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ABSTRACT.

For ICRH scenarii having the majority cyclotron resonance intersecting the plasma core, mode
conversion of the fast magnetosonic wave into an Alfven wave at the plasma boundary on the
high field side takes place. Simple analytical estimates for the convened power in this mode
conversion process are derived. In addition to the Budden parameter the convened power isfound
to depend only on the local absolute value of the fast wave electric field at theAlfven resonance.
Theeffect of thereflection of the fast wave from thewall surrounding the plasmaon the conversion
isthen easily explained. Theresultsare compared with numerical cal culationswherefmite electron
inenia and kinetic effects are included. The mode conversion is strongest for weak local density
gradient, high density, and for resonances lying not too near the wall. Its dependence on parallel
wavenumber turns out to be sensitive to the ion composition and on the exact location of the
resonance. For first harmonic heating of tritium in adeuterium-tritium plasmain JET tokamak a
nearly compl ete absorption of the power reaching the conversionlayer is predicted for low parallel
wavenumbers. This is a serious problem because of the weak absorption in the centre for this
scenario.



1 Introduction

For some ICRH scenarii in small aspect ratio tokamaks the cyclotron frequency of the majority
ions will at the high field side exceed the frequency of the launched wave. For such scenarii
the magnetosonic wave intended to heat the centre of the plasma can undergo mode conversion
into an Alfvén wave at the plasma boundary on the high field side. This gives rise to a parasitic
damping of the magnetosonic wave. When the wave is not completely damped at its first pass
across the centre of the plasma this parasitic damping press can become important even when
the wave is launched from the low field side. Mode conversion at the high field side during
ICRH occurs for scenarii for which the cyclotron resonance or its first harmonic lies close to
the cyclotron resonance of the main plasma species. Examples of such heating scenarii in JET
are: minority heating of D in T-plasmas, minority heating of 3He in D-plasmas, minority
heating of H in 3He plasmas, first harmonic cyclotron resonance heating of T in D-plasmas.
The mode converted Alfvén wave which propagates along the magnetic field lines can be
absorbed by electron Landau damping and ion cyclotron damping or be mode converted into a
slow electrostatic wave. In the case of mode conversion at the plasma boundary the slow wave
propagates only in a thin limited space on the high field side of the mode conversion surface
and will be absorbed or reflected at the plasma boundary. The reflected wave will in its turn
undergo mode conversion to an Alfvén wave which is partly converted back to a magnetosonic
wave. How serious this parasitic absorption mechanism is depends on how large a fraction of
the total power is absorbed. This depends on the transmission of the magnetosonic wave
through the centre of the plasma. For heating of 3He minority at its fundamental cyclotron
resonance in a D-plasma, the absorption or mode conversion at the centre is weak for waves
with a low parallel mode number, but the transmission coefficient is small, For the larger
parallel mode numbers the absorption is stronger. In this case the mode conversion at the
plasma boundary becomes less important. For the first harmonic heating of T in a2 D-T plasma
the absorption at the centre is weak and the transmission large, furthermore the mode
conversion at the plasma boundary becomes comparable to the absorption in the centre.
Hence, a large fraction of the total power can be absorbed there.

The mode conversion of the magnetosonic wave into an Alfvén wave for frequencies below



the cyclotron frequency of the majority species, for which a cut-off, resonance, cut-off triplet
appears, was treated by Karney et al. [1] in a plane slab geometry. The 2-D mode conversion
problem has been discussed in Refs. [2, 3, 4, 5]. In principle the fraction of the mode
converted power could be calculated by using 2-D global wave codes treating the mode
conversion as resonance absorption or by including a slow wave. However due to the large
number of grid points required to resolve the Alfvén wave and the slow wave, it is not practical
for realistic heating scenarii.

