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ABSTRACT.

Non-magnetohydrodynamic effects, caused by a minority population of energetic particles and/
or by the large gyroradii of the main ion population, strongly modify the stability of a high
temperature toroidal plasma against m = 1 internal modes. We show that the enhanced stability
due to the presence of the energetic particlesisreduced in the large gyroradius regime, where the
width of the transition layer of the mode is determined by the gyroradius of main ions. This
modification results from the presence of a discrete spectrum of resistively damped Alfven-type
modes which can be destabilised through the resonance with the energetic ions.



I INTRODUCTION

The repetitive temperature relaxations of the central part of the plasma
column in a toroidal configuration (sawtooth oscillations) pose a potential threat to
the achievement of ignition conditions. On the other hand, a minority population
of energetic ions, produced for example by aﬁxiliary heating at the ion-cyclotron
frequency, has been experimentally recognised [1] and theoretically demonstrated [2-
6] to improve the plasma stability against these relaxations, leading in the JET
experiment to periods, long on the energy confinement timescale, during which
sawteeth are absent. The same stabilisation mechanism has also been predicted [3,7]
to apply to the naturally occurring o-particles in an ignited Deuterium-Tritium
(D-T) plasma. Indeed, o-particles can extend the stable value of the plasma poloidal
beta parameter By as much as three to four times above its value as determined
within the ideal magnetohydrodynamic (MHD) approximation. This prediction has
made the experimental JET findings of sawtooth suppressed regimes directly
relevant to the identification of the ignition regimes that are achievable as far as
global MHD stability is concerned.

It has been indicated [7] that for the high temperature and relatively large By
values that are expected in an igniting plasma, the relevant stability condition is
determined by the branch of the m =1 internal modes that is related to the
excitation of the so-called "fishbone" oscillations. These oscillations, first detected in
the Poloidal Divertor Experiment in Princeton [8) and subsequently in other
experimental devices including JET [9], are interpreted [10-12] as arising from the
resonant, i.e. dissipative, response of the energetic ions, whereas the reactive part is
responsible for the enhanced stability when the mode frequency is small compared
with the characteristic magnetic drift frequency of the energetic ions, wph. Indeed,
sawtooth stabilisation and fishbone excitation have been shown [3,7] to be directly
related phenomena. Inside the stability domain both sawteeth and fishbone

oscillations are stable. The stability domain in the Jp4 ~ Bph plane is given in Fig. 6



or Ref. 7. In that figure ¥mnd = Ymhd / @pn is the normalised MHD growth rate

which increases with the poloidal beta parameter, ﬁp, of the bulk plasma, and ﬁph is

a suitably normalised poloidal beta of the energetic particles (see Eq. (23) below).
Fishbone oscillations turn unstable in a parameter "band” boundarying the stability

domain at larger values of Bp and/or of Bph. Further away from this band, the

instability turns from resonantly driven to fluid-like and takes the characteristics of
an ideal MHD internal mode driven by both the pressure gradient of the bulk
plasma and of the energetic ions. Along the marginal stability curve that defines the

stable domain, the mode frequency increases from g; at small Bph, to wph at larger
ﬁph, where wg; is the bulk ion diamagnetic frequency evaluated at the mode

transition layer (i.e. at r = 1o with q{ro) = 1, r the radial coordinate and g the magnetic
winding number). This frequency excursion includes the two frequency regimes
that were considered in Ref. 10 and in Ref. 11, respectively, in order to interpret the
observed fishbone oscillations. These two regimes merge and the stable domain
disappears if wgj ~ ©ph, which was the regime relevant to the PDX experiments [8].

The above analysis has been mainly developed for plasma conditions such
that the mean gyroradius of the bulk ions is smaller than the width of the mode
transition layer at r = ro. However, this condition may not be satisfied in a high
temperature igniting plasma. We recall that within the fluid theory the width of
this layer is determined either by ion inertia or by electron resistivity. On the other
hand it is determined by the size of the ion gyroradius p; when this becomes large.
A detailed investigation of internal modes in this "ion kinetic regime" has been
presented in Ref. 13 based on the analysis of resistive modes in the so-called semi-
collisional‘ regime [14].

In the present paper we extend the results of Ref. 13 by including the effect of
an energetic ion population with a magnetic precession frequency wph which is
much larger than the bulk ion diamagnetic frequency g; as is the case in an ignited

plasma. Our aim is to determine the stability domain obtained when the large size
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of the bulk ion gyroradii is taken into account and to compare it to the results of
fluid theory [7,15]. Similar results have been obtained numerically using an
improved model for the electrical resistivity, valid in the low collisionality limit
[16].

