnetic
momentum, and the toroidal canonical angular momentum after each time

step. We have



v—VvV+AV

H— i+ AL
Py — Py + APy,
where
m
Ap = E(ZvAv +Av? — 2vjAv — Av% ),
and

APy =mR B¢Av|§/B,
are the incremental changes in magnetic moment (Ap), and toroidal canonical
momentum (APg) due to the accumulative effects of dynamical friction, pitch
angle scattering, energy diffusion, and rf-wave interaction occurring during the
time step. Av, and Avy are the incremental changes in particle velocity and it's
parallel component, respectively.The above set of equations have the important

feature of energy conservation.

(i) Friction
Following the analytical treatment of the Fokker-Planck equation by Stix,
one can write the change in particle velocity occurring during a time interval At

[20].

av=-3|c; -2 c(¢ At}
;[ 2 ()
where
Cp =8mn,ZZ%* nA [m?
o =my f(ary)

G(x) - ¢(x) _-’;ﬁa'(x)

2x

2 Ty
$0) =~ [e dy
o



and the subscript f designates the background field particles, ions and electrons.
The change in the parallel velocity due to this change in velocity Av is then
given by

Avy = EAv,
where & is the pitch, the cosine of the pitch angle. Fig. 4 shows the effect of

friction on a 1 MeV triton slowing down orbit.

(i)  Pitch Angle Scattering
Boozer and Kuo-Petravic have derived a simple Monte-Carlo equivalent
Lorentz collision operator based on a binomial distribution [22]. The change in
the parallel velocity during At is
Avy=vA¢,

where
1/2
AE=vArg+8[(1- Ehr]
81 is + 1 with equal probabilities and the collision frequency v given by Spitzer
[21],is

v:ai.g;cf[qa(zfv)_a(efv)].

Fig. 5 demonstrates the combined effects of pitch angle scattering and friction on

a 1 MeV ftriton slowing down orbit.

(iii) Energy Scattering
Boozer and Kuo-Petravic have also given an energy scattering equivalent

of the Lorentz scattering operator [22]. The change in particle energy during At is

3 E dVE 1/2
AE = —ZVEA'{:E - (5 + ;’;*E"E—" ]+ 52[4TE(VEAI)] ,

where &, is = 1 with equal probabilities, and T is the background Maxwellian

temperature. The energy scattering frequency is [21]
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vp = %;[cfc;(f Nt JFv)z}

The change in particle velocity is then

1/2
Av=[v2 +£AE] -V,
m

and the corresponding change in the parallel velocity is
AV[[ = éAV.
Fig. 6 shows a 1 MeV triton slowing down orbit where in addition to friction and

pitch angle scattering, energy diffusion is also included.

(iv) ICRF Interaction

Each time the ion passes through the ion cyclotron resonance layer and
undergoes resonant interaction with the wave field there is a random change in
the perpendicular component of the particle velocity. This incremental charge
in velocity can be readily obtained by integrating the equations of motion over

the unperturbed particle trajectories [20] and is given by:

1/2 '
q 2r .1z72 kJ_V_L E_ kJ_VJ_
Avy =—| — E. e Z)cosa} J,_ +— >
i m(IQIJ i +l §(Z) [ n 1[ 0 E, n+l 0y

where E is the electric field strength with + and - designating the polarized left-

and right-handed components, respectively. L is the electric field profile
parameter, Z is the distance from the median plane in the vertical direction, and
o is the phase angle. g(Z) is a function which is used to provide a flat power
absorption prdfile when L = 0. Ju is the usual Bessel function of order n and k; is
the perpendicular wave number. The time variation of the cyclotron frequency
seen by the drifting ion as it passes through the resonance layer is

= Yif2Bg
B¢R

Q sin@,

and



o =27d3,
where &3 is a uniformly distributed random number between 0 and 1. The

change in the particle velocity is then obtained from
12 i/2
Av=[v2+2(v2—vf) AVJ."’AV?L} -V

The rf-induced diffusion is taken into account by calculating the change in
the parallel velocity component [20]:
Avy=kyv Avy 1Qy,
where kjj is the parallel wave number. In Fig. 7 we show a typical guiding centre

orbit of an ICRF heated 3He ion in deuterium plasma.

