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ABSTRALT

The growth rate of the linearised drift—tearing mode is found to be a non—
monotonic function of the stability pavameter A'. It reeches a maximum for
A" ~ 0,5 A", > 0 and becomes negative for A' > A',, corresponding to the
regime where the constant—y approximation breaks down. A second mode,
identified as the diamagnetic modification of the n!‘3- mode near the
condition for ideal magnetchydrodynamics marginal stability, becames ungtable

for A" 2 A', > A',, leaving a stable window of values of A'.

Submitted as a Letter to Physics of Fluids B



As is well known, a magnetised plasma carrying an inhamwgeneous
electrical current density is subject to the onset of resistive modes that
léad to a change in the topology of the magnetic field [1]. The instability
tends to reduce the current density gradient through a process of tearing and
recomnection of magnetic field lines and the formation of magnetic island
configurations. This fundamental plasma phencmencn has been shown to occur
both in astrophysics [2] and in controlied fusion experiments {3}. In
particular, in toroidal confinement systems, resistive modes with low
poloidal {(m) and toroidal (n) mode numbers are often associated with
macroscepic plasma oscillations and loss of confinement., Anm=1, n=1
helical displacement of a plasma core where g(r) < 1 (g = rB <I>/RB6’ with r the
distance fram the magnetix axis, R the torus major radius, B > and B8 the
toroidal and poloidal magnetic field components, respectively} is chserved
preceding the relaxation phase of the sawtooth-like internal oscillations of
the plasma temperature {4} , while modes daminated by the m = 2 poloidal
harmonic are assccilated with major disruptions where a catastrophic loss of
the torcoidal current and termination of the plasma discharge suddenly take
place [5].

In this letter, we consider lowm resistive modes of the tearing type in
collisional regimes where electron pressure corrections to Ohm's law and ion
diamagnetic effects became important [6]. In these regimes, the tearing mode
[11 changes its character significantly, going from a purely growing mode
where the perturbed current density along the magnetic field is well local-
i1sed near the rational surface r = r, where q(rs) = m/n, to an overstable
mode. The magnetic energy released by reconnection around r = Ty ceases to
be the main energy source available to the mode. The energy balance 1s
daminated '['7] by the energy released by the electron pressure. This energy

is propagated and dbsorbed at a finite distance from the reconnecting surface



by dissipation processes such as electron thermal conductivity [8] or ion
viscosity [9], which, if sufficiently small, do not perturb the eigen-mode
significantly. The linearised mode frequency in this regime is w = &*ez
w*e(l + dne), where Ng = din Te/dﬂn N &= 1.71 for electrons obeying an
adisbatic equation of state, and Weg & [(kec/eB){dﬁn ne/dr}}S is the electron
drift frequency at r = T with ke = m/r, whence the name of drift—-tearing

mode [8]. Its growth rate is
- 2/ (. — 1/ t)4e3
Tpr = Com?? e (wi/lw, (w, - wy,)1}172 (A1) Wy (1)

where C, = C,%73/2, C, = (2/m)T(5/4)/I'(3/4) = 0.47, €n =n c?/{4m rl QA) is

the inverse magnetic Reynold's number, with n the electrical resistivity

along magnetic field lines, w, = sVA/JSRO, s=r g'(r.}) and VA = B/ {4nm m,

A s s i
ni)l’z; wdi = - [(ke c/eB) (dlnpi/dr)ls is the ion diamagnetic frequency at r
rt .
=Ty and A' = [din w/dr]rg is the logarithmic jump of the perturbed poloidal
8

maghetic flux function Y across the ¥ = rS surface. Instability corresponds
to A' » 0. The growth rate (1) is obtained for values of @*e > TT = C,47%
m2/ 5 en3’5 (Ar)ars W,, where ¥, is the tearing mode growth rate when &*e =0,

and for
N . A UPR U I R (2)

which corresponds to the validity of the constant-¢ approximation as dis-
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cussed below. We find that, when lw, I, lwg | 2 m €13 Wy the
drift-tearing growth rate has a non-monotonic behaviour as A' approaches A},
Tpp reaches a maximum for A' v 0.5 A} and becomes negative for A' 2 A]. A

second mode becomes unstable with a growth rate




= 2 3 ; .
TR* m en wq/Iw* wiil {3)
for values of

Av by (g luy e )z, (4)

go that a stable window exists for A; < A' < A}. This second root corresponds
to the diamagnetic modification of the €r1]’3—mode foumd near the condition of
ideal-MHD marginal stability [10]. For the m = 1 case, this mode is well
known under the name of resistive internal kink [11,12].