We find that for large values of (p;/roeqn1/3), where pj = o(Timp1/2/eB, and £n
is the inverse magnetic Reynolds number, the parameter domaih where low
frequency (® ~ wg;) resonant (fishbone) modes occur is enlarged. This decrease of

the stable domain occurs at lower values of ﬁph. Fishbone modes can in principle

occur for values of the bulk plasma poloidal beta Bp below the ideal MHD threshold,
in contrast to the results of fluid theory. However, for values of (p;/ roeql/ 3} that are
relevant to ignition regimes, the extension of the fishbone domain is smaller. For
larger values of Bph, corresponding to oscillations with frequency ® ~ wpp, the fluid
result is essentially recovered as long as the condition p;j/ry << wph/®A is met.

Physically, the reduction of the stability domain results from the presence in
the large ion gyroradius regime of a discrete spectrum of resistively damped Alfvén-
type modes which, for vanishing ey!/3ro/pi, accumulate at a limiting frequency @,
defined in Eq. (10} below. Both their frequency and damping rate have inverse
logarithmic dependences on eq1/3ry/pi. The energetic ions can resonately destabilise
the modes in the lower frequency portion of the spectrum. As the parameter
en1/3ro/pi is increased, the number and the growth rate of the unstable modes
decrease.

The appearance of a resistive correction in logarithmic form is related to the
asymptotic behaviour of the mode amplitude when the layer where resistivity is
important is approached. In this layer the two independent solutions of the
dispersion equation behave as powers of the independent variable (see Eq. (B6) of
Ref. [13]). For modes with real frequency o ~ @, the exponents become complex
conjugate so that a dissipative mechanism in Ohm's law (for example resistivity or

electron viscosity) must be invoked in order to regularise the amplitudes. As a




consequence, the small parameter associated with this mechanism enters the

dispersion relation through a logarithmic term.

I DISPERSION RELATION

We refer to the results of Refs. 13 and 14 where the mode dispersion relation
is obtained as follows. Inside the transition layer non-ideal effects like resistivity
and parallel compressibility are taken into account in the electron response. The ion
response is calculated to all orders in the ion gyroradius. The width of the layer is
determined by the ion gyroradius, while resistivity is important in a narrow sub-
layer. These responses are treated in a Fourier space representation. In this
representation the Fourier variable is interpreted as the radial wave vector. In a
plasma configuration with finite shear at the q = 1 surface, the plasma contribution
from the ideal MHD region outside the layer takes the form of a boundary condition
to be imposed at small values of the Fourier variable. This boundary condition
depends on a single parameter which is denoted by Ay (first introduced in Ref. 17),
and which is proportional to the negative of the energy functional 3W. The
resulting dispersion equation is solved in Fourier space by a double asymptotic
matching procedure. A simplification is achieved by adopting an approximation of
the full ion kinetic response [14] that bridges the small gyroradius limit
(corresponding to small values of the radial wave number variable) to the large
gyroradius limit (corresponding fto large radial wave numbers). This approximation
is applicable to modes for which the effect of the gradient of the ion temperature Tj
is not crucial as is the case for modes with ® < wg; [13]. In the following we shall
take d¢nTj/dénn = 0.

The energetic ion population modifies the plasma response outside the
boundary layer and, as discussed in detail in Ref. 7 (see also references therein), can
be accounted for by the substitution

Ay = Apg =y + Ak (o). 1)

For an isotropic distribution the complex function Ak{w) can be written as
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@)= (B 5 k(o) .

where g5 =15/Rg, 55 = To(dq/dr)r ’
1
—8r
Bp(ro) 0 (3)

ph is the hot particle pressure and Ax(w) is a frequency dependent form factor.

