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ABSTRACT.

When the external injection of power is sufficiently high atokamak ohmically relaxed state with
maximum entropy can no longer be sustained and the plasma becomes resistively unstable. The
instability isthe result of a peculiar interaction between the edge resistivity, the current and the
thermal transport at the edge of the current channel. The thresholds of the instability depend on
the existence of a current pedestal, on the detachment of the current channel from the material
limiters combined with a sufficiently high ratio between the auxiliary power and the toroidal
magnetic field and a sufficiently low toroidal current. In the paper the thresholds are expressed in
aform which allowsthe comparison with the experiments. Thetheoretical predictionsare generally
consistent with the observations on the H-transitions in tokamaks, in particular with the scalings
observed in DIII-D and JPPT-11U.



1. INTRODUCTION

A resistive instability of the tokamak discharge was recently discussed
(MINARDI, 1988) which results fram a peculiar interaction between transport
and resistive effects at the edge of the confinement zone. Indeed, in a
situation in which the thermal diffusivity increases strongly beyond a

critical g-value at the edge of the discharge (for instance, for g = 2) the

critical g = const surface is also approximately a surface with constant
temperature. This means that when the surface g = const is moved by any
slight resistive perturbation of the current, the temperature also moves in
such a way as to remain constant on this surface. This fact implies a link
between the T = const and the g = const surfaces near the edge, or, which is
the same, between the local resistivity and the local current. This link may
involve a resistive instability (circuit instability, see MINARDI, 1984,
1986) whose existence and time scale strongly depends on the local steepness
of the current density profile and on the existence of a pedestal. Since, at
the same time, the physical conditions of the plasma at the edge will depend,
among other factors, on the incaming heat flux fram the mixing region and on
the applied power, as well as on the readiness of the system to build up a
temperature and current density pedestal, a close relationship will exist
between these quantities and the threshold values of the resistive
instability, whose parametric dependence we are going to discuss in the
present paper. We shall .find that, under cerfajn conditions, the parametric
dependence of the thresholds is consistent with that cdbserved in the
H-transition. This fact seems to imply a situation in which the plasma
assumes and maintains resistive states with the physical properties of the
H-states provided that it has been able in its previous history to build up
the threshold conditions and in particular it was ready, as a consequence of
its transport properties, to build up a current density pedestal required by

the new resistive state. In fact, _pergrly speaking, the theory to be




presented, is not a theory of the pedestal formation, but of the existence
and maintenance of resistive states with pedestal. In the resistively
unstable situation these states are amplified, while in the stable situation
the perturbation formihg the pedestal tends to disappear. The description of
the detailed mechanisms producing the threshold conditions necessary for the
develomment of the new resistive states is beyond the scope of the present
theory, but the development of these states is certainly related to a strong
disturbance of the resistive equilibrium of the discharge, due to a number of

different causes and involving time scales shorter than the resistive time.

2. TRANSPORT-DISSIPATION PROBLEM IN A SLIGHTLY RESISTIVE TOKAMAK
Let us divide the poloidal flux A(r,t) of a cylindrical tokamak in a

part Ao(r) related to an oimically relaxed current density configuration
372

(1) = T (1) (2 g

A, (r,t) which describes the resistive effects generated by the temperature

jo is supposed to be uniform) and in a time dependent part

change T(r.t) - To(r):
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In order to calculate the temperature T(r,t) one should couple the
FEgs. (1) with the equation for the energy balance, assuming, as discussed
above, that the temperature remains constant on the critical g-surface at the
boundary. However, the praoblem can be considerably simplified by exploiting
the tendency of a slightly resistive plasma to adhere to the structure of an

ideally conductive equilibrium, characterized by a specific functional




relation between A and q, provided that the time dependence of the total

current remains approximately linear. Indeed, rigorously speaking, in the

presence of dissipation, the relation between A and q should be modified by
an explicit time dependence A(r,t) = A(q,t). However, it was shown, on the
ground of analytical and numerical arguments (MINARDI, 1986, 1988) that,
under the condition above for the total current (which can be satisfied for a
significant fraction of the resistive time), one can still express A(r,t) in
termms of q(r,t) only, namely A(r,t) = A(q(r,t)). Moreover, in view of the
1ink between the q = const and the T = const surfaces imposed by the boundary
condition, A(r,t) can also be expressed in terms of the temperature only,
namely A(r,t) = A(T(r,t)), at least in the neighbourhood of the critical
g-surface.