In the context of Alfvén wave heating the mode conversion at the Alfvén resonance is well
studied in the literature {6] where this resonance is thought to give a major absorption
mechanism of the wave. There, the angular frequency of the wave is well below the cyclotron
frequency of the main ion species in which case the ensuing two cut-offs and the resonance of
the fast wave form a closely spaced triplet. With density profiles allowing an asymptotic
analysis of the incoming and outcoming waves the conversion, reflection and transmission
fractions have been evaluated [1, 6]. In the present problem where the wave frequency is of
the order of the ion cyclotron frequencies of the plasma, the width of the interaction region may
be smaller than the wavelengths of the converted waves, and the proximity of the inner wall
poses a reflective boundary condition for emanating waves, new problems arise. In Section 2
we present a simple analytical estimate for the conversion fraction in the present problem
assuming a cold plasma and zero electron inertia. This estimate is tested against the numerical
solution of the local wave equations where the assumption of zero electron inertia is relaxed
and where the finite ion Larmor radius effects correct to second order in ion Larmor radius are
included. In addition, a2 numerical survey of the most interesting aspects of this conversion is
performed in Section 3. The relative absorption at the mode conversion and at the plasma
centre are compared for relative ICRH scenarii.

2 Analytical estimates for the converted power

The propagation of magnetosonic waves in a plane geometry may adequately be described by
the wave equation [7]
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where E, is the y-component of the magnetosonic wave in a coordinate system z,y,z
denoting the radial, poloidal and toroidal directions, respectively. The prime denotes the
* derivation with respect to = and all the lengths are normalised to ¢/w where ¢ is the speed
of light and w is the angular frequency of the radiation. n, is the refractive index of the
wave along the background magnetic field assumed in z- direction. The poloidal refractive

index n, is assumed to be zero. S and D are defined as
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where w,; and §; are the plasma frequency and cyclotron frequency (of species i) respec-
tively. The summation is taken over all species including the electrons. The fast wave
branch is clearly propagating in density regions 5+ D > n?and §—-D < n? < Sor
S—~D>ntand S+D<n?<S§ depending on the relative signs of S and D. At § = n}
which is the so called Alfve’n resonance (if w < €; for majority ions) the dispersion re-
lation has a singularity and it has been shown [6,8] that the power of the fast wave is
taken away from it at this singularity. The inclusion of finite electron inertia and kinetic
corrections in the corresponding wave equations allows the short wavelength modes to
appear in the dispersion relation. The square of the refractive index in this limit near the
Alfve’n resonance is sketched in Fig.1. By solving the wave equation, including the finite
electron inertia or kinetic effects, it has been found that the wave power is converted at
the § = n? resonance from a fast wave to short wavelength waves and the corresponding

amount of power is transformed accordingly.

To assess the wave absorption at the singularity, we calculate the derivative of the real part
of the Poynting flux I’ = Re(E; B.)', where Re( ) denotes the real part of the expression in

the brackets, the * the complex conjugate, and B, is the wave magnetic field component.



Using B, = —iE!, we obtain I' = Im(E; E{/) which can be written with the help of Eq.(1)

as
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The expression in the brackets is clearly real so that I’ = 0 everywhere except at 5 = n2.
The change in the Poynting flux, i.e. the absorption fraction of the incoming wave,
may therefore be calculated simply as an integral of I' over the singularity. Linearising
S = 5o+ 8'z, D.= Dy + D'z around the point of the singularity So = nZ at z = 0 we
obtain readily '

d Dz
Al = f_ e =n-2 | B, I, (5)

which gives the absorbed (or converted) power as a function of local field and parameters
at the singularity. We note that the expression in Eq.(5) shows the expected similarity
with the result by Karney et al.[1] obtained for the conversion fraction C in a one-ion

component plasma which can be written here in a general case as
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This formula is obtained with the help of matched asymptotic expansions for the field by
linearising the coefficient of B, in Eq.(1) with respect to z and is limited to a case of an

- outgoing transmitted and converted waves.