(v)  Acceleration of Scattering processes

Following charged particle trajectories is time consuming, thus, to achieve
acceptable computing time an enhanced acceleration of the slowing down and
scattering processes has to be introduced. Goldston et al. coupled the acceleration
to the change in pitch |A{| with a predetermined acceleration constant G [10].
The acceleration was reduced by a factor of 2 when the change in pitch is above
the upper limit G and increased by the same factor below the lower limit V0.5 G.
To improve statistics in HECTOR the increase/decrease factor of 1.3, and the
lower limit of 0.5 G are used. Typically G can be 0.05 - 0.08, but higher values will
lead to increased scattering losses due to enhanced change from passing orbits to
trapped ones.

When velocity increases the reduction in the scattering frequency occurs at
a faster rate tﬁan in the timestep At = As/v, where As is a constant spatial step.
Thus, to prevent an excessive growth in acceleration, which would lead to a
distorted slowing down and tail formation during ICRH, an upper limit for the
acceleration is required. A fixed value upper limit is not efficient in view of CPU
time, and thus, a scaling factor (v/vy)1/2 is added during slowing down

calculations. When the ICRH is on, to improve the statistics near the axis where
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the particle-wave field is the strongest, the acceleration is in addition multiplied
with [1+ a(l —e )] Typically acceleration of the order of 20 and the constant

a value of 2 are used.

IV. SOURCE FUNCTION FOR CHARGED PARTICLES AND

YIELD CALCULATION

In this section we consider the problem of source definition. The
application of direct sampling methods to the problem of particle selection from
the distribution of sources in the local phase-space coordinates leads to orbit
duplication and many repetitions of the same equivalent particle occurs.
Consequently, a very large number of particles will have to be tracked in order to
obtain reasonable statistical accuracy. In order to circumvent this difficulty, we
note that particles produced in different regions of phase space are simply
connected through a unique set of (P = Py,u,v) coordinates (Fig. 8) and that all
particles produced on a particular orbit connecting different regions of phase
space are equivalent. It is clear that the path of a representative particle will be
determined by the initial values of (P,jp,v). The point on the path at which these
initial values are specified is usually taken to be the median plane of the torus,
but is otherwise quite arbitrary. In this way, a transformation to the (C.O.M.)
space will lead to a significant reduction in the number of charged particles that
have to be tracked to ensure that sampling errors are minimised. The charged
particles bounce averaged source in the local velocity-space variables (R,Z,v/£) is
transferred to the C.O.M. system (P,11,v), where the local source strength is given
by

S =4n*f[[[S(R,Z,v,E)RdRdZv?dvdE.

For charged particles resulting from thermonuclear reactions within the plasma
the local source function takes the following form

mn, < OV >

S R,Z, ] =
( v Jj) 4nv(2}

+8(v—vo),
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where <ov> is the thermonuclear reactivity, v, is the birth velocity, and the
particles are assumed to be born isotropically in velocity space. The local birth

rate of fast neutral beam particles is described with

ii=(r, ——fze)(l—x“)b + 1,
where the subscripts (0,e) refer to the values on the magnetic axes, and at the
plasma edge, respectively, and (a,b) are the profile parameters. The initial pitch is

assumed to have a narrow gaussian distribution, and is related to the major

radius by

el

where c is a factor determined by the beam line geometry.

The starting point of each test particle, in the (P,u,v) grid, is mapped onto
the median plane of the torus, and the weight factor for each flight is set equal to
the corresponding bounce averaged source rate.

Thermonuclear yields are calculated by integrating the hot target reactivity
<ov>y [23] along the particle orbits, and the burn-up fraction is calculated from
X N, [1- 21— < ov >, navr))]

p=-t
5

where Nk is the number of test particles born, and n is the target density. Index i

refers to the integration steps along the orbit.

V. INPUT DATA

Tracing the charged particles requires a continuous supply of local values
of magnetic field and bulk plasma parameters along the orbit trajectory. Two
equidistant (but not limited to) spatial grids are used to facilitate an easy access to
these values.