The real part of Ax(w) represents the reactive response of the energetic ions
and is negative (stabilising) for lower frequencies and positive for higher
frequencies. The imaginary part of Ax(w) represents the velocity dependent
resonant interaction with the precessing energetic ions and is negative for ®/wpnh >
0. A plot of Ax{w) for real ®  is shown for a slowing down, isotropic a-particle
distribution function in Fig. 1, where @ph = cen/{(eBRoro) is the orbit averaged
precession frequency of deeply trapped a-particles with birth energy e, = 3.5 MeV in
a D-T plasma, evaluated at T = I

The resulting dispersion relation can be written in the form [13, 14]

L(lHK,O))-i-I‘F(—V): H(V) (I/S)V
L{Apg,0)+iF(v)  H(-Vv) '

(4

Here,

)=t
— Wi

(5)
with A = VA/(RpV3), VA = (B2/4npm)1/2, pm the mass density, Ry the torus major
radius, and @dj = - [{c/eBrn)}(dp;/dr)ls,. The function F(v) is defined by

iF(v)= 8(%— vz)_3/2 F%%JF%V)/F%—%%—%V) ,

6)
with

(a’ — m*e)(w - wdi)

W+ o) p; /7, st %)

vV =

=

o+, being the electron drift mode frequency and t = Te/Tj the ratio of the electron

and ion temperatures. In the right hand side of Eq. (4),



Hwv)=2"T*M13(3-1v), ®

and

(w — w*e)(m _ wdi)

Twsto, 0+ 7 (o, / ra)4 ’ ©)
with &g = MN1802c2/ (4nra?ma) the inverse magnetic Reynolds' number, and 1, the
parallel resistivity. In the semi-collisional regime under consideration, lel << 1. In
the derivation of Eq. {(4) an isothermal equation of state has been assumed for the
electrons. Moreover, since the ion temperature gradient has been neglected, w«e = -
wdi/T. For the sake of simplicity we shall take © =1 and wq; positive. Since Eq. (4) is
symmetrical for v - - v, a convenient prescription can be adopted in defining v
from (7). We choose Im v < 0, which corresponds in the case of growing ion modes
toRev > 0.

For ion modes with real frequencies in the range 0gi <® < wp, we have 0 <v

<1/2, where oy is defined by v(w = wp) =0,

2
2_ .2 1Pl 2.2
Cﬂp—ﬂ)di‘l“-z—[r—l) SOCOA.
(4]

(10)
In this frequency range F(v) is purely imaginary. For larger real frequencies, v
becomes imaginary and F(v) is complex, while for purely gx;;wing modes, V2 > 1/4
and F(v) is real. In the limit of large frequencies, |vl — oo, and F(v) — 1. A plot of
Re F(v) and Im F(v) is shown in Fig. 2.

Before focussing our attention on marginally stable modes with frequency © >
wdij, corresponding £o - e < v2 <1/4, it is useful to discuss first the general properties
of the dispersion relation (4), by considering the frequency behaviour of its right
hand side. If the r.h.s. is large, the leading order dispersion equation according to (4)
- is{7]

L(A g, @)=—iF(v). (11)
Due to the smallness of €, this dispersion equation is obtained for finite and positive
values of Re v, i.e. for growing modes. For Re v finite and negative, i.e. for damped

modes, the r.h.s. of Eq. (4) is small, and Eq. (11) with v — - v is obtained. On these




modes resistivity leads to corrections proportional to powers of €,, except when v =
1/2, in which case, Eq. (6) yields F(v) — 0. In the latter limit resistivity plays an
essential role leading to semi-collisional tearing and m = 1 internal modes as
discussed in Refs. [13] and [14]. For real positive values of v in the range v < 1/2 and
not too close to zero, marginally stable modes can be found in the range wg; < ® <
0, if Ay is real and larger than the negative value
1/2
A gt min = “2*/5[?2(1/4)/1"2(—1 / 4)] {wp /{wp+ wdi)] (pi /1 15). (12)
These modes are destabilised by the resonant interaction with the energetic ions, i.e.
by Im Ax. Thus, Eq. (12) represents the extension of the low frequency fishbone
domain to negative values of Ap, i.e. to values of By below the ideal MHD
threshold. However this result is only indicative since, as will be illustrated later in
this section, the effect of resistivify cannot be neglected as v approaches zero.
Next we consider the high frequency limit in which v e - im. The asymptotic

behaviour of the r.h.s. of Eq. (4) is

H(v) (l-/&.)Vmexp[v("2+2£n4lvl+2i arg v—-ino+in/2—Lne)|,
H(-Vv) (13)

where ¢ = sign (arg v). Expression (13) is a fast oscillating function of the frequency.
Its amplitude is finite for modes with almost real frequencies (argv=-7n/2, 6 =% 1)

such that

Re[ﬂn(l 6v? / e) +ivm/ 2] =0(1). (14)

This balance corresponds to the high frequency Alfvén-type modes (see Eq. (63} in
Ref. [14]). Their dispersion relation is mainly governed by the fast oscillating
exponential. For this reason the MHD boundary conditions play a minor role on

these modes. As shown by Eq. (14), these modes are weakly damped with

Imw wl?