For the applications of the present paper, the expression in Eq.(5) is more useful because
of the possible reflection of the fast wave from the inner wall which is not included 1n
the derivation of Eq.(6). The presence of the wall suppresses the wave field because of
the boundary condition E, = 0 at the wall. One can improve the estimate in Eq.(6) by
requiring that the evanescent solution vanishes at the wall. In this way and following the

derivation presented in Ref.[1] we obtain
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for the conversion fraction in the presence of reflection. Here L,,, which is normalised to
¢/w, is the distance between the Alfve’n resonance and the wall. The incoming (+) and
reflected (-) fast waves at the high density side are taken to be of the form Ai(z/h) £
iBi(z/h), where Ai(z) and Bi(z) are the solutions of the Airy equation Ej — 2E, =0
(the coefficient of E, in Eq.(1) is linearised) and h = [} §' | /(5 — D))/3, On the low
density side near the wall the evanescent waves are taken to be of the form Ai(z/h) and
Bi(z/h). From Eq.(7) we see directly that ¢ — 0 as L, — 0, i.e. E, — 0 according to
the estimate of Eq.(5), while C approaches the generalised Karney estimate in Eq.(6) as
L, increases. Note that the estimates in Eqs.(6) and (7) are valid at D3/ | 5’ 31,
i.e. at small C.

From the estimates in Egs.(5)-(7) we see directly that the conversion becomes stronger at
higher density and with weaker gradient of S according to the dependence on the Budden
parameter n = wD2/ | §' |. The dependence of C' on =, is more complicated. It was
argued in Ref.[1] that the conversion increases for increasing n, with plasmas of one ion
component. However, in some many-ion component plasmas Dy may locally increase for
decreasing S, i.e. for decreasing n, for the Alfve’n resonance at Sp = n2. In these cases
D, is particularly sensitive to the magnetic field variation. For instance, in the case of
first harmonic heating of T in DT-plasma 7 is maximised for small n, while in the case
of *He minority heating in D-plasma 7 is maximised for large n,. These facts can be
easily seen by inspecting the dependence of Sy and Dy on n, with the constraint Sp = n?
for typical density and magnetic field profiles near the inner wall of a small aspect ratio
tokamak for these heating schemes. It is clear that the conversion generally is stronger
at resonances situating far inside the plasma due to larger density, weaker gradient of §

and due to larger | E, |, but can also become vanishingly small at Do = 0.

3 The Numerical Analysis

It was noted that the estimates in Eqs.(5)-(7) were derived in the cold plasma and zero

electron inertia limit and Eqs.(6)-(7), particularly, for specific asymptotic behaviourin the
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wave fields. It is of interest to study how good these estimates are if these conditions are
relaxed. This leads us to the analysis of the full wave equations including finite tempera-

ture, finite electron inertia and arbitrary profiles for the background plasma parameters.

Neglecting magnetic shear and toroidicity one may write the wave equations including

finite Larmor radius effects correct to second order in jon Larmor radius as [9)

(2 4 )l — (B +iE,)
+(n2 + nZ ~ S)E. + iny% +iDE, + in, ddEm f=0 (8)
(4 m)lo (e~ n (B, +iB,)
+inyd(£’ —iDE, — d;fzy +(nl-8)E,—nn.E, =0 (9)
in 22— nyn.B, - % +(n2 — P)E, = 0, (10)

where E., E, and E, denote the electric field components perpendicular to the magnetic
field (x,y) and along it (z), respectively. n, and n, are the corresponding refractive indices
of the radiation. A plasma slab inhomogeneous in the radial direction (x) is assumed.

The dielectric tensor elements are given by

S=1+ E ki Z(a1:) + Z(a-1:)) (11)

D=~ wilz(e) - Zoa)) - o (12)

P =1 (4262, 2/(a0.) (13)
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and Z denotes the complex-valued plasma dispersion function and summation extends
over all ion species. vr;, wy and ; are the thermal velocity, plasma frequency and
cyclotron frequency of the i’th species (i=e, for electrons), c is the speed of the light. All
the lengths are normalised to ¢/w. r; denotes the ion Larmor radius (vr:/ V2)(w/ ).