The radial density and temperature profiles of plasma electrons, primary

ions and impurity ions, and the calculated profiles of thermonuclear reactivities,
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and other cross-sections of interest -suc[h as charge-exchange are stored in 51 grid
points. The values of the magnetic field components Bg,By,B,, the magnitude of
the field | B, the flux coordinate p, poloidal flux function y, and the reference
coordinates of the 1-D grid are pre-calculated and stored inl a 2-D grid spanning
the entire poloidal cross section of the torus. To obtain particular values and
reduce the computational time still further and furthermore, avoid recourse to
interpolation we employ a simple table "look-up" procedure. Unfortunately,
this procedure demands a fine grid, resulting in a considerable increase in storage
requirements. However, a (200 x 299) grid was found to give acceptable results.
Input data can be divided into two categories depending on whether arbitrary
values and profiles (arbitrary input data) or data from JET shots (JET shot input

data) are used.

(i)  Arbitrary Input Data
In this mode the code can be used with a wide variety of input parameters
appropriate to other tokamaks in addition to JET.

The built-in profiles for electron and ion densities and temperatures are:
= 2\?
nj= (njo —nje)(l-—x ) + R

Ty =(Tjo - Ty )1 —xz)b +Tj, ,j=(e)
The constants a,b and c are the usual profile parameters.
The toroidal component of the magnetic field is calculated from:
By =B,R,/R
where By, is the toroidal magnetic field at R = R,,.

The pbloidal magnetic field, Bg is derived from the Lao-Hirshman
solution of the Grad-Shafranov equation for plasma equilibria and assumes an
analytical representation for the plasma current and pressure profiles [24] which
has been corrected to satisfy V-B =0[23]. Both symmetric and non-symmetric

plasma cross sections can be included. The input parameters for the Bg
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calculations are: plasma current, current profile constant, beta-i, elongation,
internal inductance and minor radius. As the output, poloidal field components
and the flux coordinate are returned. In the hybrid method the value of the
poloidal flux vy is needed, and this is obtained by integrating over the median

plane the equation,

y
Z¥ - B,R.
orR ¢

(i)  ]ET Shot Input Data
To obtain the poloidal flux function y the code IDENTC is used [25]. The

code solves the Grad-Shafranov equation for plasma equilibria assuming an
analytical representation of the current and pressure profiles and using free
parameters to fit the data from the magnetic measurements. The output is a
normalized y between 0 and 1.

The FLUSH routine package [26] is then used to calculate the actual values
of y, and the poloidal magnetic field components Bg, B, at given coordinates.

Routine PREGER ([27] is used to extract data, such as ne, Te profiles, from
JET shot data banks. Densities for the primary ions and the impurities are then
calculated using the impurity routine CPRIO [27], which employs the coronal
equilibrium model. The local birth rate of fast neutral beam particles can be

included by fitting the data from the PENCIL code [28].

VL TEST RESULTS

An extensive program of tests was carried out to assess the reliability and
accuracy of HECTOR. The comparison with the SOCRATE code [16], which
combines the single orbit approximation with the classical energy loss formula,
showed a very good agreement in the orbit fopology, the source rate, the slowing

down rate, and the triton burn-up (Table 1) [19].
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The spread in pitch for a single thermal 3He-particle behaved as expected,
and in the JET deuterium plasma reached a uniform distribution after several
collision times (Fig. 9). Furthermore, the diffusion coefficient, and the
consequent particle losses were within 10% of the neoclassical values.

Separate tests of the energy diffusion operator showed, that the relaxation
of a thermal 3He-particle in energy space reached the Maxwellian distribution in
a timescale longer than for the pitch relaxation (Fig. 10).

The validity of the ICRF interaction model was tested by comparing it with
a semi-analytical model [29] which is in good agreement with the bounce
averaged Fokker-Planck ion cyclotron code BAFIC [30]. Flat profiles for the rf
wave fields and plasma parameters enabled to eliminate the finite orbit effects in
the results obtained using HECTOR. The minority ion energy content, the mean
energy (Fig. 14), the energy transferred to background electrons and ions (Fig. 12),
and the fusion yield (Fig. 13) are in good agreement, within 10%, when particle

losses in HECTOR are taken into account.

VII. CONCLUDING REMARKS

The new numerical techniques for tracing orbits together with a fine 2-D
spatial grid combined with its corresponding 1-D grid, have reduced the
computation time for each particle flight. Introducing the bounce averaged
source rate has reduced significantly the number of particle orbits that have to be
tracked. A simulation following 2000 test particles for a Spitzer time takes only
15-20 min CPU time on the IBM-3090-300].

