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EXTENDED VARIABLE REPRESENTATIONS

F. Pegoraro

JET Joint Undertaking, Abingdon, Oxon. OX14 3EA, UK

ABSTRACT

The extended-variable ("ballooning") representation, commonly used for
the study of short wavelength plasma modes in a toroidal magnetic
equilibrium, is generalised to include:
i) the effect of a differential toroidal rotation
ii) non linear terms in the mode amplitude.

These results are obtained by relating this representation to the
irreducible representations of the relevant invariance group, which is shown

to be a discrete Abelian subgroup of the Heisenberg group.

1. INTRODUCTION

The extended variable representation was introduced in 1977 by different
plasma theoreticians, Refs.[1-4], as a convenient mathematical tool in order
to describe the linear phase of high-n modes in toroidal, magnetically
confined, plasmas.

In these analyses the equilibrium configuration is assumed to be
axisymmetric, with the toroidal angle ¢ an ignorable coordinate, and n is the
mode toroidal number. The radial shear of the magnetic field lines generates
a mismatch between the (changing) helical pitch 1 of the field lines winding
along the torus, and’the pitch of the mode. This misﬁatch gives a radially
dependent contribution to‘the longitudinal mode number kH = - 1ibV gn¥. The
radial direction is defined as perpendicular to the toroidal magnetic

surfaces, b is the unit vector along field lines and E is a representative




perturbed quantity. An additional contribution to k”, which is
characteristic of toroidal configurations, arises from the non uniformity of
the equilibrium along field lines caused by the absence of rotational
invariance in the poloidal piane around the plasma magnetic axis.

In a strong magnetic field, modes with finite k” are difficult to
excite, as a consequence, for example in the case of magnetic modes, of the
tension of the stretched field lines. Thus, if we write 2(r,9,¢) =
£(r,0)exp(in¢), the amplitude £(r,6) proves to be a non factorisable function
of the radial coordinate r and of the poloidal angle 6. In fact, the
spectrum of the mode poloidal harmonics, which are coupled by the lack of
poloidal rotational invariance, changes with r so as to accommodate the
variation of 1 and to minimise the longitudinal mode number. The n/m ratio,
with m the central value of the poloidal mode number spectrum, can match the
pitch 1 only on mode-rational surfaces where n/1 is an integer, and a
residual mismatch is present outside these surfaces.

For modes with large toroidal mode numbers n, if the dimensionless shear
parameter s = - din 1/d¢n r is not small, a convenient separation occurs
between the radial scale length related to the equilibrium variations, which
are of the order of the torus minor radius, and the distance between adjacent
mode-rational surfaces. This allows us to introduce the auxiliary "fast"

radial variable §
S=n/1 -n°, (1)
where m° = n/l(ro), with r a reference mode rational surface. To leading

order in the resulting asymptotic expansion, the mode dispersion relation for

the amplitude X(S,6,r), where




£(r,8) = X(5,0,r) exp(- im°@) , (2)

characteristically takes the form of a partial differential equation in 6 and
S. The dependence on r is determined by successive orders in the asymptotic
expansion [2]. For the sake of definiteness in this letter we consider the

following reference equation

a2
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(g * 391 - s* 353

)(%6 + 1i8) X(S,0) + I'(cosb + is sin® %g) X(S,86)

+02(1 - 52 2) X(s,8) = 0, (3)
which was derived [5] in a (simplified) treatment of the ideal
magnetohydrodynamic ballooning modes [6]. These modes are the magnetic
analogue of the Rayleigh-Taylor instabilities [7]. They are driven by the
combined effect, represented by the term proportional to I = I'(r) in Eq.(3),
of the magnetic curvature and of the plasma pressure gradient, which have a
relative orientation which depends on the poloidal angle as indicated by the
periodic coefficients in 6. In Eq.(3) the only explicit dependence on S
occurs through the longitudinal mode number k” represented by the operator
3/86 + iS, where the linear term in S is due to the shear of the magnetic
field lines. The term proportional to ka, arises from the tension of the
perturbed field lines and Q is the normalised mode frequency. Equation (3)
is to be solved subject to the condition that X(S5,6) be periodic in @ as the
mode amplitude must be a single valued function of the poloidal éngle.