For typical plasma density and temperature profiles in tokamaks the edge gradients are
usually excessively large to make even the WKB approximation acceptable for describing
the wave behaviour. To assess the converted power or absorbed power at the Alfve’n
resonance, the full wave equations of Egs. (8)-(10) should be solved over the conversion
region. The problem which arises concerns the boundary conditions with which Eqgs.
(8)-(10) should be solved. To avoid solving these equations over the whole plasma one
should have reliable analytical estimates for the wave behaviour far from the resonance but
sufficiently near it (to make the integration length short and the physics simple enough).
We propose here boundary conditions in which the wave decomposition to the three
wave branches is made at the both ends of the calculation region. The short wavelength
| branches can be described by the WKB approximation; E., = in.,Eq,, E[p = in.pE.n,
where E,,, E.p and n,, n.p refer to the x- component of the electric field and the
refractive index, respectively, of the slow (s) and ion Bernstein (B) wave branches, and
the prime denotes derivation with respect to x. The corresponding fast wave branch
can be described by the Airy function solutions Ai(z) £ iBi(z) for the right going (+)
and left going (-) waves. Here Ai(z) and Bi(z) are the solutions to the Airy equation

e — 2By = 0 with z = —n2,/C*3, nl, is equal to the coefficient of E in Eq.(1), and
C = —d(nk,)/dz. If n2; < 0 is valid, one should use Ai(z) for the right evanescent wave
and Bi(z) for the left evanescent wave. Alternatively, to test the effect of the boundary
conditions we have determined E!,;/iE,; directly by taking it equal to nay which applies
if weak gradients at the boundaries are preferred. In the following the latter boundary
conditions are called as homogeneous while those relying on the use of the Airy function

solutions are called as Airy conditions. The polarisations of the wave branches are easily

assessed from Eqs.(8)-(10) with the assumed wave forms.
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We note that the kinetic effects are introduced via the terms proportional to o while the
finite electron inertia effects are equivalent to including E; in the equations i.e. having
finite P. Eqs.(8)-(10) reduce to Eq.(1) in the limit | P |- oo and o — 0 as can be seen
by putting E, = 0, o = 0 and by solving Eq.(8) for E, and substituting it into Eq.(9).

By solving Eqs.(5)-(10) with the finite element method [9,10] and by using the above
boundary conditions we are able to calculate the conversion, reflection and transmission
for a given incoming fast wave power flux with sufficient accuracy and with reasonable
computing time for routine runs. The boundaries of the computation region have to be set
on such regions near the conversion layer that they are valid with sufficient accuracy. This
requires that no cut-offs nor resonances nor wave fransformation points do lie near the
boundary. The zeros of § and ¢ are also avoided. The calculations include the possibility
of an incoming fast wave at both boundaries to allow the reflection from the walls or cut-
offs outside the calculation region. This is easily accomplished by decomposing the wave
at the boundaries to left- and right-going waves in addition to the branch decomposition.
For the short wavelength waves this is hardly necessary due to their local absorption and

due to the fact that their group velocity predominantly lies along the magnetic field lines.

The calculation can be done in a plane approximation which, however, may not accurately
describe the absorption of the short wavelength waves. Their propagation is strongly af-
fected by the toroidicity, and a 2-dimensional calculation would be needed [2,3]. However,
we believe that the 1-dimensional calculation is sufficient for estimating the conversion
fractions of the incoming power, and a separate analytical study could be done to estimate

the absorption of the short wavelength modes.

To solvé Egs.(8)-(10) across the Alfve’n resonance we have chosen suitable profiles for the
density and temperature near the inner wall using the data of JET. At the low density
boundary we have chosen the inner wall where a complete reflection for the magnetosonic
wave is assumed while the short wavelength waves are assumed to escape freely the in-
teraction region. Fig.3 shows graphs of the electric field components as calculated from

Eqs.(8)-(10) in the case of *He minority heating in 2 D plasma for 5% 3He concentration,

The chosen density profile N(z) is depicted in Fig.2. N is assumed to decrease exponen-

tially from 1.6 x 10'°m™2 to 5.3 x 1017m™? in a region from z = 0 to L = 0.04cm and is

assumed to have a constant value from = = 0.04cm up to the inner wall at L+a = 0.06cm.



