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ABSTRACT

The propagation of sheér—Alfvén waves in an incompressible plasma is
considered in the'vicinity of an X-line of the magnetic fiéld. A small
dissipation leads to a discrete spectrum.of weakly dampea MHD modes, with a
dissipative layer in thé vicinity of the separatrices.

Finité amplitude perturbations imposed from the boundaries and
propagating perpendicUlérly to one of the separatrices are then considered,

and the characteristic timescale of their evolution is derived.

1. INTRODUCTION

It is now commonly recognized that the magnetic islands occurring at the
resonant surfaces of a toroidal magnetic equilibrium configuration represent
a rather typical situation. These islands may occur for different reasons,
such as resistive instabilities and perturbations of the plasma boundaries
which initiate the breaking o6f the symmetry of the configuratioﬁ.'
Alternatively, structures topologically similar to islands can be produced
inside the plasma by an external electric current, as is the case of tokamaks
with divertors, and, in JET, of discharges with magnetic nulls.

The properties of the plasma dynamics near an X-line of fhe magnetic
field, the line of intersection of two magnetic separatrix surfaces, are

quite distinctive. If the electric current is carried by the plasma,
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resistivity leads to reconnection of the magnetic field lines in the vicinity
of the X-line. When estimated in the framework of the qualitative
Parkef—Sweet [1] model, which assumed the existence of a thin current sheet
directed along fhe null line of the magnetic field, the characteristic time
of this process is of the order of tRez. Here the small dimensionless

‘parameter
e=ty/ty (1

is the ratio of the Alfvén time t, = a/c,, with ¢, = B/Y4mp, and the

A’ A
resistive time tR = 4ma3/nc?, where n is the plasma resistivity and a is the
typical size of the inhomogeneity. On the other hand, in connection with the
general question of the propagation of MHD waves and of the reconnection of
magnetic fiela lines in a plasma with a non-uniform magnetic field, the
analysis of model problems which can be solved anaiytically may also be of
interest. |

The aim of the present paper is to analyse the evolution of MHD
perturbations in a magnetic configuraﬁion with separatrix surfaces. Together
with the éommonly adopted slab configuration, the linear field that describes
the neighbourhood of an X-line is an important model for the investigation of

reconnection processes.

In this paper we consider an equilibrium magnetic field of the form

B = (hx +gyle, ~hye +Be, . (2)
In the x-y plane, the magnetic field lines have the structure shown in Fig.l.
The z-axis coincides with the line of intersection of the two separatrix

surfaces, one in the y = 0 plane and the other at an angle arctg (2h/g). A



uniform current density, J = - &% ge,» corresponds to the magnetic field (2),
where the value of h determines the current free contribution. If h
vanishes, Eq.(2) describes the magnetic field configuration considered e.g.
in Refs.[2-4], whe:e the y = 0 surface is the resonant surface of
perturbations independent of z.

Here we consider two problems. Fifstly, we analyse shear Alfvén waves
propagating at an arbitrafy angle with reépect to the separatrices., A small
resistivity results in the reflection of the waves from the dissipative
regions near the separatrices, which in turn leads to the appearance of a
discrete spectrum. An explicit expression for the mode frequency is obtained
in the limit of short wavelengths. These modes are weakly damped and the
real part of the frequency is much larger thaﬁ the imaginary part. Secondly
we consider finité>amplitude, MHD perturbations imposed.from the boundary and
propagating normally to one of the separatrices. Despite the dependence of
the background magnetic field (2) on two coordinates, x ahd y, exact
solutions of the MHD équations are possible, depending only on one coordinate
and on time. The amplitude of these perturbations increases as they approach
the separatrix. A non vanishing resistivity leads to a saturation of this
amplification. The typical time for the redistribution of the electric
current density in the plasma is longer than the Alfvén time by a factor

n3 (4/€).

