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INCLUSION OF POLOIDAL POTENTIAL VARIATION
IN NEOCLASSICAL TRANSPORT

T.E. Stringer
JET Joint Undertaking, Abingdon, Oxon., OX14 3EA, UK.

ABSTRACT

Inclusion of the electrostatic potential is found to
increase the electron neoclassical heat flux by an order
of magnitude, while producing only a modest increase in
the ion heat flux. The analysis is done for the plateau
regime, though a similar behaviour is expected in the
banana regime. The poloidally varying potential,
determined by quasi-neutrality, is predominantly due to
ion Landau damping. The resulting ExB drift introduces
terms into the electron heat flux which are comparable to
those previously derived for the ion heat flux. Similar
terms enter the particle flux, but here they cancel due to
momentum balance.

PACS number: 52.25 F;.

1. INTRODUCTION

The variation in electrostatic potential over a magnetic flux surface has
generally been neglected, arguing that electrons can move along field lines to
neutralise any space charge. Hinton and Rosenbluth [1] estimated this variation in

the plateau regime to be
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where @ is the electrostatic potential and angular brackets denotes a flux surface
average, € = IRy is the inverse aspect ratio, pig = V2Timi/eBy is the ion Larmor

radius in the poloidal magnetic field, and Lt the temperature scale length. This




variation was considered negligible because the analysis retains terms of order e,
and pig/Lt << 1 is assumed.

The mean radial flux of ions and electrons resulting from the above electro-
static potential will now be estimated. We assume the simple geometry with
concentric circular flux surfaces, as in Ref. [1], where By = Bo/(1 + € cos6) and the
surface element dS = rRy (1 + £ cos 8) dd dB. The particle flux then includes the

component
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where vy = (2Tym;)1/2, 1 = Teo/Tio, and @ = Be/By. This has the same scaling as the
ambipolar particle flux derived in earlier analyses of the plateau regime, e.g. [1,2],
but is larger by a factor (mymg)1/2. It is thus evident that the poloidal variation in
potential can be important.

The corresponding estimate derived in Ref. [1] for the potential variation in

the banana regime is
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where q is the safety factor and v; the ion collision frequency. 1ihe square
bracketed expression is less than unity over the banana regime. The mean radial
flux resulting from this potential differs from that in Eq. (2) by the addition of the

bracketed factor and a change In numerical constant. Again this flux exceeds the



ambipolar particle flux derived earlier for this regime by a factor (myme)1/2. For
analytic convenience, and continuity with earlier work [3], the following analysis is
restricted to the plateau regime. However, a very similar behaviour may be
expected ih the banana regime, which will be the subject of a later publication.

The present author earlier included a poloidally varying electrostatic
potential in a self-consistent derivation of the particle fiuxes in the plateau regime
[38]. These fluxes included a component similar to Eq. (2), along with other
contributions of the same order resulting from the poloidal variation in density.
However, the different contributions to the electron flux almost exactly cancelled
each other, leaving a net electron flux less than Eq. (2) by a factor (me/m;)1/2, i.e.
comparable to the flux obtained in other publications [1,2].

The above behaviour can be explained as follows. We first consider the
behaviour when the poloidally varying electrostatic potential is neglected. There is
then no coupling between the Of(e) variation in the ion and electron velocity
distribution functions. Particle fluxes are related to dissipation, the ion and electron
fluxes in the plateau regime resulting from ion and electron Landau damping
respectively. The coefficient of the ion Landau damping exceeds that of the
electrons by a factor (mymg)1/2. However, ambipolarity, which is imposed on the
O(e?) net fluxes, reduces the ion flux to equal that of the electrons. The plasma
does this by acquiring an equilibrium flow such that the ion Landau damping is
largely self-cancellatory. The ambipolar flux is thus determined by the slower
diffusing electrons.