w = 2.1x10%"! and B = 5.5T for the local magnetic field are assumed. The temperature
T = 50eV is taken and homogeneous boundary conditions are used. The locations of the
Alfve’n resonance and the cut-offs are shown with the chosen n, = 8 and n, = 0. The
graphs of E, and E, which characterise the slow wave branch, show clear mode conversion
around § = n?. E,, which is mainly due to the fast wave component, is suppressed by the
" proximity of the metal boundary and decays smoothly over the calculation region, due to
the long wavelength of the fast wave. No remarkable change in the results was found as
the integration was started from higher or lower density with the same density profile as

long as it includes the § = n? resonance.

In Fig.4 the fraction C of the incoming power that is converted to the slow wave branch
is shown for the case of Fig.3 as a function of the length L of an exponentially decreasing
density region and of the length a of the constant density region. The dependence on
a is clearly due to dependence of the amplitude of E, in the mode conversion layer on
the proximity of the metal boundary. When a becomes several fast wave (evanescent)
wavelengths C becomes more and more insensitive to a, as expected. With small a the
conversion strongly decreases with a because of the decrease of | E, | according to the esti-
mate in Eq.(5). For comparison we have shown in Fig.4 the prediction for C as calculated
from Eq.(7). This estimate is found to describe well the functional dependence of C on
a. The values from the numerical solution are larger by a factor of two, approximatively,
which was found to be due to the boundary conditions and the linearisation of § and D
applied in the derivation of Eq.(7). On the other hand it was found that the numerical
results agree with the estimate in Eq.(5). Extending the exponential density region by
increasing L (with the same density profile) increases the conversion at small a because
the distance between the metal boundary and the mode conversion layer increases. At
large a where this distance is not important one observes a slight reduction in conversion

as L increases.

The effect of density gradient on the conversion at the Alfve'n resonance is clearly pictured
in Fig.5 where we have modelled the density profile as N(z) = 1.6 x 10%exp(—gz/L)m™®
and show the conversion fraction as a function of L for g = 3.4 and 4.6. The other
parameters are the same as in Fig.3. The conversion increases as a function of L more
or less linearly in the depicted region according to the estimate of Eq.(5). For better

comparison, the corresponding curve for large a is shown for g = 3.4. This curve is free
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from the wall effects and makes the quantitative comparison possible to both estimates
in Eqs.(5) and (6). With the help of Eq.(5) one may write the converted fraction C
of incoming power as —AI/I, where I is the total Poynting flux coming towards the

resonance and AT is the change in the flux across the resonance. This is given by

D°_IEP

C=m s
[ S |nes | Eyo |2

(18)

where D, §' = dS/dz and E, are calculated at the resonance § = n? while n.y and Ey,
the perpendicular refractive index and the y-component of the electric field of the fast
wave, are calculated at the boundary through which the incoming power is coming. This
is an accurate expression for the conversion in the limits of cold plasma and | P |— oo,
where the electron inertia and, correspondingly, E, can be neglected. C from this formula
is shown in Fig.5 (for large a) and shows a similar trend as C from the numerical calcu-
lations. However, the obtained values from this estimate are somewhat larger than from
the numerical calculations. By taking the limit | P |~ oo in the numerical calculations
we found a good quantitative agreement between the numerical values and the estimate in
Eq.(18) showing that the observed discrepancy in Fig.5 (and also in Fig.4) is due to finite
electron inertia. The obtained P dependence of C for n, = 8 and L = 4em is sketched
in Fig.6 and has an asymptotic value for C which equals the value predicted by Eq.(18)
in Fig.5. Finite electron inertia effects were discovered to be particularly important at
small n, and at steep gradients where the estimate in Eq.(18) still gave the correct scal-
ing but its magnitude could deviate even by a factor of two from the correct result. In
the limit P — oo the results again agreed poorly with the estimate in Eq.(6), because
of the different boundary conditions. In fact, by using the Airy boundary conditions in
the numerical calculations a much better agreement was found in this limit. For typical
values I = 4 — 8cm and a = 2 — 10cm, a conversion fraction of 5 — 10% is obtained from

Figs. 4 and 5 for n, = 8.