2.  MHD EQUATIONS

In contrast to Ref.[5], where the propagation of MHD waves ih the
vicinity of an X-line of the magnetic field was considered in a zero pressure
plasma with B|I = 0 and g = 0, in the present paper we assume that the B“
component in Eq.(l) is much greater than By. This leads to an incompressible

plasma flow in the x,y plane. Hence the system of MHD equations



Lv+my--Re o, 3
9 q - ne? .
at B=Vx (vxB) + o5 V’E , (4)
can be transformed into
@ 4 yov) V16 = - L (Bew) vov (5)
at -~ p = ’
& 4 yey) v = 0E2 gay (6)
at - 4m '

The functions Y and ¢ are such that the magnétic field in the x-y plane and

the plasma velocity can bé expressed in the form
B=(Vx¥) e, v=(Vxde . (7)
Linearizing Egs.(5) and (6) around the gquilibrium solution
® =0, ¥ =hxy+B, ~(8)
we obtain for the perturbations.<1>1 and ¥,
Sy, 4+ (B V) 0, = e VY (9)
at "1 =o 1 1
5% V20, + (BoV) V3¥, = 0 . (10)

Here and below we use dimensionless variables, where t is normalized to the

Alfvén,time_tA =,(4np/h2)%, lengths are normalized to the characteristic size



a and the small dimensionless parameter e defined by (1) becomes

- (R A ne?
e= () =5 . (11)

In the following the subscripts 1 and O will be omitted. The operator (§O°V)

in Egs.(9) and (10) has the form
(B *V) = (x + 7vy) CH y 8. ’ (12)
o ax 3y ’

where v = g/h. To simplify the calculations it is convenient to use the

Fourier transforms of Eqs.(9) and (10). Thus we obtain

3 S 3 ) A__ A

ot LT kgp - (a- vkl e=-e (k2 4ql) ¥, (13)
8 % =4 1 & _ (q- a_ ¢

5t ® T g Mo (@7 TR gl (k24 gn) ¥ (14)

The functions ¢ and o depend on k and q according to the expressions

+w +oo
V(k,q,t) = [ dx [ dy expl-i(kx +qy)] ¥(x,y,t) , (15)
~ 4 +c0
®(k,q,t) = [ dx [ dy expl-i(kx +qy)] &(x,y,t) . (16)

In terms of the two new variables [ and r

C =kq - vk?/2 , (17)



e /DAt (18)
Egs.(13) and (14) become
LV -rlb--ca+ Dt s pm ey, a9
Lo ULl + T + <l 1 o 1Tl + 'C}r’ k1 ¥, (20
where the constant k is given by
k = [27/(4 + 11)%] sgnl , ' (21)

and sgnx = $1 for x 2 0 respectively. A representation of the (k,q) plane is

shown in Fig.(2). We introduce the new variable

2 =2 on 1zie2 , @)

1
2
and define the function

+ k =2 ch(2%) + k , (23)

: ' 1
2 = 2
s2(2) = IQir? + TIe
which reduces to S2(%2) ~ 2ch(22), for y << 2, and to S2(%) "~ 4ch?Q or to
S2(9) ~ 4sh?® for y >> 2 and sgn { = 1 or -1 respectively. Then, from

Egs. (19) and (20) we obtain

av
at

a1
3% S2(R)

IQ’

2 A A
52—2— ¥ - S3(2) ¥ = - € S2(2) (24)

@
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where

T =e LI+ 75/4)" . (25)
Setting ,
W) = s v, | (26)
Eq.(24) can be rewritten és
- s W e o (27)

3. IDEAL MHD SOLUTIONS

In this sec£ion we investigate the propagation of AlfQén waves in the
limit ¢ = 0, i.e. ﬁe neglect the effect of dissipation.‘ We consider two
limits. The first one corresponds to large values of y in which case the

angle between the two separatrices is small. In this limit, Eq.(27) reduces

to
Wv o+ (- 1+2)W=0 (28)
ch2® ’ :
and to
oy 2 5
W't + (w2 -1 - sh’R) W=20, (29)

for sgn { = 1, -1 respectively, where W = W exp(-iwt) and a prime denotes
differentiation with respect to 2. These equations can be solved in terms of

elementary functions:

W= C, exp(+iaf)[tgh? F id] , (30)



and
W= C, exp(tiaf) [ctght ¥ ia] , (31)

respectively, where

«=7e7 =1, (32)

and C_ are integration constants. 1In the limit where y is small, Eq. (27)

reduces to

3 .~
s W=0, (33)

W+ (- 1

which can be solved in terms of hypergeometric functions [of which (30) and

(31) are elementary limits] in the form

(...l;g
2 2°

[

# = ¢, lch2201* 45

oW
+

IR
—
-+

IR

s = (1 - tgh2?)) . (34)

[\

For the solutions in x-y space to.be regular, ¥ must satisfy the
appropriate boundary conditions in Fourier space, For % -+ + », i,e. for
k - » and k - 0 respectively (which correspond to q = yk/2 and to g - », see

Fig.2), Egs.(30), (31) and (34) lead to the asymptotic forms for V.
¥noexp [-i(ut + af) - (211 . (35)

For real d, i.e. for w? > 1, Eq.(35) corresponds to the superposition of
waves propagating in the positive and negative direction along &. In
Fourier-space, the amplitude of ¥ decreases as 1/k for k - » and as k for k -
0. Hdwever, the current density

J < (h? + g2)¥ v S2 VY, (36)



increases as k, when k - » and as 1/k when k - 0. For w? << 1, Eq.(35) has

the two asymptotic forms

A

Y nvoexp [-iwt - (121 £ 2) £ w2R/2] , o (37)

leading again to a current density that diverges as |[2] = =,

These results indicate that the effect of resistivity must be included
for |2] - ». In coordinate space this corresponds to the neighbourhood of
the two separatrices. Resistive effects will be considéred in the next
section.

It is first convenient to express the solutions (30), (31) and (34) in
terms of even and odd functions of %. The transformétiqn 2 +-9, i.e. q -
Tk/2 «— k(1 + 73/4)%, corresponds in coordinate space to the interchange of

' ¥

the two separatrices, i.e. to x + yy/2 « y(1 + y?/4)”, 1In the case of

Eq.(30), which holds for y >> 2 and sgn { > 0, we have simply
»ﬁ = Ce[tghR sinal - acosafll + Co[tghﬁ cosal + asinal] , (38)

with Ce and Co integration constants. The solutions (31) of Eq.(29), which
holds for v >> 2 and sgn{ < 0, behave as 1/% for & - 0. Consequently @
behaves as 1/%2. This singularity is the result of the approximation
employed for S(%). For y >> 2 and £ + 0, S(f) can be approximated as S(R) «
22 + 1/y?. Then, the correct even and odd solutions are

W= @ R, + c (22 + 3/ (39)

where we have assumed w? << y2. Matching (39), for 2]y - », to (31) for

[2] << 1, we find that C, in Eq.(31) take opposite signs for positive and for



negative values of 2. Rewriting Eq.(31) as a combination of an even and of
an odd solution, we obtain, for |%2] > 1/y and for frequencies such that

lw/yl < 1,
W= Cesgni[ctghﬂ cosal + asinafl] + Cosgnﬂ[ctghlsinal - acosaf] . (40)

In the case of Eq.(32), valid for y << 1, the following relationship between

C, and C_ holds for even (s = 1), and for odd (s = -1) modes:

+C_ sa (1 + ia) T2 (% l%)

+  2[1 ¥ s/sin(ina/2)]

C (41)

_ . 1 _ ia
(; F ia) I"(2 F 2)

4.  DISCRETE MHD SPECTRUM

Let us assume that the dimensionless parameter € in Eq.(27) ié different
from zero, but small (e << 1). In this case, even for arbitrary small €,
resistive effects become dominant for % = % =,

First we consider the limit |yl >> 2, and, instead of Egs.(28) and (29),

obtain .
' 2 N _ = A 5

Bre s w2 -1+ o5 W= ik @ chre W, | (42)
and -

N 208 ., A o

W'+ (w1l - ) W= ddwe shi W, (43)
with

e=ellly/2 . (44)

.—10-



Expanding for large |R|, as suggested by the results of the previous

section, we obtain in both cases
W+ (w2 - 1) W= - ive exp(2l2]) W. | (45)