We now consider the behaviour when a poloidally varying potential,
determined self-consistently from quasi-neutrality, is included. As will be seen
later, the non-dissipative terms in this equation almost cance!, evpressing the fact
that the ability of ions and electrons to equalise their density over a flux surface is
limited mainly by Landau damping. lon and electron Landau damping both enter

this equation but, because of its larger magnitude, ion Landau damping is



dominant. This is the reason the potential variations in Eqg. (1) is determined by ion
parameters.

The ExB drift resulting from the poloidal electric field thus introduces
components proportional to the ion Landau damping into both the ion and electron
radial fluxes. The estimate of one of these components in Eq. (2) shows it to be
much larger than the ambipolar flux. Why then do these new components cancel
themselves? As will be discussed in Section 5, this results from the relationship
between particle transport and momentum balance along the magnetic field. It
reflects the near-cancellation between the parallel components of the electric field
and the pressure gradient in the electron equation of motion.

The purpose of the present paper is to extend the analysis of Ref. [3] to
include an equilibrium temperature gradient, and to evaluate the heat flux. Since it
is difficult to see how the cancellation of the ion Landau damping terms in the
electron particle flux can be repeated for the higher moment velocity integrals
entering the heat flux, the electrostatic field may be expected to produce an
electron heat flux comparable to that of the ions.

Also of interest is the effect of the equilibrium temperature gradient on the
resonant behaviour, first found in Ref. [4] for a toroidal resistive plasma, and later in
Ref. [3] for plasma in the plateau regime. The origin of the resonance is as follows.
In the simple geometry used, the equations differ from those for a cylindrical
plasma mainly by the vertical VB drift of ions and electrons. The poloidal variation
in potential is thus the same as in a cylindrical plasma in which vertical ion and
electron currents, equal to the VB drifts, are externally induced.

The response of such a plasma would be inversely proportional to its

dielectric constant, evaluated for a forced wave having the characteristics of the

imposed current. Although the charge separation flow is constant in the laboratory
frame, as seen by the rotating plasma it has frequency E,/rB, where E; is the mean
radial electric field. its wavelength is clearly defined, as discussed in Section 3.

The denominator of the potential and density variation found in Ref. [3,4] agrees



exactly with the expected dielectric constant.. If the Doppler frequency E,/rB
coincides with the frequency of a natural plasma mode, the real pan of the
dielectric constant vanishes, and the plasma response is a maximum. The
inclusion of a temperature gradient in the plasma model modifies the dielectric
constant, introducing the n; mode. The possibility of a new resonant rotation,
corresponding to the additional natural mode, was a further stimulus for this
analysis.

Section 2 describes the model used. The linear solution of the kinetic
equation is given in Section 3. The quasi-neutrality condition, applied to the
poloidal variation in density, defines the electrostatic potential variation. The linear
solution is used in Section 4 to derive the quasi-linear particle and heat fluxes, and
the physical explanation of their behaviour is discussed in Section 5. Finally an
Appendix which discusses the general question of the automatic ambipolarity of

neoclassical transpon, challenges the commonly held view.

2. THE MoDEl;

The analysis is an extension of an earlier treatment [3] of neoclassical
transport in the plateau regime with self-consistent electrostatic field, to now
include a radial temperature gradient and heat fluxes. It uses a direct evaluation of
the transport fluxes, rather than the more elegant, but less physically transparent,
derivation in terms of parallel viscosity, e.g. in Ref. [5].

Since the underlying physics is the same for all toroidally symmetric
geometries, the simplest model, in which magnetic flux surfaces are concentric

circular surfaces, is adopted for clarity. Standard coordinates are used, with polar

coordinates r and 6 centred on the toroidal magnetic axis, while ¢ measures.

angular distance along this axis. The magnetic field is taken to be
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where Ry is the radius of the magnetic axis, and R = Rq + r cos@ is the distance from
the axis of symmetry. The magnetic surfaces are r = constant.

