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ABSTRACT

The theory ©f non-linear iearing modes has been extended to include the
effects of rotation and interaction with a resistive wall. The time
dependent solution of the resulting equations shows a spatial locking of the
mode similar to that cbserved in tokamak experiments. Time dependent
numerical calculations show that the model can explain in a qualitative way
the overall frequency evolution of mode locking and the radial magnetic

field behaviour cbserved on JET.

1. INTRODUCTION

It is cbserved that mhd modes in tokamaks exhibit a reduction in
frequency as they grow to large amplitudes. In the case of disruption
precursors, for example, the frequency can be reduced to zero. This process
is called mode locking. The theoretical interpretation of this behaviour in
terms of an electramagnetic interaction with conductors surrounding the
plasma was proposed in a brief conference paper [1]. We give here a samewhat
extended account of the theory and the calculations involved. A description
of the experimental results on JET was given by Snipes et al. [2,3].
' The growth of tearing modes with their associated magnetic islands leads
to helical magnetic field perturbations, B, outside the plasma. These
- perturbations are cbserved to rotate with a frequency typically ~ 1-10kHz.

Thus at an external conductor these magnetic perturbations are oscillatory



and the induced electric fields produce fluctuating currents, 3.

The induced currents give rise to a force 'ﬁxé in the conductor. Similar
Exﬁ forces arise in the plasma and the result is a transfer of mamentum fram
the plasma to the conductor. This causes a slowing of the plasma and a
reduction in the frequency. This leads in turn to an increased penetration
of the fields into the conductor and to a strengthening of the inte.raction.
The consequence is an increasingly rapid transfer of momentum fram the
plasma, which finally brings the magnetic islands to rest. The final
position of the locked mode depends upon the small scale lack of symmetry of
external conductors.

‘ If a tearing-mode unstable configuration is created on a timescale short
campared to the non-linear growth time, a magnetic island will start to grow

and, according to Rutherford's theory [4],

dw
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where w is the island width, n the resistivity and A'{0) is the Jump in the
logaritimic derivative of the perturbed helical flux function, ¢, across the
rescnant surface. Thus initially w = t. Now the magnetic perturbation ¥ is
proportional to w2, and so the force on the plasma Fp L %’ = t¢. This
causes a rapidly increasing deceleration of motion of the magnetic island.
There are then two possibilities. In the first, which is generally the case
in JET [2], the magnetic islands are brought to rest before they are
saturated in amplitude. The growth to saturation then proceeds at zero
frequency. The other possibility is that the deceleration is sufficiently
slow that saturation occurs first and the deceleration to zero velocity then

occurs with an essentially constant value of the magnetic field perturbat-




ion. In both casés the mode is brought to locking by what might be thought
of as a magnetic viscous drag in the external conductor.

In the non-linear stage of tearing mode growth the effective A' reduces
with increasing island width and consequently the dependency of Fp on time
is more camplicated than ocutlined above. Furthermore, the transfer of
momentunm to the plasma depends on the type of rotation, toroidal or
poloidal, and on the fraction of the mass involved. These details do not
change the overall physics described but will alter the frequency evolution
and the time the mode takes to lock [1].

One other matter of interest is the influence of a conducting vessel on
the growth of the instability. It is easily seen that there will be a
stabilising effect at high frequencies when the vessel behaves as a good
conductor. However, as the frequency falls the mode will grow more rapidly
and this in turn accelerates the fall in frequency. Thus the island growth
and frequency fall drive each other. However, the essential point to
recognise is that even a perfectly conducting vessel only has a significant
stabilising effect if the resonant surface is in the outer part of the
plasrﬁa. With a deeper rescnance the physics of mode-locking is as described
above but the island growth is essentially unaffected by the conducting
vessel.

In the following sections we present a theoretical model for non-linear
 island growth and ffequency evolution in the presence of a thin conducting
vessel. The model uses the large aspect-ratio approximation and assumes
that the plasma mass involved in the rotation is fixed. We then give

mmerical calculations illustrating the locking of the modes.