Equation (45) can be solved in terms of Bessel functions. Imposing that #

vanishes for [%| - =, the relevant solution can be written as

A = a, 1Y T exp (12D1 (46)

Y

and Im viw > 0. For [%] » |2t|, vwhere

" where a = Yw? - 1, H(l)(z) is a Hankel function, A+ are integration constants

R T g
t 2 x
4ue

1, (47)

are the two symmetricél turning points of Eqs.(42) and (43), this solﬁtion
decreases exponentially with k for k = « and with 1/k for k - 0. Both Q and
J are now well behaved.

Matching Eq.(46) for [%| <X Iltl to the limiting expression (35) for |2l
>> 1, and using Egs.(38) and (40) we obtain the dispersion relation for the
frequency w as a function of [ and € in the limit y >> 2. The resulting
expression is

~dia

[i%E] exp(ma) = + (1 - da) T(l + ia)

(1 +ia) I(L - ia) °

(48)
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where the plus sign holds for even modes with sgn { > 0 and for odd modes
with sgn < 0 and the minus sign holds for odd modes with sgn [ > 0 and for
even modes with sgn { < 0. Even and odd refers to the symmetry of v,

In the limit |y| << 2 an analogous procedure leads again to (45), with

e =elll , (49)

and, after matching with the limiting expression of Eq.(35) using (41), to

the dispersion relation

. ’ 1 ia
;g0 1a L % . T3(s + =%)
iwe _ ,: rSin(ima/2) % 1. 1 + ia 2. 2
[ 16] exp(ma) = i [sin(ina/Z) F 1] {l - ia] rz(l _ ia) i (50)
2 2

where the plus-énd minus sign refer to the even and odd modes respectively.
Egs.(48) and (50) take a simple form in the high frequency limit a v w

>> 1. In this limit from Eq.(48) we obtain
wp RanR/eCrl = (2n = ¥)7m , (51).

and

w anle/eCYI = - |2n + %ln2/2 , (52)

I

where w = wp + iwI and n is an integer. Similarly from Eq.(50) we obtain

wp ﬂnle/eCI =mn- , (53)

and

o w2 lug/ell = - Iml 3=, N ED
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where m = 2n + 1 for even modes and m = 2n for odd modes.

Equations. (48) and (50) describe modes with a discrete spectrum for
fixed [. At large frequencies they are equally spaced, the imaginary part of
the frequepcy is much smaller than the real part, and their characteristic

width in the k space is given by

Ak = [ g0 (1, (55)
€ €

corresponding to a width of the dissipative regions in the neighbourhood of

the separatrices of order

. %
- (& gy (M
Ax = [E= 9n ( e)1 : (56)

5. FINITE AMPLITUDE PERTURBATIONS

The system of equations (3) and (4) admits solutions of the form

e
]

hxy + A(y,t) , (57)

1<

= vyt e, . | (58)

These solutions describe finite amplitude, incompressible perturbations such
that their electric current density and plasma velocity depend only on one
coordinate and on time. In terms of the small amplitude pertufbafions con-

~ sidered in the previous two sections, these solutions correspond toiéhe
special case [ = 0, i.e. to perturbations that propagate in the direction
perpendicﬁlar to one of the two separatrices. The y-component of Eq. (3)

results in the following expression for the pressure

-13~



I U
P= "0 [hx

9A , 1 ,3A,?
ay +3 (ay) 1 + P(x,t) , (59)
where P(x,t) is independent of y. Inserting (59) into the x-component of Egq.