The basic equation is the guiding centre kinetic equation,

%
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for the velocity distribution function for the jth species, fj(r,0,v};,v.2.1). V;is the
guiding centre velocity. vj and v, are the components of the particle velocity
parallel and perpendicular to the magnetic field. The plateau collisional regime is
defined by £3/2 << qR/Amfp << 1, where Amtp = Wj/vj is the collisional mean free
path. In this regime the transport is independent of the collision frequency. This
was first shown by Galeev and Sagdeev [2], and demonstrated later in several
papers where a full collision operator is included, e.9. in Ref. [1]. Since there is no
reason to suspect that this is not equally true when poloidal potential is included,
the collision operator is omitted from Eq. (5) for simplicity. We consider only the
time independent equilibrium state.

For a large aspect ratio toroidal plasma, fj and the equilibrium electrostatic
potential & may be expanded as a power series in e. The lowest order so!utibn is a

cylindrical equilibrium, independent of po!dida! angle.
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The guiding centre velocity of a particle may be written as

‘/j = V"Q/IB[""ij + 20 +!1+ ...... (6)

where



Vpj is the sum of the curvature and magnetic field gradient drifts. g4 and gz are unit
vectors in the toroidal and vertical directions.
As in earlier references [1-5], the zero order electric drift is assumed of the

same order as the diamagnetic velocities Up; and Utj where
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This implies vy ~ vpj ~ € Unj. The ratio of the poloidal and toroidal components of

the equilibrium magnetic field in tokamak geometry is

The zero order distribution function is assumed to be locally Maxwellian and

is written in the form

1
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so that density n = J' dv| f dv,2 f. the condition that the zero order distribution
remains Maxwellian, in spite of a preferential loss of a certain class of particles, is
the same as the condition that trapped particles are not dominant. This determines
the lower collisional limit on the regime. For analytic brevity the ions and electrons
are assumed to have no mean motion along the magnetic field. The effect of a
parallel flow vy can readily be included by replacing v, in the following analysis by

Vo + OV

3. THE LINEAR SOLUTION

The equilibrium equation, Eq. (6) will now be solved to first order in the

inverse aspect ratio. Since
v =[(E - e;®-uB)2/ m;]'/?

where the particle energy E and magnetic moment u = m; v;2/2B are constants of

the motion, it follows that
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and
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Linearising Eq. (5) with respect to e, and integrating with respect to 8, gives
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The poloidally varying electrostatic potential is determined by the charge neutrality
condition. To apply this the electron and ion densities must be evaluated by
integrating Eq. (10) over velocity. integration over v 2 is trivial. Before integrating
over vj; it is convenient to replace cos8 by exp(ie), with the understanding that only
the real parts of the equations have physical significance. Integration over V|| gives
integrals with resonant denominators of the same form as those encountered in

microinstability theory, i.e.
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These integrals can be expressed in terms of the familiar piasma dispersion

function

1(2)=1-2z exp(-z%) jj exp(r2)dt + in'2z exp(~z2) (11)




using the recurrence relation

Integrating Eq. (10) over velocity gives the poloidal variation in density
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Invoking quasi-neutrality, n1; = nye, leads to an equation for &4
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F is obtained by replacing Ij in Eq. (14) by loj, the real part of 1(z) which omits the

Landau term in Eq. {11), while ‘

L= —;”i;-[vo +Up, = Up,(1+222)/2]-
ti

1/2

T

[v,,+U,u--UT,.(1+2z,?)/2] (15)
\
As discussed in the Introduction, the response of the plasma to the toroidal drift 1
may be expected to vary inversely as the plasma dielectric constant. The poloidal |
variation driven by the toroidal drift has the form of an m = 1 stationary wave whose
parallel wave number is (qR)-! = ©/r. The rotating plasma sees it as having the
Doppler frequency -vo/r. If these mode parameters are substituted into the
dispersion equation for electrostatic waves in a slab [6], one obtains exactly F + iL
as defined in Eq. (14).