The existence of a stable window for positive values of A' In a
registive MHD, diamagnetic plasma was first noted in Ref. [13] and later in
Refs. [9] and [14]. However, the behaviour of the two roots approaching the
stable window fram either sides, and the exact extent of the stable domain,
were not discussed in these previous studies. We find that the stable domain
is considerably wider than previously thought (see, e.g., region VII of Fig.
2 in Ref. [14]). The stabilisation of the drift—tearing root at the break-
down of the constant—y approximation was also noted in Ref. [15]. It was also
known that electron thermal conductivity [151 and ion viscosity [1el can
suppress the drift—tearing mode and the resistive klnk mode, respectively.

In this letter, the existence of a stable window is shown to persist even
when these additicnal dissipation processes are vanishingly small.

To proceed with a detalled analysis, we consider the digpersion relation

for tearing modes in a resistive MHD plasma with diamagnetic effects [12,17]:

A'd=“?QM (5)

ri(Q+5) /4]

Jw.l, w=uw

= — ipz —A = - j f—i -—A
where Q 162 (w m*e)/(m2 €. w,), 6% im? en lw(w wdi)/[(w Wy -

n A
+ iv is the eigenfrequency and m is taken to be positive. TFor them =n

1l
| —

casge, one can relate A' = - ﬂ/?\H, where the parameter [11,12] AH is



proportional to the negative of the MHD energy functional oW (P\H > 0 is the
instability condition for the ideal MHD internal kink mode). The perturbed

current density in the resistive layer can be conveniently written in Fourier

space (171, J&k) = | Jx) e s, where

—oR

Yx) = J_ ULQ-1)/4, - 1/2, 63k3] exp(~ 8%k3/2), (6)

Jo is a normalisation constant and U is a Kummer's (confluent hypergecmetric)
function [18]. Acceptable solutions of Eq. (5) must satisfy the condition Re
52 > 0 in order for the corresponding eigen—function (6) to be spatially
localised. This condition is violated for the drift—tearing root and, for
sufficiently large values of w i and GJ*e by the resistive kink rccot. However,
as mentioned previously, fc:;r these roots the eigen—function is regularised in
the presence of electron thermal conductivity and/or ion viscosity.

The constant— regime corresponds to the limit |Q| << 1. This
definition is equivalent to that of Ref. 1, which consists of writing the
perturbed poloidal magnetic flux ¢ in the resistive layer (where V| ) (x) «
J{x}) as P = wo + ﬁal {x), where 11)0 = constant and ¥, (x)/wO v [BAY << 1.

Then, [{&p/dx) /11)0] layer v A', It can be immediately verified that the
condition [Q|' << 1 on the sclutions of Eg. (5) implies [§|A' << 1. In this
limit, the dispersion relation reduces to

(7)

4 -0 = '
i(w w*e) s} COmA En WA'

For the sake of simplicity we set Gj*e = ~ uy; in the following murerical
conputations. FPirst we consider the case where the diamagnetic terms are
gmall compared with the mode growth rate. In this limit Eg. (7) gives the

growth rate of the tearing mode, T = T’I“ The constant—y regime breaks down




1,3

when A" ~ (m/en) . The mode growth rate increases monotonically with A’
273 173

and, as A' - =, it approaches the value 17 = TR =m 'an Wy

for m = 1, to the growth rate of the resistive internal kink,

corresponding,

Before we proceed to show the mode behaviour at finite (I;*e, we point out
that in the plane identified by positive values of the parameters D =
(A'en1’3/mn1’3) land Q, = J’*e/TR’ a branch point exists, which has been
numerically determined to be near D = 2.4, Q, = 0.91. Following one root of
the dispersion relation along a closed path encircling this point will not
return the eigen—-frequency to its initial value.

Next we consider the behaviour of the growth rate of the tearing mode as

© *a is increased at a fixed value of D » 2.4. Starting from 71 = TT' the

growth rate is reduced and approaches the value 71 = TD*I‘ (gee Eg. 1), while w,.

approaches Ib*e, as a) > TT' For this root, Re 62 becames negative quite

*&
socn, for values of a)*e = 1.4 Ype bUt we have already indicated how this
problem is overcame in the presence of additional dissipation. [For larger
values of Gj*e' corresponding to &*e/wA v 0,6/A") (see Eq. 12), 71 changes
sign and the instability is fully suppressed. This behaviour is illustrated
by the examples in Fig. 1. Note that as the marginal stability curve is
approachéd, [0 ~ 1 and the constant—y approximation breaks down.