2. THEORETICAL MODEL

We consider a circular cross section plasma with minor radius a and



maj‘or radius R, surrounded by a thin veésel of radius b, thickness 6 and
conductivity ¢ (Fig. 1). For a large aspect-ratic tokamak the equation

governing the magnetic perturbations due to a tearing mode is [5]

H, dj/dr
Be(l - ng/m) ¥=0 (n

o L

d_dv _m:, _
dr r dr r? 4

where j is the toroidal current density, q{= rB qb/RBe) is the safety factor,
B o and Be being the toroidal and poloidal magnetic fields, n and m are the
toroidal and poloidal mode nunbers and ¥ is the helical flux function with
ﬁr = {1/r)&p/8e and ﬁe = —éw/ar. The solutions of Eq. (1) give the growth
of the magnetic island through [4,6]

T +w/2

g% =0 prew) where A (w) = %'
Ho rs—w/2

, (2)
n is the resistivity at the resonant surface (r = rs) ., and the island width
is related to the magnetic perturbation through [4,6]

w = 4(qlel/qB)% (3)

8 r=r
g

The boundary conditions for equation (1) at the surface of the plasma
are cbtained by solving the equations for ¢ in the cutside regions, that is

in the vacuum -

a RIS

and in the wvessel
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where w is the fregquency. Finally we take (=) = 0. Thus, applying the
continuity conditions at the interfaces between the regions leads to the
boundary condition at the surface of the plasma

. | 2m
[L] = - E 1 +f(ﬂ/b) (43)

¥ r=a 1 -f(a/p)?™

where, by taking &/b << 1/(.UTV, where TV(-"'- uoobO/Z) is the characteristic

resistive time constant of the shell, f is of the form

_ 1
f_“ I+ (im/wt ) (4b)

A plot of £ as a function of wT,, for m = 2, is shown in figure (2). For

wr, @ we have £ = 1 as for a perfectly conducting vessel, while for

wt,, ~ 0 we have f = 0 correspanding to the case of no wall. The subscripts
I and R in Fig. 2, and throughout this paper, refer to the imaginary and the
real parts respectively.

The force on the plasma caused by the perturbations produces a change of
velocity which reduces the frequency seen by the wall. The precise way in
vhich this occurs depends on the details of the plasma response. For
purposes of illustration it is assumed that a fixed mass of plasma is
involved. The change in the cbserved frequency is then given by the

equation

du _ mfFerdV \ njF¢dv )
dt Jorzav = RJpdv




where p is the density of the plasma involved in the rotation and Fe and F¢
are the poloidal and torcidal camponents of the force perpendicular to the

perturbation helix given, in the large aspect ratio approximation, by

._"‘v R Pl -
Fo b.JBr - Mo, LT (62)
BB ¥y 1 n_ &y
F¢ =§ B, =" Viy TR 36 ° (6a)

where 3’ is the helical perturbed current.

Substitution of equations (6) into equation (5) leads to

duw
dt

- .8J *ap 1) e M nl
2, Im{yp*y )r=a where J Tpridr + Rilprdr (7)
The first term in J is much larger than the second but it is possible that
in some circumstances the poloidal motion is prevented by damping. In this
case the first term in J is removed.
The camplete time evolution is described by equations (1)-(4} and (7),

and the resulting solutions are described in the following two sectiaons.

3. ANALYTIC APPROXIMATICNS FOR MODE LOCKING

The right hand side of Eq.(7) is a function of both the frequency and
the island width. The frequency dependence appears in the term Im{y* ¢').
through the parameter £ in the boundary condition given by Egs. (da) and
(4b). The dependence on the island width arises from Eq. (3), which gives
Wiz « wt, and fram the mass involved in the calculation of the inertia,
leading to dw/dt = w* when the whole plasma rotates and dw/dt = w? if only

the plasma in the island rotates. The evolution of the fregquency is



therefore coupled to the evolution of the island width, given by the
solution of Eq. (2).

In order to gain further physical insight when deriving analytical
expressions, and also to facilitate the numerical task of determining ¥, it
is convenient to express ¥ in the resistive wall problem as a linear
carbination of two soluticns for a perfectly conducting wall, We therefore

express |y as
b=y, ta (Y - | (8)

where wv is the sclution for a perfectly conducting vessel at r = b (that is
f=1) and ¥_ is the soluticn for no wall (that isb-wor £ =0). The
dependency cn the frequency; and wall resistivity appears cnly in the
parameter ¢, which is determined fram the boundary condition (4a) as

_ £ .
@ = F-s(f- 1) (9)

where
1 wv(a)
] - (a/b)Zm ¥ (&)

S=

We choose wv and Y to be real, though o is in general camplex through the
parameter f.

After same algebra Egs. (8) and (9) give

2m
In(y*y') _, =229 2(a) G) s In(a) .