The ratio L/F is of order t{vg + Unj)/vyi®. Since the measured radial electric
field is typically of order Vp/ne, giving vo ~ Up;, this ratio is about Uni/vyi® ~ py@Ln.
This is 6f order 1/10 in tokamaks, expressing the fact that the driven wave is rather
weakly damped by ion Landau damping. If the values of the wave parameters
coincide with those for a natural plasma mode, then F = 0. The excitation of the

driven mode is then limited only by damping or by nonlinear effects [7].
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4. EVALUATION OF THE TRANSPORT

In first order the particle and heat fluxes across magnetic surtaces vanish
when integrated over a surface. To second order in € a net radial flux results from
products of first order quantities. The surface element is dS = rRy(1 + € cos6) do

d¢. The mean radial fluxes of particles (Ij) and heat (qj) are given by

I’J = %IdSJ_: dV“J’:; dvf_f:,-v,j

1 o &m,; V?' .
=_§_x_r_B;J'd9.[dvuIdvi(foj +f1;)[ 891 +T(vu2 +?"L)sm 6:|(1+eco§8)2 (16)
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q;=- [38}10 of é;b cos @
mj et 2 Y1) cinglf +v?
+ Idv,,‘[dv_,_ flj + v + 5 fijsin6 (v" +v1_) (18)

Evaluating each product term in Eq. (17) leads, after much analysis, to the following

expression for the particle flux
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where pj=V2Tjmj/e;B is the Larmor radius of the jth species, and B;j = ejTe/eT|
equals 1 for ions and -1 for electrons. P and Q are proportional to the real and

imaginary parts of the right hand of Eq. (13), defined by

_EL(P+iQ .
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P may be obtained by replacing ; by loj on the right hand of Eq. (13}, while
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The expression for gj is appreciably longer than Eq. (19), partly because the extra
factor (v||2 + v12) doubles the number of product terms. It can be simplified by
noting that zj = 0(Upj/vi8) = pyLn®. Thus in all conditions of experimental interest,
ze << 2j << 1. Contributions of order zj2 and higher can therefore be neglected.

The heat flux then simplifies to
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The above fluxes may be further simplified by taking the values of F, L, P, and Q in

the limit zg << zj << 1. In this limit
Iy=1-22}+o(z}), F=1+v+o(s!), P=o[sf)
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Substituting these limiting forms in Eqgs. (19) and {22) gives
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The fluxes have been generalised to include parallel flows, using the substitution
specified in Section 2.

The radial electric field, which so far has been treated as an arbitrary
parameter, will now be determined by the ambipolar condition I'j = I'e. In studies of
neo-classical transport in the banana regime it is sometimes stated that this
transport is automatically ambipolar and independent of the electric field [8,9].
Since the reasoning is quite general, should this conclusion not apply also to the
plateau regime? The Appendix discusses the basis for this conclusion and argues
that automatic ambipolarity is a simple result of the assumption that the equilibrium
is stationary, and is in no way a result of neoclassical processes. The question of
whether neoclassical ambipolarity is automatic or not is of more than academic
interest. If it is, then the neoclassical particie transport is ambipolar even in the
presence of another non-ambipolar loss mechanism, such as magnetic field
ergodicity. If it is not, then the ambipolar condition must include ali loss
mechanisms, and the neoclassical transport may be non-ambipolar in order to
balance the other non-ambipolar loss.

Assuming there is no other loss mechanism, we impose the condition Tj =

I'e. Since the coefficient in Eq. (23) is a factor (myme)¥/2 larger for the ions than the

15




electrons, an ambipolar electric field must be set up so that the bracketed terms in

the ion flux almost cancel, i.e.

eE,, n, 3T, eBg_
—xL e el By 25

The ambipolar particle flux is then determined by the electrons
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The corresponding ion and electron heat fluxes are
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5.  DISCUSSION OF THE TRANSPORT FLUXES

The transport fluxes which are obtained when the electrostatic potential is
neglected may be obtained from Eqs. (19) and (22) by putting P = 0 = Q. These
fluxes agree with those derived by Galeev [2]. The fluxes are proportionai to vtjp;?,
i.e. the electron flux is less than the ion flux by a factor (me/m;j)1/2. This is because
the net transport depends on the in-phase components of velocity and density, and.
these result from Landau damping. In the absence of an electrostatic potential

there is no coupling between ions and electrons in the first order, and consequently
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the ion and electron fluxes are proportional to their respective Landau terms (the
imaginary parts of Eq. (11)).