The dependence on 7, is shown in Fig.7 for the parameters of Fig.3. C generally increases
as n, increases. This reflects the density dependence of ¢ which is nearly linear according
to Eq.(5) for an exponential density profile. Note that the Alfve’n resonance 5 = n? is
situated at higher densities at larger n,. At small n, less than about 4 the conversion is

zero because the slow wave becomes evanescent at the constant density regime and there
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is no Alfve’n resonance in the chosen density region. This feature is partly unphysical
because the density obviously continues to decrease down to the metal boundary. However
by extending the exponential decrease of the density nearer to the wall, a similar decrease
of C with n, was found as shown in Fig.7. The small hump in C at n, = 5 was found
to be caused by the change from the evanescent fast wave to a propagating one at the
low density region. At sufficiently high n, the fast wave becomes evanescent at the high
density boundary at z = 0 as calculated from Eq.(1). Therefore the curve has not been
_extended over n, = 10. However, in real circumstances the density still increases towards
the plasma centre and n.s certainly has a non-zero real part also for somewhat higher
n,. Some results for higher n, up to n, = 12 are shown when n,s was arbitrarily fixed
to ngs = 10 and 2. These results show that C still increases as a function of n,. The
corresponding curve for C at large a is also depicted together with the predictions from the
estimate in Eq.(18). A similar agreement as in the previous figure was obtained between

the estimates of Eqs.(18), (6) and the numerical results with large a.

We note that in all the previous calculations the reflectivity | R |? is found to be equal
to 1 — C, as expected because no net power is actually allowed to be transmitted across
the conversion layer. The only exceptions are those cases where the slow wave is allowed
to be reflected from the boundary in which case | R |= 1 is obtained and the case where
both waves are allowed to escape from the boundary. If the escaping fast wave in this
case is propagating the energy conservation 1 =| R |? + | T |> +C is accurately found

with T denoting the transmitted field.

As a second example, a D-T plasma with the first harmonic heating of tritium in JET
configuration is analysed. In this case with equal amounts of deuterium and tritium, S is
negative near the boundary but can be positive near the denterium cyclotron resonance
layer which in typical JET configuration in this heating scheme would lie at about 40cm
inwards from the inner wall. Mode conversion layer in this case is modelled with a locally
linearly decreasing density profile 10*°[1—z(m)/0.2]m ™3 and with a model 5.15x R/{ R—=z)
Tesla for the spatial dependence of toroidal field with R denoting here the major radius
at £ = 0. R = 2m is chosen with a temperature of 500eV and with w = 2.1 x 10%s7! for
calculations. The calculation is performed in the region fromz = 0 toz = L = 0.lm
and the wall is taken to be at z = L + a with @ = 0.1m. Fig.8 shows the conversion

fraction as a function of n, for the case of reflection and without it. The results are shown
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for homogeneous and Airy boundary conditions. They do not differ much for these two
boundary conditions making the present calculation method reliable for the evaluation of
the conversion over a limited plasma layer at the tokamak edge. We note that C shown in
Fig.8 is computed by reducing the power fluxes carried by the fast waves going out of the
plasma layer from the incoming fast wave power fluxes and dividing this difference by the
incoming (excluding the reflected wave from the wall) fast wave power flux. C therefore
also includes the possible damped fraction of the wave power fluxes. For larger n; (> 6)
electron Landau damping of the electrostatic waves can play a role in the present case.
By defining P as purely real in our computations we found the same C as shown in Fig.8
but now this fraction corresponded exactly to the fraction of the outgoing electrostatic
wave power fluxes as expected. In the case of complex P the converted waves were nearly
completely absorbed for n, > 8 within the computation region.