Thus, Eq.(7) can be rewritten as
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where
2m wm(a) 2

a £
£ G Gy TE-stc- D
is a factor of 0(1) depending on the particular equilibrium and varying with
the frequency.*

In general wv and Y need to be determined mmerically. | However, an
analytical expression for g can be cbtained in the case when the current
density is small in the outer region of the plasma. Then the solutions for

w and y_for r > r_ take the form r" and ¥, and g becares
v e s

2m
_ 1 - (rs/b)

- - (11)
11 - f(rs/b)zml

In the case of (r/b)™" << 1, g tends to unity and only the imaginary part
of f appears in the equation for dw/dt. It is clear fram Fig.2, that most of
the frequency decay would then occur when wt,, v m, where f; has a maximm.
The full non-linear problem requires numerical solutions., However the
basic features of the evolution of the frequency can be illustrated by the
following calculation.
The island growth is given by Eq. (2), where the dependence of A' on w is

normally monotonically decreasing. Here we will use the approximation

*Berge et al. [7] cbtain a different form for dw/dt and state that our
derivation is in error. In fact this is not so. In their paper Im(y*y')g
was written as I\pal2 Im(y' /p) 5 and then, in Section 4, they take the
frequency dependence to be given by Im(y' /W) .. To cbtain the correct result
with this formulation it is necessary to inc?ude the frequency dependence of
Iwaiﬂ. The result obtained then, is the same as ours.



At{w) = A'(0) (1 - w/ws)
where W is the saturated island size, giving the solution
w = wsfl - exp(-t/rs)), where T = pows/nﬁ'(O) (12)
To calculate the time develomment of the frequency we consider the case
of toroidal rotation. We assume the gradient of the current density to be

small in the outer region of the plasma and (rs/]b)zl.i1 << 1., 'Then, using Egs.
{3), (10) and (11) we cbtain

du ] wt, w4
dt = TS T i yitr 7 +ms (a) (13)
A v
where
2m
- m? ’s ag'y? 2 = 2R 2
c =35z (—5) { q )rs and T,% = p /Ja B, (rs)

In the case where locking occurs before saturation, the solution for w given

by Eqg. (12) can be expanded to give
W= wst/rs

and the solution of Eq. (13) is then

w Tvts
(wo’ -~ w?) L 2m?%n o =% T (14)
o A s
where
W o4

- 2 s
a—sc(?)



Fquations (12) and {14) show the basic features of mode-locking. The
island grows to saturation on a timescale determined by the resistivity of
the plasma and the strength of the instability. The frequency change
described by Eﬁ. (13) occurs in two phases. In the first rhase the first
term on the left of Eq. (14) dominates. During this phase the t5 dependence
means that the change in frequency is slow initially but beccares
increasingly rapid after a time characterised by

T = (woierA= TS‘/a)II

In the final phase of the locking the second term in Eq. (14) dominates
and the residual frequency decays as exp—(t/TD)S with
.5

1
= -1
(&ﬂrv TA’TSU@)

TD_

In the shove calculation we have assuned that the whole plasma moves
toroidally. To estimate the effect of taking a different mass and direction

of rotation, we again consider Eg. (13), rewritten as

do _ _1_1 YTy
»
dt c ? 2 it 2+ 2
A
where now we define
\ H 1 2 . H -
a mn n
T2 = and C = + }
- - 3 2

A gé/”op (asb)2Mas Jor:dr 7 R2fprdr

~10-



We now calculate C by taking separately the cases of poloidal and
toroidal rotation, that is by retaining either the first or the second term
in the denaminator of C. Then for a parabolic density profile, the values

ofCform=2, n=1wlthb = a are as given in Table 1.

Poloidal Torcidal
Rotation Rotation
1 1 R2
Full plasma ﬂ P a’z‘
1 wrS ? WTSRZ |
Island only NS e ~ 2 a4
Table 1 |

|
|
Thus, the constant C fof toroidal rotation is typically two 2 orders of
magnitude larger than in the case of poloidal rotation.

4. NUMERICAIL SOLUTICNS

In order to explore further the interaction of tearing modes with a
resigtive shell, the equations given in Section 2 have been solved
mrnerically.