When a poloidally varying electrostatic potential is included, the ExB drift
introduces a new component of radial velocity. The component in phase with
density results from the total Landau damping, in which the ion Landau damping is
dominant. Since the ExB drift is common to both ions and electrons, one might
expect the electrons to acquire a flux proportional to ion Landau damping.
Detailed inspection of the particle flux shows that the electrons do indeed have
such a component, but it is exactly cancelled by another term.

The physical origin of this cancellation may be seen as follows. Equation

(17) for the mean flux may easily be recast in the following form

_ 5’P|; )
rf_ 2m'Be §d9[ no'*'"l) 39 aé 239(‘0”" Pju) (1+£C089) (29)

where the poloidally varying part of pjis mj | dv)? vj2 f4;. From the paralle!
Il j 1= VII® Mj

component of the equation of motion, the first two terms in the integrand balance,
except for a small inertial residue. Thus particle diffusion is proportional to <(pj. -
pyi) sine>, which can be shown to be proportional to the Landau damping of the jth
species. The above form for I' is the basic form for the particle flux when the radial
velocity is obtained from the perpendicular component of the fluid equation of
motion, as in Ref. [10].

it is obvious that the above cancellation in the paricle flux, resulting from

momentum balance, can no longer occur when the integrand is multiplied by (vj2 +

v12) to obtain the heat flux. Terms proportional to wip2 in Eq. (24) for gj come from.

the electrostatic potential. The effect on the ion heat flux of this additional

contribution is typically small. When the temperatures are equal it increases the

17



flux in Eq. {27) by a factor 7/6. lts effect on the electron heat flux, however, is large,
increasing it from about 1/60 times the ion heat flux to about cne sixth.

Although the present analysis gives an electron heat flux which is an order
of magnitude larger than earlier analyses, it is still an order of magnitude less than
that observed experimentally. The result might thus seem of academic interest. To
make it of practical imporntance requires a large enhancement of the electrostatic
field, and hence the transport of both species. As discussed in the Introduction,
such an enhancement would resuit if the rotation velocity, vo/r, coincides with the
frequency of a natural mode. However, resonance (defined by F = 0) occurs only at
much higher electric fields than that observed. This is because the natural slab
modes have phase velocities larger than sound speed, i.e. w/vy kjy> 1. Fora
rotating plasma the corresponding condition is |vo|/vyi® > 1, which requires |vo| >>
Uni, i.e. E;r >> Vp/ne. However, the full range of possibilities has not yet been fully
investigated. For example, propagation of the n;-mode in a toroidal plasma, as
compared with a slab plasma, is strongly affected by the VB drift. Such effects are

neglected in the linear analysis leading to F + iL in Section 3.

6. CONCLUSIONS

The variation in electrostatic potential over a flux surface, which is neélected
in earlier neoclassical analyses, has been shown to make significant contributions
to the radial transport. The analysis has been done for the plateau regime, though
similar behaviour is expected in the banana regime.

Earlier analyses found the ion and electron heat fluxes to depend on ion and
electron Landau damping respectively. Consequently, the electron heat flux was
smaller by a factor (me/m;)1/2. The electrostatic potential, determined self-
consistently from charge neutrality, results from both ion and electron lLandau
damping. The resulting ExB drift contributes terms proportional to ion Landau

damping to both the jon and electron heat fluxes. While the increase in total ion

18



heat flux is relatively modest, the smaller electron heat flux is increased by an order
of magnitude.

Comparable terms, proportional to the ion Landau damping, enter the
evaluation of the ion and electron radial particle fluxes. However, these terms
_nearly cancel. This can be attributed td momentum balance along the magnetic
field. Here the variation in electrostatic potential is almost balanced by the electron
pressure gradient. This ensures that the no (ExB) flux is almost cancelled by the
curvature drift flux. As a consequence of this cancellation, the ambipolar particle
diffusivity is an order of magnitude less than the electron thermal diffusivity.