Rew ™ sn16pf/e)

i

(15)



If this balance is not satisfied, i.e. for larger damping or growth rates and for purely
oscillatory modes, the dispersion relation (11) is recovered with F(v) — 1. If all
resistive corrections are disregarded, this dispersion relation is identical to that of
internal m = 1 fluid modes. The ideal MHD growth rate, Y= ymup = AH®A4, is
obtained from (11) in the limit mp/ Ymhd — 0 and no energetic particles (Ax = 0).
~ Modes similar to the high-frequency Alfvén-type modes are also found for
intermediate values of v close to the imaginary axis and for small values of v. For
these values H(v)/H(-v) is a finite quantity so that the magnitude of the r.h.s. of (4) is
determined by the factor (i/€)V which is finite for
Re(vfn ) = 0(1). (16)

The mhd boundary conditions play an increasingly important role for decreasing v
because the r.h.s. of Eq. (4) oscillates more slowly and all contributions to the
dispersion relation become of the same order of magnitude. As will be shown
shortly, modes in this range of values of v are resistively damped in the absence of
energetic particles, i.e. for real boundary conditions Agx. The resonant interaction
with the energetic ions tends to destabilise these modes.

We are interested in marginal stability for modes with frequency ® > wg;.
Near wgj, Vv is real and positive and the dispersion relation (11) is valid, as discussed
above. When o approaches wp, v — 0 and the full dispersion relation has to be
considered. For larger frequencies, v is negative imaginary, and for sufficiently large-
frequencies the dispersion relation (11) is again recovered.

To treat analytically modes with frequencies around wp we consider the
ordering

vieni/e=0(). (17)

With this ordering the dispersion relation (4) becomes

L{A g, p ) +iF(0)—iv F(0)
LAy, 0p )+ iF(0) + iv F(0)

=(1+iav) exp[v in(1/ 8)] )
(18)



where ¢ is evaluated at ® = wp, F(0) = - 4i [2(1/4)/T2(- 1/4), F(0) = F(O)[w(5/4) - w(-
1/4)] with y(z) = I'(z)/I'(2) and
=(7/2)-2i{&n2+ w() - w(5/4)]. (19)
The imaginary contribution to « arises from the expansion of H(v) /H(-v). In terms
of the normalised variables
[( (Arik0p) +iF(0))/ zF’(O)] (1] ),
v=vin(l/e) and  a=a/in(l/e)<<1, 20)
Eq. (18) can be written as
x=-vectgh [5/2(1 + z&)] . N
The small v limit of Eq. (11) is recovered from (21) for Re v >> 1, where Eq. (16) is
violated. In the absence of energetic ions L(AHK,mp) is real. To leading order in ({n
1/¢)1, Eq. (21) gives, for fixed X, - o < X < + oo, a discrete spectrum of undamped
modes with frequencies Re ® = wy + O[(£n 1/€)-3] that accumulate at o = ®p., The
damping rate, Im ® - O[(¢n 1/€)73], is obtained by including the first order quantity a.
This spectrum of damped modes is destabilised by the resonant interaction
with the energetic jons. The resulting marginal stability curve is obtained by
solving (21) for x as a function of imaginary t (w > wp). According to Eq. (21), the

imaginary part of o can be removed by rescaling x and t. Taking o to be real, Eq. (21)

can be rewritten in the form
—2.2

— 52

] 1+l
{Imx~1+_lat:1 +(Rex)2:-——?-’-——

(94 o (22)

which is a spiral curve in the complex x-plane. Since t22 becomes increasingly
negative and ite increasingly positive with increasing frequency, the radius of the
spiral decreases and its "instantaneous" centre moves along the imaginary axis away
from the point Im x = a-1. This radius is very large on the normalised x scale due to
modes with v = - iz. This implies that along the marginal stability curve Re Agx
and Im Agg undergo excursions that are of order one and are independent of
resistivity to leading order in 1/£n(1/¢). Thus the relevant zero resistivity limit is

obtained by first setting the mode growth rate equal to zero and by taking

-10-



subsequently the limit of vanishing resistivity. Note that since the resistivity enters
logarithmically in the dispersion relation, the theoretical limit of zero resistivity
involves values of ¢ that are unrealistic.