The tihe evolution of the plasma parameters can be taken into account
during the slowing down but the increasing CPU time and space requirement
reduces the number of time grid points to 5-10. In most applications the

assumption of the steady state plasma is sufficient.
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TABLE1

Triton burn-up and confined fraction calculated with HECTOR and
SOCRATE codes. The effects of pitch angle scattering and energy
diffusion are not included

Shot: 10583 Shot: 10952

flat profile peaked profile flat profile peaked profile

HECTOR { SOCRATE | HECTOR | SOCRATE | HECTOR | SOCRATE | HECTOR | SOCRATE
p(%) 0.50 0.50 0.74 0.79 1.29 1.31 1.54 1.62
f(%) 50 49 93 94 70 69 100 100
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1. (R,¢,Z) - coordinate system.
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This figure shows the effect of the accumulative numerical error on a
collisionless a-particle orbit calculated using the guiding centre

approximation.



Here is shown a typical collisionless orbit traced using long (4 m)
integration steps with the (C.O.M.) hybrid method. It is seen that even

with this large integration step, the orbit remains closed.
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The slowing down orbit for a 1 MeV triton is shown. Only friction is
included. The parameters for the calculation are In=5MA,By=34T, Te =
8 keV, ne = 5 x 1019m-3, Zegr = 1.2, and initially the particle started at (X,
Z5, 80) = (04, 0.0, -0.40). A smoother orbit would be obtained with shorter

integration steps.
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The slowing down orbit for a 1 MeV triton is shown. Both friction and
pitch angle scattering are included. The parameters for the calculation are
Ip =5MA. By = 3.4 T, Te = 8 keV, ne =5 x 1019m-3, Zogr = 1.2, and initially
the particle started at (X, Zo, £o) = (0.4, 0.0, -0.40).
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The slowing down orbit for a 1 MeV triton is shown. Friction, pitch angle
scattering, and energy diffusion are included. The parameters for the
calculation are I, =5 MA. By =34 T, Te = 8 keV, ne =5 x 1019m-3, Zggr = 1.2,
and initially the particle started at (Xo, Zo, o) = (0.4, 0.0, -0.4).
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The orbit of a ICRF heated minority 3He ion is shown. The calculation
includes friction, pitch angle scattering, energy diffusion, and rf-wave
interaction. The parameters are Ip =5MA. By=34T, Te =8keV, ne =5x
1019m-3, Z¢¢ = 1.2, and initially the particle started at (Xo, Zo, £o) = (0.4, 0.0,
-0.4). The particle energy was initially T, and after Spitzer time it reached

MeV range.
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8. The geometry of the (P,u,v)-source grid.
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9. The particle relaxation in pitch space is shown. A single, thermal E = T,
3He ion was followed with the pitch angle scattering operator in D plasma.
The particle started with an initial pitch § = 0.0, and after 1.5 Spitzer time

isotropic pitch distribution was obtained.
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10.  The particle relaxation in energy space is shown. A 3He ion was followed
with the energy scattering operator in D plasma. The initial energy was E
= T. A Maxwellian distribution, represented with the straight line, is

reached after 2.5 Spitzer time.
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11. Comparison of the mean energy calculated with the Fokker-Planck and
HECTOR codes. The parameters for the calculation are I, = 5 MA. By = 3.4
T, Te = 8 keV, ne =5 x 1019m3, Zogr = 1.2,
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12, Comparison of the electron and background ion heating rates calculated
with the Fokker-Planck and HECTOR codes. In case A the effect of the
particle losses out of the plasma is not included but in case B it is. The
parameters for the calculation are I, =5 MA. By =3.4 T, Te =8 keV, ne = 5 %
101%m-3, Zogs = 1.2.
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Comparison of the (3He,d) yield calculated with the Fokker-Planck and

HECTOR codes. Flat plasma and rf-wave field profiles were used to

eliminate the finite orbit effects in HECTOR. The parameters for the

calculation are I, =5 MA. By =34 T, Te = 8 keV, ne =5 x 101%m-3, Zogr = 1.2.