A different behaviour is found for D < 2.4 when ﬁ)*e is increased.
Firstly, the mode oscillation frequency remains always well below &*e' The
mode growth rate decreases fram v = 7

R
changes sign, although now this happens for relatively large values of f»*e

tofr = TRe (see Ed. 3) and eventually

such that aj*e/wA% 0.3 en(!_\.') 2 {see Eg. 4). Also in this case Re §? changes
sign when 7 is still positive. Examples of this behaviour are shown in

Fig.2.

In Fig. 3, the two roots, with 1 = Topr Yy = w

v xo OF small A" and v =

TR*I W

p < W xg 9T large A', are followed as A' is varied. The two roots do



not comnect, as expected in the presence of the branch point. The two roots
comnect in the third example of Fig. 3 for @, < 0.91. As anticipated, the
drift-tearing growth rate is a non-monotcnic function of A' for @, 2 0.75.
The drift—tearing mode becanes stable for A' ~ 0.6m wA/&\)* . Instability
re—occurs for larger values of A' through a different branch of the
dispersion relation, leaving a stable window of values of A'. This window
opens up for Q, larger than a minimm value (Q, = 0.83), a value slightly
smaller than the critical value corresponding to the branch point discussed
aoove, and becames wider as Q, increases. In Fig. 4 we disgplay the stable
damain and instability regimes in the (D, Q,) plane. Note that a branch cut
through the stable domain can be chosen, as illustrated in the figure, so
that the tearing, drift-tearing, and the enl’a—modes all lie on the same
Riemann sheet.

A heuristic analytical model that accounts for the non-monotonic

dependence of TDT on A' is obtained by rewriting Eg., {5) in the form
Cod’é =m H(Q) [Q/(1 - Q)] (8)

where H(Q) = {T[(Q + 3)/4]1/T(3/4)}{T'(5/4)/T[(Q + 5)/41}, and by approximating

H(Q) = 1. Then we cbtain

—iw =, ) 8= Co(4'/m)[m® e w, + i 0% (w - W,)] (9)

n A

The drift—tearing sclution is recovered from (9) for me enwA >> 02 {w — ZU* e)

[cf. BEg. {7)], while as A' =+ « the relevant dispersion relation becomes m? en
+162(w-w *e} = 0, yielding the resigtive internal kink growth rate. Wwhen
D> 2.4 and ﬁJ*e > 7y a further simplification can be adopted by setting w ~

W *e in Eg. (9) everywhere apart fram when appearing in the combination




w - @*e. This leads tc the approxdimate growth rate

Tpr = C,(A? 273 (Ar)473 € wAfl - (8 C 473/3) (A /A" )273], (10)
where the first term at the right-hand-side corresponds to the growth rate in
Eq. (1). Following the amalysis of Ref. [7] (see in particular Section V),
the stabilisation of the drift—tearing mode as A' is increased can be inter-—
preted as related to the peculiar form of the mode energy balance. AS we
noted before, the energy released by the electron pressure is convected away
and absorbed at a finite dlstance from the reconnecting surface. The rate at
which this energy is convected away, rather than the specific absorption
process (provided the latter is sufficiently weak), determines the growth
rate of the drift—tearing mode, This rate is controlled by A' and, ag A’
approaches A',, it increases, eventually draining all the energy avaiiable
for the mode growth. On the contrary, in the energy balance of the resistive
internal kink mode, the magnetic energy remains important as a source of
excitation energy even in the presence of large diamagnetic effects (see Ref.
{71, Table 1).

Values of D and @, in the stable domain of Fig. 4 are relevant in
particular tom = 1, n = 1 modes in a magnetically confined, toroidal plasma
with low values of the poloidal beta parameter. For these modes, the stable
damain can be accessed when the magnetic shear is reduced near thé g=1
surface even if g(o) is significantly less than unity, as @, « 87272 and D «
{1 - qo)/s-”’3 [191, with s = ry q' (rs) the local magnetic shear parameter.

The authors would like to thank Professor B. Coppl and Dr. T.J. Schep
for useful discussions. One of us (8.M.) was supported in part by the U.S.

Department of Energy.
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Fig. 1 Growth rates (solid curves) and oscillation frequencies (dashed
curves) versus @ for different values of D = (4’ g,"*mm™®) " as indicated
near each curve. Here y,, the value of y at -, = 0, is well approximated by
yriinthetextifor D >> 1; v - ™ 8, "o,
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Fig. 2 Growth rates (solid curves) and oscillation frequencies {dashed
Curves) versus o- for different values of D = (A g,"%/im'®) " as indicated
near each curve. v,, the value of y at @, = 0, is well approximated by vg =

m2%g, W, for D —0.
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