For realistic values of the magnetic Reynolds number, £n(1/¢) is large but still
finite so that the dispersion relation (4) has to be solved numerically. We limit
ourselves to modes with frequency @ > wp. In Fig. 3, the marginal stability curve is
shown in the complex Apik plane for wdi/®ph = 0.07, ©p/®ph = 0.12 and
wp/(waen1/3) = 8.5, corresponding to e(w = wp) = 1.5 x 104, Since £n(1/¢) is finite, the
number of times the spiral winds upon itself is limited and its centre shifts with the
frequency along the imaginary Apx axis. At larger frequencies the oscillations
disappear and the curve corresponds to that obtained in the limit of Eq. (11). In Fig.
4, the real and imaginary parts of Ay are given as a function of [v! for the same
values of the relevant parameters as in in Fig. 3. For small v/, the curves in Fig. 4

are reminescent of the functional behaviour in Eq. (21). The marginal stability

curve of Fig. 3 translates into the solid curve of Fig. 5 in the (f/mhd, ﬁph) plane, where

Bon=(€oBph/So)(@A /@DH)- (23)
This curve is interrupted for w approaching wgj. The stable domain lies below and
to the left of this line. Inside the spiral structure more than one mode can be
unstable with Re ® ~ w,, while elsewhere only one mode with wpy, > Rew>wmpis
unstable. The right boundary of the stable domain corresponds to large negative
values of vZ (@ ~ ©ph) and therefore depend very weakly on resistivity. On the
other hand, the left boundary at low values of ﬁph (missing in Fig. 5) requires an
analysis of modes with Re w < wgj. This frequency range has been studied with the
two fluid model for the plasma bulk [4] and leads to the threshold indicated by the
part of the dashed line adjoining ﬁph = 0in Fig. 5. The latter line intercepts a second
dashed curve corresponding to the two-fluid marginal stability at higher frequency
(w > ogj). We expect a similar stability boundary for Re @ < wg; in the core-ion

kinetic regime. In fact, in this regime, similarly to the two-fluid case, growth rates
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scale as a linear power of resistivity at sufficiently large diamagnetic frequencies [wg;,
e > (pi/ roenl/ 3)4/7wA] and in the absence of energetic ions [13]. For comparison,
the marginal stability solution of Eq. (11), which is obtained when the limit ¢n{1/g)
— o is taken before the limit v/ @p = - 0, is represented by the dotted curve of Fig, 5
for the same values of wgj/®ph and wp/@DH.

As resistivity is decreased, the ascending part of the stability boundary shifts
towards negative values of ¥4, so that the stable domain becomes narrower, while
the region interested by the spiral structure increases until a limiting area is
approached as £n(1/e) — . The mathematical limit of zero resistivity, taken after
the growth rate has been set to zero, is illustrated by the dashed curve of Fig. 6. The
marginal stability condition now yields a spiral structure which fills densely the
limiting region enclosed by the dashed curve. In this region, an infinite number of
roots are degenerate at marginal stability with a frequency ® = wp. The solid line
corresponds to v/ w@p = 103 and @p/ (waen1/3) = 85, yielding e(w,) = 1.5 x 107. The
latter value is rather extreme and is shown here for the purpose of illustration. In

this case, many roots with Re @ =~ wp are unstable within the spiral structure.

I CONCLUSIONS

We have investigated the linear stability of m = 1 modes in a magnetically
confined plasma in the presence of energetic particles, taking into account the full
gyroradius effects of the thermal ions as well as the effects of a small but finite
electrical resistivity. Assuming, for simplicity, equal thermal electron and ion
temperatures and neglecting the thermal ion temperature gradient, the stability
condition depends on five normalised parameters, which can be chosen as:

(i)  the ideal MHD energy functional, ¥4 = AH®A/ 0Dk

(i) the poloidal beta of the energetic ions, Sy, = (EoBph/s0) (@ /@DR);

(iii)  the ion diamagnetic frequency, wgdi/®Dk;

(iv) the ion Larmor radius, p; = (sopi/ro)(®A/0D);
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(v)  and the reciprocal Reynolds number, &y,

We have focussed our attention on modes which oscillate with a frequency of
the order of, or larger than the ion diamagnetic frequency. At the highest values of
the bulk ﬁp, i.e. for larger and positive Ly, these modes are essentially ideal MHD
internal kinks, largely unaffected by the non-ideal effects. As discussed, e.g. in Ref.
[7], if wgi << @pp, the ideal MHD stability threshold is raised in the presence of
energetic ions from Ay = 0 to a positive value which increases linearly with Bph: ie.