The extended variable representation reduces Eq.(3) to an ordinary
differential equation, preserving the required amplitude periodicity in 6.
This is achieved by introducing an extended poloidal wvariable 0 ranging from

-~ to +», and an extended amplitude X(8) from which the physical amplitude




X(S,6) is reconstructed through a summation procedure. A detailed account of

this method can be found in [8]. Here we quote two key formulae:

+1 a
J 5% X (5,8) exp(iSa) , (4)
-n

X(s,8) =

with a, - < a £ 7, the effective radial wave number, and

+o
X!(5,6) = I xa(é) exp(- i2mms) , (5)

-0

with x&(s,e) = Xa(S,G) exp(iso) and 5 = ¢ + 2mm. Using (4) and (5), the

dispersion relation (3) reduces to

& +s2(6 - @2 L X (8) + Ilcosd + 52(8 - ) sind) X ()
30 36
+ Q2 [1.+ s2(6 - a)?] X (8) = 0. (6)

2. INVARIANCE GROUP
In order to establish the group theoretical basis of Egs.(4) and (5), we
notice that the differential operators 3/36 + iS and 3/3S in (3) satisfy the

commutation relation
[3/3S, 3/386 + is] = i. - (7)

We denote by L the three-dimensional Lie-algebra generated by 3/3S, 8/86 + iS
and i. The transformation X'(S,8) = X(S,0) exp(iS6) leads to an equivalent
realisation of this algebra in terms of 3/3S - i8, 3/86 and i. We denote

the algebra generated by the latter operators by L', and find that




(L,L'*] = 0, (8)

where a star denotes complex conjugation. Then, in order to determine the
invariance group of Eq.(3), we consider the Heisenberg group H [9] generated
by L'*, i.e. by 8/3S + i6, 3/36 and -i. Its action on the mode amplitude is
defined by X(S,8) - X(S + A,,0) exp(ixr,0), X(S,8) - X(5,6 + A,) and X(5,0) -
X(S,0) exp(-ir,) with A,, A, and A, the parameters that label the
transformations generated by 3/8S + 16, 3/36 and -i respectively.

The 6-dependent terms make Eq.(3) invariant only under discrete poloidal
transformations such that A,/2m is an integer. This restriction follows from
the absence of poloidal rotational symmetry in the toroidal equilibrium.
Furthermore, the mode amplitude remains periodic in 6 under the action of
transformations along S only for integer values of A, [8]. We conclude that
the invariance group of Eq.(3), subject to the condition that its solutions

be periodic in 6, is the discrete subgroup G of H defined by

X(s,8) = X(S + 1,8) exp(ie) , (9a)

X(s,8) = X(S,0 + 2mw) . (9b)

The group G is Abelian. Thus we can expand the solutions of Eq.(3) on a
basis of common eigenfunctions of the transformations (9). Periodicity in 6
requires that the eigenvalue of the first transformation be equal to one.

The eigenvalue of the second transformation can be written as exp(ia), with «
defined below Eq.(4), which represents the expansion of X(5,6) into
eigenfunctions of (9a). Then the primed amplitude X&(S,B) = Xa(S,G)

exp(iS6) 1is periodic in S with period one, while x&(s,e + 21) = x&(s,e)
exp(i2ns).

Equation (5) follows immediately by expanding X&(S,B) into a Fourier
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series in S and by imposing the poloidal periodicity constraint on xa(s,e).
This constraint leads to the relationship ia’m(e) = ﬁa(e + 2mm) [8] between
the Fourijer coefficients xa’m(e) which are thus expressed in terms of a
single function of an extended poloidal variable, ﬁa(g).

Alternatively, Eq.(5) can be derived as a consequence of the restriction
from the group H to its subgroup G [10}. The eigenfunctions of the 3/3S +
i6, with eigenvalues differing by 2m times an integer, are coupled when only
discrete radial transformations are considered, leading to the summation in
(5). Since G is Abelian, these coupled eigenfunctions can be chosen such
that they are simultaneous eigenfunctions of (9b). A complementary
representation in terms of an extended radial variable [8] is obtained by
‘reversing the order with which this restriction is imposed, i.e. by starting
from the periodic eigenfunction of 3/36, which are coupled when only discrete

poloidal transformations are considered, and by successively expanding them

into eigenfunctions of (9a).

3. DIFFERENTIAL TOROIDAL ROTATION

The usefulness of identifying the normal modes of the dispersion
equation in terms of eigenfunctions of its invariance group can be
convincingly illustrated when the extended variable representation is
generalised to perturbations occurring in a plasma with sheared equilibrium
mass flows. The evolution of ballooning perturbations in a rotating toroidal
configuration has been analysed in Ref.[11] and more recently in [12] and
[13]. A difficulty with the standard extended variable represenfation, as
given by Eq.(5), arises when the plasma rotation is not uniform. This
introduces an explicit dependence on the fast radial variable S that cannot
be removed from the dispersion equation, if perturbations with a factorised

time dependence of the form exp(-iQt) are chosen.,




We consider the case of a purely toroidal differential plasma rotation
and, in order to simply illustrate the relevant mathematical steps, adopt

the following model dispersion equation

8z 8

3 . ? . _
&+ 19 (1 - 52 250 (55 + 15) X(5,0,8) + T(8, 33) X(5,6,1)
& s (1 - sr Sy (& + ips) x(s,6,t) = 0 (10)
at H 352’ ‘3t H 9 :

Here f(e,a/aS) is periodic in 8 and corresponds to the combination I'(cos6 +
is sin® 3/8S) in Eq.(3). The amplitude X(S,6,t) depends explicitly on time.
The operator 8/8t + iuS plays the réle of the Doppler shifted frequency Q -
nQR(r), with QR(r) the plasma toroidal rotation frequency. The term iuS

represents the differential part of the Doppler shift,
us = n[QR(r) - QR(ro)] ) (11)

with g = u(r), while the constant part nQR(ro) is included in 3&/dt.