The effect of reflection of the fast wave from the wall differs clearly from the case of
3HeD-plasma where the resonance lies near the wall. In the present case the resonance
lies sufficiently far away from the wall so that the local value of | E, | actually oscillates
as a function of the optical length from the resonance to the wall. This is demonstrated in
Fig.9 where the same density profile as in Fig.8 extending up to L = 10cm and continuing
as constant from L = 10cm to I = 10cm+a was used for the same case with n, = 2. The
converted power clearly oscillates as a function of a because ny at the constant density
region in this case is real making | E, | to oscillate between zero and some maximum value
at the resonance. The obtained values of C' agreed with those of the estimate in Eq.(18)
with good accuracy thus proving the | E, | dependence. The conversion without the
reflection shown in Fig.8b has a small trend to increase as a function of n,. The Budden
parameter actually is larger for smaller n, in this case but the length of the evanescent
region in front of the resonance between the fast wave cut-off and the resonance rapidly
increases for increasing n, making | E, | to decrease at the resonance. Due to these
counteracting effects we obtain the slight increase in C for increasing n. in Fig.8b. A
good agreement with the estimate in Eq.(18) was again found proving the reasoning. The
increase in C at low n, in Fig.8a with reflection is explained by the obtained maximum for
C for the chosen @ = 10cm and n, = 2 as shown in Fig.9. For n, = 8 the corresponding
maximum is somewhat shifted and a smaller increase in C is obtained with reflection. The
small differences in Fig.8 for the two different boundary conditions can also be explained

with this reasoning. The results in this case were not sensitive to the value of P explaining
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the good agreement with the estimate in Eq.(18). Note that the converted wave in this
case turns out to be an ion Bernstein wave due to the proximity of § = 0 layer to the
Alfve’n resonance. As is known the slow wave can be transformed (and transmitted) to
a kinetic wave through the S = 0 layer or be reflected as a kinetic wave depending on
the sign of o. This can be important from the point of view of damping of the short

wavelength waves,

The case of first harmonic heating of *He in H-plasma is shown in Fig.10. Here the results
show strong conversion as in the case of first harmonic heating of T in D-plasma as is
expected because the cyclotron frequencies are doubled for both ion species. In fact, a
correspondence hetween these two cases should be obtained by having a two times larger
H density than D density and the same *He density as T density in these schemes in which
case the dielectric tensor elements S and D are the same for these schemes. However the
dependence of C on n, in the case of reflection is now somewhat opposite to that in the
case of DT- plasma which is due to the change in the optical length for the reflected wave.
Again a good agreement with the estimate in Eq.(18) is found. The large values of C
for n, = 8 and 10 in the case of no reflection are caused by our choice L = 15cm in the
calculations. For n, > 8 the fast wave becomes evanescent at the low density boundary
and a natural reflection results simulating the wall effect. In the present case o happens
to have a zero near the zero of S in the vicinity of the Alfve’n resonance. At small n,
the converted wave emanates out from the right boundary in the form of ion Bernstein
wave polarization while for n, > 2 it propagates out from the left boundary in the same

polarization.

4 Conclusions

According to the shown results the Alfve'n resonance on the high field side of a small
aspect ratio tokamak may cause strong local absorption of the heating wave in ICRH for
some specific heating scenarios. In the case of first harmonic heating of tritium in DT-
plasma the cyclotron absorption varies between 5% and 40% for typical JET parameters
while the TTMP/electron Landau damping varies between 7% and 20%. Due to the

large transmission much power may reach the Alfve'n resonance where a nearly complete
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absorption for low n, in JET configuration is predicted according to our results. An
equally strong conversion is obtained for first harmonic heating of *He in H-plasma which
could serve as a test case in the present inactive phase of experiments. For the heating
scenarios having the resonance very near the wall likein D minority heating in DT-plasma
or 3He minority heating in D plasma our results predict a fairly small conversion at the
Alfve’n resouance. This is due to the lower local density, steeper gradients and due to the

presence of the reflecting inner wall of the tokamak.