The relation A = A(T) is easily found from the condition that, at zero
order,ﬁ it must be identical to the static Ohm's law n(TO) = E/jO(AO) (jo(r)
can be expressed uniquely in terms of Ao(r) because aAo/er # 0 for r > 0).
Thus, one must have in general n(T) = E/jo(A) .

Substitution of n(TO), n(T) into (1b) gives the following

self-consistent equation for the flux dissipation:

3A j (A + A ) dA
c 13 _ g _ 20T "l T
4an r ar (r ar ) * Jo(Ao *A) Jo(Ao) - Ec at (2)

In the following we shall limit ourselves to the linearized version of

this equation:

9A, dj o _ J o(Ao) 8A,
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We consider a confinement region Aa £ r < a and a boundary region a < r < b

without current and with high thermal conductivity, where b is the location




of the material limiters. Assuming an exponential behaviour in time, one is

led to study the eigenfunctions defined by the equation

aa
id. _n -
X & (x & ) + (va) ZAn B AnAn (4)
where X = r/a and
aj
- 4n 0
v2 = o —igo (5)

for A<x <landv2 =0 for1<x < Db/a. In general v?(x) is a slow
function of x so that it can be approximated by a constant. Taking the
maximum or the minimm value of v?(x), the negative or the positive sign of
7\n is respectively a sufficient condition for stability or instability.

The marginal solution
A = hJo(\)r) + kYO(\Jr) (a T < a) (6)

separates the stable (>\n < 0) from the unstable (An > 0) eigenfunctions. Two

sets of boundary conditions can be considered:

A, (b) =0, (aa,/3r), = 0 (7a)
or

A, (b) =0, A, (na) =0 (7b)

The condition of r = b expresses the assumption that the material limiters
act as perfect conductors. At the mixing radius r = Aa one can take Bpl (Aa)

= - (8A,/8r) = 0, assuming that the poloidal magnetic field in Aa and the

Aa
current inside the sawtooth region r < Aa remain the same as in the zero




order, while the process described by A, (r,t) develops in the outer region.
These modes, which were considered in the previous papers, give rise in the
nonlinear regime to a motion of the inner boundary of the intermediate region
and to an expansion or a shrinking of the core of the current channel. Here
we shall study the second family of modes, which keep the inner boundaxy of
the confinement region fixed and conserve the poloidal flux in the region r <
Aa. A discontinuity of Bp will eventually appear in r = Aa associated with a
toroidal sheet current.

The two conditions (7b) involve an algebraic linear system of equations

whose compatibility condition gives the marginal stability curve

b_ 1 Jo(va)Yo(A\Ja) - JO(A\Ja)Yo(\Ja)
a

957, (va)Y_(wa) - J_(wa)Y, (va) (8)

This equation has an infinite mumber of branches in the space (va, b/a) for a
given A. 2An example of stability diagram for different values of A is given
in Fig.1 (first branch) and in Fig.2 (second branch). The deformation of the
marginal current densityﬁ profile j(xr) = jo(Ao +A) = jo(r) + (cv2/4mA,
produced by modes of the first and of the second branch, is illustrated in
Fig.3. The modes of the first branch describe a global heating (or cooling,
depending on the sign of A,) with a broadening (or a shrinking) of the
current density profile. The modes of the second branch, which possess a
zero in the interval 2a < r < a, describe a central cooling and a peripheral
heating of the discharge (or vice versa).

The time dependence of the modes results fram the two terms in the left hand
side of (3). The first is the ordinary diffusive term and implies a
characteristic time of order 4ma2?/c2?n(T). The second term contains the
effect of the link between the local resistivity and the local current and
involves a characteristic time = dn/c?vin(T). 1In general (va)? >> 1 so

that the time scale of the second effect is much shorter than that of the




ordinary resistive diffusion. The parameter (va)? can reach local values of
50 or more. Thus, for T = 300ev and a = 1 m, T,, can be of the order of 0.1s
or less.

The time scale is modified by nonlinear effects. Indeed one can write,
up to second order

c 423 Az
JoB, + Ay — I A) = 4= viA, + dA—é 5 (9)

One sees fram this relation and fram Eq. (2) that when A, and dsz/dAs
have the same sign, the time scale of the process is shortened and the
process tends to take a disruptive character. At the contrary, in the
opposite case, the nohlinearity quenches the instability. In this case the
system tends to settle in a neighbouring saturated equilibrium (sée MINARDT,

1988, 1986).