(3) we obtain

3 __h B3A __3%2A _ 123P(x,t)
at ¢ 4rp (ay y ayz) P ax (60)

When combined to (58), it implies

1 8P(x,t) _ _
5 ——524—— = - a(t) , : (61)

with a(t) a spatially uniform acceleration. From Eq.(4) it follows that

A _ _ nc? 3A
at hvy + om dy? ° (62)
Combining Egs. (60) and (62), and consi&ering perturbations such that a(t) =
0, as is e.g. the case when v is an odd function of y, we find that the
x-component of the perturbed magnetic field
3A

Cby,t) = 3y ° . (63)

4obeys the linear equation describing finite amplitude shear-Alfvén waves

LI LR o _ 8 8
atz P TV 5ya P T Y gy P YD T ey gy

b, (64)

where we have reintroduced dimensionless variables. Applying the Laplace

transform with respect to time

. =l4-



b(y,s) = f: exp(- st) b(y,t) dt , (65)
we obtain
(es + y2) b" + yg'_— (s2+1)b=0, (66)

where b(y, 0) = ab(y, 0)/3t = O have been assumed for |yl < 1 and a prime

denotes differentiation with respect to y. In terms of the variable

E=4n (y + Vse + y2) . (67)
Eq. (66) becomes
dzb o _
R enb, (68)

and its solutions can be written as

g(y, s) =iCl(fse + y? + y)fl+s’ + Cz(fse + y? - y)f1+s’ , (69)

with Cl(s) and Cz(s) integration constants. The'charactéristic scale length
across the §eparatrix is of order Vse. For y? »> se, the two solutions
behave as y i‘r—i:—s—zrespectiv'ely,

We consider boundary conditions such that the perturbatiohs of the
magnetic field equals boe(t) at y = 1 and - boe(t) at y = -1, with 6(t) the
step function (8(t) = 1 for t > O and 6(t) = 0 for t < 0). The Laplace

transform of the boundary conditions gives g(l,s) = bo/s and g(— 1,s) =

- bo/s. Then (69) can be rewritten as

~15-



, shyT + s? in (fes £y * vy,
o Ves
S

b(s,y) = (70)

sh[¥l + s? in (£§§:E:l;i—l)]

ves

The time dependence of the perturbed magnetic field is obtained from the

inverse Laplace transform

b(y,t) = 5or é B(s,y) exp(st)ds (71)

of (70), where C is the Bromwich contour. The singular points of the

integrand in (71) are given by s = 0 and by
V1 + s? In[(Ves + 1 + 1)/Ves] = im , - (72)

with n an integer number. The contribution of the pole s = 0 leads to the
term b(y,t) = boy, which corresponds to fhe time independent solution of
Eq.(63) for the given boundary conditions. The long time behaviour of (71)
is then determined by the solutions of Eq.(72) for which the real part of s
is largest [6], corresponding to n = * 1. The contribution of the branch
‘cuts of (70) along the negative's axis can be shown to be unimportant. Then,

combining the contributions at the poles s = 0 and
s =+ i[l + 2n2/4n?(4/e)] - 2n3/4n3(4/€) . (73)

We obtain, for [yl <« Ve,

4 cos(t+m/4) o
Ve nz(4/€)

b(y,t) = boy [ 1+ xp (- 2n3t/n3(4/€))] . (74)
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This shows that the typical time scale for the evolution of one-dimensional
shear-Alfvén waves in the vicinity of the separatrix is of order
tA2n3(4/e)/n3,'with t, the Aflvén time.
6. CONCLUSTIONS

The results presented in this paper show that characteristic frequencies
can be associated with the plasma dynamics around the X~lines of a magnetic
field configuration. The presence of the separatrices results in a
propagation of the MHD waves towards the dissipative regions in the vicinity
of the separatrices that is faster than that found around the resonant
.surfaces in a slab configuration [4]. In the short wavelength limit,
dissipation leads to the reflection of the waves and to the appearance of a
discrete spectrum.of two-dimensional, localised weakly damped MHD modes. In
the one-dimensional approximation, i.e. when the scale length of the
perturbations imposed from the boundaries along one of the separatrices is
much larger than thatlalong the other, non-linear shear Alfvén waves have
been found to decay on a times scale that is considerably longer than the

Alfvén time.
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Fig.l Magnetic field structure near the separatrix surfaces.
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Fig.2 Wave-vector plane. The variable [ is positive inside the shaded area
bounded by the k = 0 axis (# = -®, solid line) and by q = yk/2 ({ = =,

dotted line).