AH ~ €0Pph/So, up to a maximum value corresponding to ¥y,pq ~ 0.5. Near the

marginal stability curve, modes with wg; < Re ® < wpp tend to be damped by

resistivity, but arel destabilised by the resonant interaction with the fast ions, giving
rise to fishbone-like oscillation bursts.

The interesting feature of the large ion gyroradius regime is that a new
frequency, ®p = [gi2 + (Pi/2r0)2s02wA2/2]1/2, is introduced. For small wg;, this
frequency corresponds to the Alfvén frequency k| VA ~ soxVA/R, where rox = (r - 1)
is of the order of the width of the transition layer, 8 ~ p;/ v2. We have shown that
these modes exist as localised modes in the presence of resistivity even for negative
values of AH. In principle, this could allow the excitation of low frequency fishbone
modes for values of Bp below the ideal MHD threshold, as pointed out in Ref. 7.
However, the resistive damping becomes quite strong in this case and, being
proportional to ({1 €n)°1, weakly dependent on the value of the magnetic Reynolds
number, so that for realistic parameters the unstable fishbone region at negative AH
is practically wiped out. Nonetheless, the new frequency w, guarantees the existence
of a low frequency fishbone regime even when wg; is negligible.

For values of p << 1, the high frequency portion of the marginal stability
éurve, near which high frequenrcy fishbones with @ ~ wpy, are expected to be excited,
1s not significantly modified.

In a D-T ignition experiment, where alpha particles with an energy e ~ 3.5

MeV are produced, typically one has wgi/ @pn << 1 and p ~ 0.1. For these

-13-



parameters, the erosion of the left boundary of the stable domain by an amount
ABpa ~ (s0/€0%/2)(pi/To0) as discussed in Ref. [7], is partly compensated by the resistive
damping, while the maximum value of B that can be stabilised in the presence of

the alpha particles remains largely unaffected.

Acknowledgement

Discussions with. H.L. Berk and Y.Z. Zhang are gratefully acknowledged. This
work was performed in part within the Association agreement between Euratom
and FOM with financial support from N.W.O. Financial support from the Scuola

Normale Superiore is also acknowledged.

-14-



References

[1]

[2]

4

6

[7]

D. Campbell, et al., in Proceedings of the 15th European Conference on

Controlled Fusion and Plasma Physics, Dubrovnik (EPS, Petit-Lancy,

Switzerland 1988), Vol. 12B, Part I, 377.

B. Coppi, R.]J. Hastie, S. Migliuolo, F. Pegoraro and F. Porcelli, Phys. Lett. A,
132, 267 (1988). |

F. Pegoraro, F. Porcelli, B. Coppi, P. Detragiache and S. Migliuolo, in Plasma

Physics and Controlled Nuclear Fusion Research 1988, Proceedings of the 12th

International Conference, Nice (International Atomic Energy Agency,

Vienna, 1989), Vol. II, p.243.

B. Coppi, P. Detragiache, S. Migliuolo, F. Pegoraro and F. Porcelli, Phys. Rev.
Lett. 63,2733 (1989).

R.B. White, P.H. Rutherford, P. Colestock and M.N. Bussac, Phys. Rev. Lett.
60, 2038 (1988).

R.B. White, M.N. Bussac, F. Romanelli, Phys. Rev. Lett. 62, 539 (1989).
B. Coppi, S. Migliuolo, F. Pegoraro and F. Porcelli, Phys. Fluids, in press.

G. McGuire, R. Goldston, M. Bell, M Bitter, K. Bol, K. Brau, D. Buchenauer, T.
Crowley, S. Davis, F. Dylla, H. Eubank, H. Fishman, R. Fonck, B. Grek, R.
Grimm, R. Hawryluk, H. IHsuan, R. Huse, R. Izzo,R. Kaita, S. Kaye, H. Kugel,
D. Johnson, J. Manickam, D. Manos, D. Mansfield, E. Mazzucato, R. McCann,
D. McCune, D. Monticello, R. Motley, D. Mueller, K. Qasa, M. Okabayashi, K.
Owens, W. Park, M. Reusch, N. Sauthoff, G. Schmidt, S. Sesnic, J. Strachan, C.