Figure 3 gives the saturated island width for an m = 2 tearing mode as a
fimction of W, . The current profiles are taken to have the form
j =350 - (x?/a%))” with q_ = 0.8, and the resistive shell is at the
- surface of the plasma. For a R 4, (rs/a £ 0.7), the rescnant surface is
sufficiently far from the shell that the stabilising effect of high
frequency is negligible. The reascn, of course, is that even a perfectly
conducting shell is Vineffective in such cases. For lower 4 the resonance
is closer to the shell and the effect of high frequency is more marked. For
qa < 2.75 (rs/a > 0.85), the change fram zero frequency to high frequency
carpletely stabilises the mode.

-1]-



The subsequent figures_ show the results of time-dependent calculations
of mode locking for the m = 2, n = 1 mode. The current profiles are taken
to have the. form gi\}en above, with q = 1, It is assumed that the whole
plasma rotates toroidally, so that dw/dt « w as in the example discussed in
section 3 and we take a parabolic density profile with Py = 5x%10-* kg.m-3,

R

am, a = 1.4m, T, = 2.5{b/ajms, and with ZeffT‘S’z(keV) = 10,

2.8x10-7,

n
First, to illustrate the general behaviour, Fig.4 shows the results
for a relatively low initial frequency w_= 2000 rad/sec, (wt, = 5), with b =
a and a, = 4.0. Thne island ultimately saturates at w = 0.16a, but the mode
locking occurs for w = 0.11a. The magnetic signal, ée' grows initially in

response to the instability. It reaches a maximum and begins to fall when

the coupling to the wall starts to reduce the frequency (since g " w%) .
The increased amplitude then strengthens the change and the frequency w is
finally reduced to zero with a strong equnential decéy. This is the mode
ilock.

When the rescnant layer 1is closer to the conducting shell, an abrupt
increase in the island growth rate is also cbserved at the time of locking.
This is illustrated in Fig. 5. Here we take an initial frequency of wy =
6000 rad/sec, (urtv = 15), consistent with the frequencies of Mirnov
oscillations cbserved in JET ctmic discharges [3]. However in order to show
more clearly the effect of the vessel we keep b = a. Figure 5a shows the
island width as a function of time for the two cases of Q= 2,5
(rS/a = 0.88) and q = 4.0 (rs/a = 0.68). Abrupt changes in w can be seen
~ in both cases, although clearly the effect is stronger _the cloger the
resonant surface is to the wall. Figure 5b shows the corresponding

frequency plots. The lock occurs earlier for the case with lower qa.

~12-



A plot of the stability parameter A'(t) is shown in Fig. 6 for the case
with aQ = 4. During the locking the real part of A', A'R Yumps' to a
higher value, causing the changes in the island growth rates seen in Fig.
5a. This is easily understood if we express ¢ as in Eq. (8) and take ¢

constant over the island. Then A' can also be expressed in the form
B s bt (4 -4,

In the example shown here, where the resonant layer is not close to the
vessel, a = £, thus at high frequencies A' = A'V, while after the locking
A' = A' . The rotation damping is proporticnal to the imaginary pairt of A",
A1 which decays to zero during the locking.

A plot of the parameter a as a function of wT, is helpful to understand
why the locking occurs earlier when the rescnant layer is éioser to the
wall. Figure 7 shows the plots of o and o, for the case of ¢ = 2.25 for
two wall positions, a) rS/b = 0.94 and, b) rs/‘b = 0.,72. Wwhile for case (b)
Oy has a maximm for wt,, = 3, for case (a} this occurs at the higher value
of wr, = 10. Since dw/dt is proportional to oy, it is clear that in the
'case where the rescnance layer is closer to the wall, most of the frequency
decay will occur at a_higher frequency.

We now take the more realistic case of a wall separated fram the plasma

with b = 1,2a, T, = 3ms and an initial frequency W, = 6000 rad/s. Figure 8

shows how the time of locking is affected both by the effects of varying the

equilibrium current density profile and the type of rotation. The time of
locking is defined as the total time taken for the frequency to change from
w, to 1% of its initial value as the mode grows fram zero amplitude. As a,
is increased fram 2.25 to 5, the island width at which the locking occurs

varies from 0.06a to 0.09a in the poloidal case and 0.16a to 0.20a in the

-13-



toroidal case.

Figure 9 shows the time evolution of the amplitudes of the perturbed
fields ﬁe = | l% and %r = Ig iw[% at the plasma edge, r = a, for the
toroidal case with q = 5 shown in Fig.8. The ratio between H, and B, at

the plasma edge is obtained fram the boundary condition (4) as
Bo/B_ = 11+ £(a/p)®™1/11 - £(as0)™™.