3. ZFERO ORDER MAXTIMUM ENTROPY STATES

We shall discuss the dependence of the marginal curves on the physical
parameters of the discharge taking, at zero ordef, those ohmically relaxed
steady states of the tokamak which correspond to a vanishing entropy
production in the presence of ohmic and auxiliary heating. Thus the magnetic
configuration remains stationary under the external action of the heating.
These states are then expected to be most likely realized in practice because
they correspond to the same maximm value of the entropy as that of the
isolated system. The requirement above leads, for a cylindrical tokamak, to

the following equation for the axial current density jO (MINARDI, 1988):

1d o .
rar Tg) TWl, =g (10)

where Py is the auxiliary power density, E is the axially induced electric
-— '7 —




field and p? is a parameter which depends on an "a priori" arbitrary power B
of the electric field. The dependence of the electric field, of the
temperature and of the global confinement time on the auxiliary power and on
the ratio c'i/c;a between the safety factor at r = Aa and r = a, occurs through
the biunivocal dependence of these quantities on the parameter p (see below) '.
Considerations of consistency with the Goldston scaling of the glabal
confinement time imply a cubic dependence u? « E3 and that y is independent
of the toroidal magnetic field BT and of the total current I (see previous
papers) .

In the case of a uniform Pp the sclution of (10) has the form

. Pa
Jo(r) = HJO(ur) + KYo(ur) - (11)

where H and K are determined by the conditions j(Aa) = 'ﬁ, j(a) = ja. The

further conditions

72y

e

(12)

oF B

Bp(ua) = ' Bp(kua) =

applied to the solution for Bp(ur) involve a relationship between the

dimensionless parameter p = pA/E’i and ua for given values of &/qa, 3a/j and

Al
a/q = A? = (2/paD) [(2/uam) (1 + 3_/3) + M + 3 G/3]
p(ua) = (5/0aD) @/mia + M+ G) + Af = 1 (13)
where
D = J ,(Na)Y (ua) - Jo(ua)Yo(NJa)
A= JO (pa)Y, (xua) - J, (Aua)YO(pa)
G = J()(?\].Ja)Y1 (ha) - Yo(kpa)J1 (ua) ' (14)




Correspondingly the parameter v? (defined by (5)). through which the marginal
stability values of the zero order equilibrium are determined in accordance
with (8), can also be parametrized in temms of ja, for given values of &/qa,
3 a/ j and A:

2 2]

2
) =—m[p(A+

2

a
N =) (15)
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H
Note that this relation is independent of &/qa, a fact which will be of
importance in the next section. The following properties can be checked
numerically:
~ 273 \

- For fixed Waq,, ja/i and A, p = p(pa) and X = p(ua) (pa) are decreasing

functions of pa.
- v(ua) is a decreasing function of ua and an increasing function of p and

X.
The results above constitute the basis for the discussion, in the next
section, of the threshold of the instability in terms of the characteristic
parameters of the zero order equilibrium.

4. THRESHOLDS FOR H-TRANSITIONS

4.1 case of 'é/qa,_j_a/f variable and p, u, E, A fixed

Let us consider a marginal point (b/a)m, }‘m' v, on the marginal curves
of Figs.l and 2. We specify the zero order equilibrium by giving the
electric field E (related to ya by E « (ua) 213) and the parameter p, which

can be written in the form




Po_ _ 2m

P=—"7=Px 5ig_
5 " By

(16)

where the relation ?1 = cBT/Z‘ﬂRfj>

1 was used. We solve (15) with respect to
ja/j obtaining the marginal value of the pedestal for the equilibrium
specified above:

A Ha

= > [p(A + 2/n>\nua) + A+ (NnuaD/Z) (vm/u) 2] (17)

D lmu-

Introducing this expression into (13) one can solve for &/qa and cobtain the
values of &/qa corresponding to the marginal value of the pedestal for the
chosen values }‘m’ \Jm, E(or ya) and p. Note that in view of 8_[ = 1 one has
El/qa“ 1/Bp, vhere I is the current flowing in the cylinder with radius r = a.
If now Vo varies alcong the marginal curve as the function of the detachment
parameter b/a (with A_ fixed) 3j_/J and @/q, will also change as functions of
b/a ‘and one obtains a representation of the marginal curve in the spaces