-15-



&l

[10]

[11]

[12]

{13]

[14]

[15]

[16]

[17]

Surko, R. Slusher, H. Takahashi, F. Tenney, P. Thomas, H. Towner, J. Valley
and R. White, Phys. Rev. Lett. 50, 891 (1983).

M.F.F. Nave, E. Joffrin, F. Pegoraro, F. Porcelli, P. Smeulders and K. Thomsen

7

in Proceedings of the 16th European Conference on Controlled Fusion and

Plasma Heating, Venice (EPS, Petit-Lancy, Sqitzerland, 1989), Vol. 13B, Part I,
505.

B. Coppi and F. Porcelli, Phys. Rev. Lett. 57, 2272 (1986).

L. Chen, R.B. White and M.N. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984).
B. Coppi, 5. Migliuolo and F. Porcelli, Phys. Fluids, 31, 1630 (1988).

F. Pegoraro, F. Porcelli and T.J. Schep, Phys. Fluids B1, 364 (1989).

F. Pegoraro, T.]. Schep, Plasma Phys. Controlled Fusion 28, 647 {1986).

A preliminary analysis of this modification is given in Section V of Ref. 7,

where, however, the effect of resistivity is disregarded.
H.L. Berk and Y.Z. Zhang, private communication.

B. Coppi, R. Galvido, R. Pellat, M.N. Rosenbluth and P, Rutherford, Fiz.
Plazmy 6, 961 (1976) [Sov. ]. Plasma Phys. 2, 533 (1976)].

-16 -



1.0
Real A,

05

© JGes 27718

|

]
O
ol
™
o
o f
-'L_
N
_-tn
(o]
N

! wpp

Fig.1 Real and imaginary parts of Ay (@ / &y ) = (so / ‘Bphsom)
Ag(®/ oy, ) for an isotropic slowing down distribution of energetic
particles (from Ref, 7)

151

]

05

00

- = ~
05 /

Real F(»)

10 A\ e I FO)

'I
\ ’,
~15F

\\ |

il

_2‘0_ | ] | 1 q | H | l

-1.0-08 -06 -04 -02 00 02 04 06 08
V2

© JGessoe

—r

Fig.2 Real and imaginary parts of the function F(v), defined in Eq.(6),
versus real v*, defined in Eq.(7).



Re Ak

| ] |
0.2, 0.4 0.6 0.8

~Im AHK

O JG 8023

—h

Fig.3 Re A, versus Im A4, along the marginat stability curve for the
following parameter values: @ / @y, =0.7; @, / @, =0.12 and

o, {w,e," ) = 8.5 comresponding o s(a)p) =1.5%x107.



0.1

Re Ayk
o
o
I

—0.1}

O UG s

—
(o]
N
o
w
[aw]
o~

1.0 ()

0.8

0.6

~Im Ak

0.21-

0.0 | 1 |
0.0 1.0 2.0 3.0

[v]

O UG 9025

.y

Fig.4 Re Ay (a) and Im A, (b) versus v for v? real and negative,
and same parameter values as in Fig.3.



0.8

0.6
0.4+
E
=
02
~
// // .
0.0k // |
P ABLE
P ©
—o02l” | ! | g
0.2 0.4 0.6 0.8
éph

Fig.5 Marginal stability curves in the {7y, B ) plane. The solid line

corresponds to marginal stability from the dispersion relation (4) for

Re @ > @ . The stable domain lies below and to the left of this line
Parameter values are the same as in Fig.3. The dotted curve corresponds to
marginal stability from Eq.(11) for @, / @y, = 0.12, £, =0 and growth rate
¥/ @, — 0. The dashed curves corresponds to the fluid core - jon limit of
Ref.[4], with @y [ @y, =0.7.

0.8

0.6

0.4

Ymhd

0.2

0.0

-0.2

@ JaenaT

o
N
o
N
[o»]
o
Q

Fig.6 Solid line: marginal stability curve for @, / @, =0.07, @, / &, =0.12,
v/ 0,=10% and @, / (0,," } =85, corresponding to £{@, } =1.5x10”. Many
ro0is with Re @ = @, are unstable within the spiral structure. In the limit
{(£n1/€})— «, ¥/ ®, — 0, taken in that order, the region occupied by the spiral
structure tends to a limit area indicated by the dashed curve.