At high frequencies this becanes

e

o (b/a)°" + 1

Br [((b/a)zm -+ m’/w’rv’l

% .

This ratio therefore depends on the wall position, sﬁch that for a wall

. 2 _ o _
close to the plagma ﬁefﬁr = Wl while for a wall at infinity %a/gr 1.

2m

For the particular example shown in Fig. 9, (b/a) = 2.1, thus initially

PR (b/a)2® - 1)z giving

e

8 _ (b/a)zm + 1
B (b/a)® _ ]

= 2.8,

The sudden increase in .Br i1lustrates further the loss of stabilisation
which occurs when the mode is brought to rest. After the lecking, £ = 0,

thus ge = ﬁr as expected fram the vacuum solution,
5,  DISCUSSION

The theory outlined above can clearly be extended to include further

physics. If it is found that the proposed model explains the overall

-14-



behaviour, then a more detailed examination of such extensions could be
rewarding.

The time dependent numerical calculations, using JET parameters, show
that the model can explain in a qual:\.tatlve way both the overall frequency
and the radial field evolution cbserved fram JET MHD signals {2,3]. The
cbserved times for mode locking in JET ohmic discharges are consistent with
a célculation where the island rotates in the toroidal direction and the
mass involved is greater than that in the island.

In the case of toroidal motion the question of the mass inveolved can ke
treated if the transfer of mamentum takes place through viscosity. Thus,

instead of assuming rigid body moticn the velocity distribution across the

radius could be determined by solving an equation of the form

av¢ ) F¢(r,t)
ot P

i Qo
"'ilgq
e

19
+ v r ar (r

The resulting qu(rs't) would then give the rate of change of frequency
dw _ _n dvg(rs,t)
dt R dt ’

An investigation of this behaviour would give information on the rate of

mamentum transfer.

It is normally assumed that the poloidal motion is severely limited by a

poloidal drag force such as predicted by neo—classical theory. However, if
the mamentum transfer is sufficientiy fast then poloidal motion can result,
The neo—classical poloidal drag is ~v p vy Vo where vy is the ion ccllision
frequency. Thus a poloidal force of this order could lead to a significant

effect. In JET, \Ji’1 is typically ~ lms and since the frequency slowing

~]15-



time reaches a value of similar order at large amplitudes, same pcloidal
motion might occur. However, cczr:parisoh of the experimental results fram
JET chmic discharges with Table 1 indicates that the motion is principally
toroidal.

In the model presented here, the frequency is néver actually brought to
zero, but rather decays exponentially to very small values., It cannct
therefore explain the spatial locaticn of the locking cbserved in
experiments. The tendency for the island to lock at a particular position
as cbserved in JET suggests that asymmetries in the vessel or in the
equilibrium fields play a rble [3]. This could be taken into account by
modifying the boundary condition given by Eq. (4}).

The model described here involves an external cause for the slowing down
of tearing modes. However, intrinsic plasma effects may also play a role.
Ancther theory of mode slowing is based on removal of the density and
terperature gradients through island formation. It has been proposed by '
Biskamp [8] and Scott et al. [9] that, since the frequency of small
amplitude tearing modes is relatéd to the diamagnetic frequency w,, the
reduction of the gradients should produce a slowing of the mode with
increasing amplitude, as obseived. However, as remarked by Scott et al.,
this model could not explain why large amplitude modes are seen without
significant reduction in the frequency. Furthermore, in plasmas which are
"spuh" by neutral beam injection to produce frequencies several times w,,

the frequency is brought to zero (mode locking) and not just changed by w,.

€. SUMMARY
A theoretical model of mode-locking through the effect of a resistive
shell has been described. This model has been used to obtain both analytic

and nurerical solutions. At high frequencies the resistive shell behaves

-16—-



like a perfect conductor, but generally this does not prevent the growth of
tearing modes. As the magnetic island grows there is a transfer of momentum
between the plasma and the shell which reduces the frequency. This allcws
further penetration of the oscillating magnetic field into the shell. The
reduction in frequency and the -increased penetration each enhance the other,
leading finally to a camplete locking of the mode. |
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Fig.6 Real and imaginary parts of the stability parameter A’ for the
case of g, =4.
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Fig.7 The parameter « as a function of w7, for r,/b=0.72 (full lines)
and r,/b=0.94 (dashed lines).

04

tlock - toroidal rotation
(sec) '
03

oidal rotation
01k pol

00 o ' '
20 30 40 50 q,
a
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