Even after the large increase in the neoclassical electron heat flux, it is still
an order of magnitude less than that observed. An enhancement of the neo-
classical fluxes to the measured levels could conceivably result from the resonant
response when the poloidal frequency equals the frequency of a natural plasma
mode. However, the rotation frequencies at which such resonances can occur

appear to be higher than the observed rotation.
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APPENDIX 1

Is Neoclassical Diffusion Automatically Ambipolar?

In the analysis in References 8 and 9, which leads to automatic ambipolarity,
the particle energy, K = mv2/2 + ej®, and magnetic moment, p = mjv2/28, are used
as velocity coordinates. The linearised equation, including a collision term, C(f),

then takes for form

Jd
%w@-?f, +Vj,%rf£=c(f) (A.1)

This is multiplied by v|/Qej. where Qgj = ejBg/m; and integrated over velocity and
over the magnetic surface. The velocily space element is now d3v =
2nBdudk/m2v). An integration by parts converts § def d3v (v)|2/Qgj) - V14 into the

mean radial flux across a magnetic flux surface, using the relation [8,9]

Vojr = J'Vu(f’ V)( L ]
€; 6

where D is a unit vector along the magnetic field. This leads to the equation
1
rj E<J d3vvbj,, f} >=< —'I'i';-J- dsvvll Cj(.f) >
/]

+'€"< -"'"'-—I d3VV||f:, D = —

E” r < j d? VR, f; > (A.2)

Qeral'

where angular brackets denote averaging over a magnetic surface, i.e <A> = (2x)-1
f A(1 + & cos6) de.

The second term on the right of Eq. (A.2) is dropped in Refs. [8,9] on the

assumption that the system has reached a quasi-stationary equilibrium, while the
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last term, which is the radial convection of parallel momentum, can be assumed
small. The particle flux is thus given by the first term, which is the paralie!
momentum transferred to the jth species by collisions. Like particle collisions
contribute no net momentum, while transfer due to unilike collisions must be equal
but opposite for the two species. We thus find equal fluxes of ions and electrons
without explicitly imposing the quasi-neutrality condition.

To clarify the physical meaning of Eq. (A.2), we will compare it with the ¢
component of the momentum equation. The most general form of the momentum

equation is obtained from the first moment of the kinetic equation,
d

where yj = _f d3v y fjis the fluid velocity, Pjug = m; _[ d3vvg v fiand By = my ] ddvy
Cj(f). We will assume that the friction perpendicular to B can be written as a
resistivity, i.e. Bj= Rk - n1jit. We separate the perpendicular current into its mean
and poloidally varying pars, i + j1, where j1 = Bo'1 dpo/dr is the mean dia-
magnetic current. From V-j = 0 it follows that j; = 0(@ 3”). where © = Bg/By = 0(¢).
Hence j1 may be neglected.

To obtain the radial flux we take the ¢ component of Eq. (A.3), multiply by (1
+ £ c0s0)2, and integrate over 8. The n u;j x B term thus becomes By, T'j, where Bgo
= (1 + £ cosB) By is independent of 8. We can divide Tjj into its classical and neo-

classical parts, the latter resulting entirely from toroidal effects

TME dpo o EXE
I''=- + + 7 A.4
ITTBTdr "( B ) U (A4

We then arrive at the following relation
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Em% < (1+ ECOS B)n(—gt—+y_ . V)u1¢ >= FTjBQO+ < (1 + E£COS G)Rjﬂ > B¢ /BZJ(? (A.S)
J

A more detailed derivation of this equation is given in Ref. [11].
Since ujy and uj are effectively the same, and Qg1 varies as 1 + € cos8,
Egs. (A.2) and (A.5) may be seen to be equivalent. When the electron and ion

equations, in either form (A.2) or (A.5), are subtracted the collision terms cancel

because collisions conserve rﬁomentum, and we get
(Z;Tp; — T, JeBg, =< {1+ &cos 9)n-§;(m,-u,-¢ + meue¢) >. (A.8)

Earlier authors assumed the inertial terms to be of higher order and concluded that
the diffusion is automatically ambipolar, independent of the quasi-neutrality
condition. However, it can be seen that Eq. (A.6) is no more than the conservation

of total momentum about the axis of symmetry, i.e.,
. d
< Rj, Bg>= T < Rn(m,- Uiy +m, ue¢) >, (A.7)

it says nothing specific about neoclassical diffusion. All that we can conciude is
that the toroidal flow reaches its stationary value only when the diffusion has
become exactly ambipolar.