(J a/jA, b/a) or (a/qa, b/a). Examples of this representation are given in
Figs.4 and 5 for different values of the parameter ua « Ealz. One sees from
the figures that a decrease of a/qa « I/BT (accampanied by a decrease of the
pedestal), as well as a decrease of E (or pa), destabilizes the system, for
fixed b/a. Similarly, an increase of b/a, for fixed values of E and I/BT,
destabilizes the system. These results are consistent with the experimental
cbservations on the tokamak JIPP TIIU (TOI, 1989). In the plots of Figs.4

273

and 5 the parameter pa is changed by keeping fixed p(pa) . Since (ua) 22
« E, this implies recalling (16), that pA/BT has the same value for the
different curves. Also pA/BT is constant along each marginal curve with
given E. It follows that the threshold value of the auxiliary power is

directly proportional to BT when one moves along a marginal curve by changing

_10_




BT with I fixed, but remains constant when one moves along the marginal curve
by changing I with fixed BT'

The variations of the parameters discussed above constitute one way for
producing a marginal situation. It is not, however, the only way. One can

create a marginal situation with a different arrangement of the set of

. parameters, as we shall discuss below.

4.2 case of d/g . 3 /3. v, A varisble and p, y. E fixed

As seen from the marginal curves (Figs.1l and 2) the marginal values Y
depend only on A for a given value (b/a)m of the detachment parameter. Then
the same holds for the marginal values of ja/’J} (given by (17)) and of a/qa
(given by (13)). Examples of the dependence of these quantities on A are
given in Figs.6 and 7. Note that these marginal equilibria exist in a
limited range of Ej/qa o« I/BT, Jj a/j and A and that the A—dependence is rather
independent of the value chosen for p. Just as above, the quantity pA/BT is
invariant along these marginal equilibria, so that the threshold value of the
auxiliary power is directly proporticnal to the toroidal field (with fixed E)
not only when b/a is varying with a fixed A, but also for a fixed b/a with a
varying A, @/q and 3,/3.

A direct proportionality between the threshold value of the power and
the toroidal field has been cbserved in DIII-D (CARLSTROM, 1989).

In our theory the proportionality factor depends on the loop voltage of
the ohmic equilibrium. Introducing the total auxiliary power PA = pA211 2a2kR
(where k is the elongation) one can write the marginal relation in the form
P, (MW) = SpmV(Volts)B,T(Tesla)ka2 (m) /R(m) (18)

A

where o is a marginal value of p.

_11_




4.3 Case of p, Yy, v, E variable and ’c}/qa, ja//ﬁ, M Fixed

let us introduce the variable

X =pa) = P ZﬂgBTg (19)

or also X = PA(MW) ‘F where
F = 0.2(ua) 2ISR(m)/V(Volts)B,I.(Tesla)ka2 (m) (20)
Since E « (ua) 2/3, the variable X is directly proportional to PA/BT for any

value of ua. If PA is increased, keeping BT fixed, X increases and the same
holds for v because v is an increasing function of X when the equilibrium
parameters above are fixed.r As is seen from the marginal curves (Figs.l and
2), the increase of v fram the marginal point with fixed b/a and fixed A
drives the system into the unstable region.

The space (X, b/a) allows a convenient representation of the marginal
curve for fixed values of a/qa (or I/BT) , ja/ﬁ and A. Fig.8 shows an example
of this representation based on the first and on the second branch of the
marginal curve, in the absence of current pedestal (ja = 0). Fig.9 shows the
destabilizing effect of the current pedestal in a representation based on the
second branch of the marginal relation. It should be noted, however, that
the current pedestal of chmically relaxed states is not independent of the
auxiliary power. Thus, in the case of ohmic relaxation (i.e. jo(r) «

372

TO (r)) the description of the power thresholds in which the pedestal is
taken as an independent variable, can have no more than a qualitative

significance.

_12_




4.4 Case of _?;/qu, ju/ﬁ, p variable and y, E, A, b/a fixed

By varying

0.2 R{m)
V{Volts) BT (Tesla)ka? (m)

p = P, (M) (21)

while the parameters above are fixed, one obtains, according to (13) and
(17), marginal equilibria of the form illustrated in Fig.10, where the values
of &/qa « I/BT are related to the pedestal j a/ﬁ. The region of lnstablllty
corresponds to a decrease of the current away fram the marginal equilj:brium
related to a decrease of the pedestal, for fixed values of BT and of the

parameters above.