A good agreement between our numerical results and analytical estimates including the
wall effect are found. In particular, the agreement is found with an estimate for the
converted power which predicts a linear dependence on the Budden parameter and on
| Ey |? as calculated at the resonance. The latter dependence fully explains the wall effect
on the conversion. For resonances lying very near the wall the conversion is suppressed
by the small value of | E, | while for resonances far away from the wall the local field
value is determined from the standing wave pattern formed by the wall, antenna and the
cut-offs of the fast wave. Our results indicate a fairly complicated dependence of the
conversion on electron inertia. By multiplying the true P by an arbitrary real number
C was found to oscillate as a function of this number and to approach our analytical
estimates derived in the limit of zero electron inertia by making | P | very large. However
in the studied cases this oscillation did not cause large deviations from the analytical
predictions. Tilerefore, we expect that the formula in Eq.(5) could be used to simulate
the conversion at the Alfve’n resonance in the complex 2-dimensional codes solving the
waves in ICRH of tokamaks with a modest grid size. Anyway a more careful inspection

of kinetic and finite electron inertia effects is needed to improve the analytical estimates.
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Fig.1 The square of the refractive index near an Alfve’n resonance as a function of density

N(x). The fast wave and slow wave branch are shown.

N

N

N

N

N

N

N

N

N(x) \

gc'\

TN

SEN

l %\

* g

| _..I\

' 3N\

| TN

| SR

| N

‘ \

! [ t

! | T N

0 L « L+a

N
NCN C\ICN !
i t It
3 oo
o o

Fig.2 The mode conversion geometry with a model density profile for calculations.
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Fig.3 The graphs of the real and imaginary parts of E,, F, and E, as computed {rom
Eqgs.(8)-(10) for D(*He) plasma with 5% *He concentration. The density decreases expo-
nentially from 1.6 x 10*m—3 at = = 0 to 5.6 x 10*"'m~2 at z = 4cm, and remains constant
from z = 4cm to £ = 6cm. The other parameters are w = 2.1 x 108571, B = 5.5T, n. = 8,

ny, = 0.
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Fig.4 The conversion fraction C as a function of a for I = 4cm and for L = 6cm. The

other parameters are the same as in Fig.3. The prediction of the estimate in Eq.(7) is

shown for I = 4em (*).
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Fig.5 The effect of density gradient on C for model density profile N(z) = 1.6x10"%ezp(~gz/L)m™>
with g = 3.4 (x) and 4.6 {0). The other parameters are the same as in Fig.3. The results

with @ = 80cm and g = 3.4 (A} are also shown as well as the prediction of Eq.(18) for
this case (*).
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| Fig.6 C as a function of P*/P where P* is obtained from P by multiplying it by a real

number. The parameters are the same as in Fig.3 but a = 80cm.
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predetermined n,; = 10 (o) are shown for higher n.. The result with a = 80cm (A) is
also depicted together with the prediction of the estimate of Eq.(18) (»).
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Fig.8 C as a function of n, for D-T plasma with first harmonic heating of tritium with
wall reflection (a) and without (b). An electron density profile N(z) = 2 x 10%°[1 —
z(m)/0.2Jm2 is chosen with equal amounts of deuterium and tritium extending from z =
0to z = L = 0.1m which defines the calculation region. The wallis takentobeat z = L+a
with @ = 10cm. T = 500eV and the magnetic field dependence 5.15TeslaR/(R — z{(m))
with B = 2m are assumed and w = 2.1 x 10%s~1. The result is shown for the Airy (solid

line) and the homogeneous (dotted line) boundary conditions for the fast wave.
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Fig.9 C as a function of o for the case of Fig.8a with the homogeneous boundary condi-
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Fig.10 C as a function of n, for *He-H plasma with first harmonic heating of 3He with
wall reflection (a) and without it (b). An electron density profile N(z) = 4 x 10%°{1 —
z(m)/0.2]m™? is chosen with the abundancies 33.3% for *He and 66.7% for H. L = 0.15m
and a = 0.05m are taken. T = 500eV and the magnetic field dependence 5.15Tesla /(R —
z(m)) with R = 2m are assumed and w = 4.2 X 1071, The result is shown for the Airy

(solid line) and the homogeneous (dotted line) boundary conditions for the fast wave.
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