When there is no other loss process, neoclassical diffusion must conserve
quasi-neutrality. This certainly requires the diffusion to be approximately
ambipolar, though a small residual j,, enough to produce significant j; Bg
acceleration, is still permitted. The final diffusion rates are the same whether ambi-
polarity is attributed to quasi-neutrality or is assumed to be automatic. However,
the resuits can be different when there are other loss mechanisms, as discussed in
Section 3.
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A simple example of neoclassical banana diffusion, where quasi-neutrality
does not imply ambipolarity, will now be considered. We again consider a pure
electron-ion plasma, but now introduce a conducting wire along the magnetic axis
which is maintained at a fixed potential. This wire is assumed to be a perfect
emitter of particles, so that no charged sheath forms around it. Since the system is
still axisymmetric, the conclusion that momentum conservation during collisions
requires the flux across any magnetic surface to be ambipolar, if it were correct,
should still apply. This is consistent with quasi-neutrality only if the emission from
the wire vanishes, i.e. E/(0) is zero. However, as we shall see below, such a
solution is possible only after the plasma has acquired a specific parallel flow.
During the finite growth time of this flow, the diffusion is non-ambipolar.

We can use the diffusion fluxes for the banana regime first derived by
Galeav and Sagdeev [5], but including the effect of parallel flow. To reduce

analytic detail we shall take the temperature to be homogeneous. Then

Son | T 0
— euzg%[-aﬂurseu,-"-e,]. s)
j876 L8 "

where V; is the collision frequency for the jth species. The coefficient of the ion term
exceeds that for the electrons by 0{myme)1/2. In the absence of a central conductor
a radial electric field develops to reduce the ion rate to that of the electrons, but
now the plasma does not have the freedom to do this. Since charge must not
accumulate within the plasma, the fiux across a magnetic surface is independent of
r,ie, Hl-Te)=rT}=C. This gives an expression for E,; = - d®/dr which, when
integrated between r = 0 and a, with boundary conditions ®(0) = @4, &(a) = 0,

determines the flux C.
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T. ., n a
)= D[(bo + Z—;zn;-:- - L dr u,-,;Bg] | (A.9)

Q58

—— and ng and ny are the densities at the centre and
€2 rvin

where D =0.685 [* dr
[+4
the wall.
The radial current produces mass acceleration in the ¢-direction, n mj dugy/dt
= e BgC/r. To allow the various integrals to be evaluated, we take the following
profiles: n{r) = no(1 - 12/b2), Bg = Bgar/a, ujjj = Uy = V(1) (1 - r¥/b2)-1. The integrals are

then easily evaluated, and the differential equation for V(t) gives

= 1 — ey Li,lr
V() = -1 - exp( at)]{d>o+zetn(n )jlb

—zza—/!n(l—azlbz) . {(A.10)
AL
where o = - 0.73 Vj(b/r)/2 ¢n[1 - a2/b2}{tanh-1(a/b)1/2 - tan-T(a/b)1/2]1. Fort> ot
the mass flow tends to the asymptotic value at which I’ is zero. When thé electron
diffusion is taken into account, the asymptotic value is that for which T’ = I'e.
Although once again we reach the ambipolar state, the neoclassical
diffusion is non-ambipolar over a finite time interval, t = 0{a1), demonstrating that it
is not automatically ambipolar. For typical tokamak parameters this time interval
would be of the order of milliseconds. The approach to ambipolarity results not
from any property of neoclassical processes, but simply because the j; Bg driven

acceleration continues until j= 0.
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