5. FINAL, REMARKS

We have considered ohmically relaxed steady states of the tokamak
defined by vanishing entropy production in the presence of ohmic and
auxiliary heating. When the external injection of power is sufficiently
high, namely above the threshold given by (18), the ohmic relaxation in a
steady state can no longer be sustained and the plasma becames resistively
unstable as a consequence of a peculiar interaction between the edge
resistivity, the current and the thermal transport occurring at the edge of
the discharge. The ohmic relaxation is then broken and the plasma enters in
a new (generally time dependent) resistive state, provided that specific
plasma conditions, which are necessary for the existence of the new’
resistively unstable states, are realized in the discharge as a result of its
previous history.

The realization of the threshold conditions required for the development
of the new resistive states can be due to a number of different mechanisms,

all producing a strong departure fram the resistive equilibrium of the

_13_




discharge and involving time scales shorter than that of the resistive
diffusion. The explanation of these mechanisms constitutes a separate
problem. The threshold conditions involve the existence of a current
pedestal, the detachment of the current channel fraom the material limiters
carbined with a sufficiently high ratio between the auxiliary power and the
toroidal magnetic field and a sufficiently low toroidal current (i.e. aQ R
2). The theoretical model is supported by experimental cbservations in
DIIT-D and JIPP T-ITU.

Besides a better understanding of the mechanisms producing the threshold
conditions (in this connection see HINTON, 1985), a consistent identification
of our resistively unstable states with the H states needs the demonstration
of the improved particle and energy confinement after the transition. For
treating this problem, which is related to the change of the temperature and
current density profiles after the transition, the reduced Eq.(2) is too
simplified and one should revert to the camplete set of the Ohm-Maxwell-
Transport equations, taking into account however, the boundary conditions ]
resulting from the peculiar link, discussed above, between a critical value
of q and a constant temperature on the same critical g-surface, at the edge

of the confinement zone.

_14._
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Fig.1 First branch of the marginal curve (8), for different values of the
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Fig.2 Second branch of the marginal curve (8), for different vaiues of the
parameter A.
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Fig.3 Example o; a zero order current density profile (solid line, &/q'a =
0.33, j5/3 = 0.06, A = 0.12, ya = 0.35) and of the profile
distortion (dashed line) produced by a marginal mode. (a), mode of
the second branch; (b) mode of the first branch.
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Fig.4 Examples of marginal curves con;t’esponding to the first branch for

given p, ua (or E) and A; p(pa) = 2.00, A = 0.2944. The marginal
equilibria can be labelled equivalently by 3/q, (plots (a)) or by
the related values of the pedestal j/3 (plots (b)).




b/a and pa (or E) and variable a/qa, ja/ﬁ and A.

=1.02, ya = 0.12; (b) p = 10.207, b/a = 1.02, pa = 0.10.

(a) p = 3.51, b/a

b/a b/a
(a) (b)
1.3+ 1.3+
0.27 pa=035 927 590
1.2+ pa=0.35 0.20 1.2+
unstable
11+ unstable 11
stable stable
1.0} 1.0+
| ] | i ] | ] ]
02 03 04 05 Glq, 00 01 02 03 /T
Fig.5 Same as in Fi ;% for marginal curves corresponding to the second
branch; p(ua) = 4,5952, A = 0.12667.
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Fig.7 Same as in Fig.6 for marginal equilibria corresponding to the second
branch. (&) p = 5.0495, b/a = 1.00, ya = 0.35; (b) p = 11.00, b/a =
1.00, pa = 0.22.
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Fig.8  Examples of marginal curves in the space (P, b/a) for given Vag, A
and j5 = 0. (a) @/qy = 0.40, A = 0.30, first branch; (92;-1/(1& =
0.30, A = 0.10, second branch. Recalling that E « (ua) one has
that the factor F is a constant.
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Fig.S Examples of marginal curves in the space (PA, b/g) for given &/qa, A
and different values of the pedestal; A = 0.10, q/qa = 0.40, second

branch.
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Fig.10 Typical examples of marginal equilibria for 'c\;/qa, ja/ﬁ and p
variable; pa = 0.70, A = 0.25, b/a = 1.02, first branch. The
equilibria can be labelled equivalently by @/qy (plot (a)) or by the
related value of the pedestal (plot (b)).