In full analogy to the mode poloidal structure described in the previous
section, we expect X(S,9,t) to be a non factorisable function of t, and the
mode frequency spectrum to adjust itself with S so as to minimise the
relative change of the phase caused by the S-dependent Doppler shift. This
adjustment is not complete for all values of t, and we expect solutions that,
apart from a phase factor which defines the mode "frequency" and growth rate,
are periodic functions of t with period |pl-1, corresponding to the phase lag
between adjacent mode rational surfaces.

In order to identify the invariance group of Eq.(10) we start from the

Lie algebra L, of the operators 38/98S, 3/36 + iS, 3/3t .+ iuS and i, define L.

R R

through the transformation X'(S,6,t) = X(S,6,t) exp[iS(® + ut)] and find




(L Lﬁ*] =0 . (12)

R’
The group HR generated by L!*, is the direct product of the Heisenberg group
generated by 38/8S + in, 3/8n, and - i, where n = 6 + yt and we have used n, S
and t as coordinates, and of the group generated by 3/3t. As in Sec. 2 we
must restrict HR to discrete poloidal, 6 - 6 + 2m, and radial, S » 5 + 1,
transformations. Furthermore, to obtain an Abelian subgroup, we restrict

HR to discrete time transformations t - t + 2n/p. The resulting invariance

group G_ is the direct product of the group of G of Sec. 2 with n substituted

R
for 6, and of a group of discrete time translations (at constant n).

The expansion of X(5,8,t) into eigenfunctions of GR provides the natural
definition of the normal modes of (10) and identifies two eigenvalues, the
radial wave number a and the "frequency" Q. The latter is in general a
complex number with Re Q restricted to an interval of width [u|. The

» amplitude X& Q(S,r],t) = Xa Q(S,e,t) expl[isS(® + ut)] is periodic in S and in

Ut at constant n. It can be expanded into eigenfunctions of the discrete
time translations and, in analogy to Eq.(5), expressed in the extended

variable a = n + 2mm in the form

+ +o
X&’Q(S,n,t) =_§k _zm xk’a’Q<ﬁ) expl[- i(2mmS + kut)] . (13)

A complementary extended variable representation can be derived in terms of
an extended radial variable.
Inserting (13) into (10), we obtain an infinite system of coupled

ordinary differential equations

& (et &R M) + (onkrip 2 (rerne) [omierip 29 X ()
an an an an




+ T [cosnesn sinn] (%, (W)X, (W1+ 57 [sinn-sn cosnl Xy (M-F,; (W1, (14)

where, for the sake of illustration, we have taken a = 0, dropped the index
Q, and used the form of T given in (3). A convenient approach to solving the
system (l4) is to use p as an expansion parameter, since u < 1 for most cases
of interest. Then, to lowest order in u, and for values of k such that fuk |
< Q, %k becomes independent of k and Eq.(14) reduces to (6). For larger k

this approximation is not valid and would lead to a singular time behaviour.

4, NON LINEAR AMPLITUDE REPRESENTATION

The extended variable representation can be generalised to products of
the mode amplitude by suitably extending the action of the group G [10]. A
finer radial scale appears according to the substitution S - hS, with h the
order of the nonlinearity, as consistent with the rule for the toroidal
number n - hn, which follows from Eq.(2). In this letter we restrict our
discussion to h = 2, but the extension to arbitrary h is straightforward.

We consider the product Za"(S,B) = xa(s,e) Ya,(S,e), with a" = a + a'
and xa(s,e) and Ya,(S,e) eigenfunctions of G. Then Za"(S,G) is periodic in

e, Za"(s +1,0) = za"(s,e) exp(- 2i8) and Za"(S,B) exp(iSa") belongs to the
‘ (2)

irreducible representation labelled by <a"> = a" - 2mp, of the group G
with p = 0, * 1, such that -n < <a"> < w. This group extends the action of G
to terms quadratic in the mode amplitude and is defined by the
transformations Z(S,0) -~ Z(S,0 + 2m) and Z(S,8) - Z(S + 1,0) exp(i2@).

(2)

The group G can be seen as a subgroup of GZ' This is isomorphic to

G and its action is obtained from that of G by substituting 2S for S. The

subgroup G(2)

is obtained from G2 by restricting the transformations 2S - 2§
+ 2 to even values of 2., The latter group acts on functions K(2S5,6),

periodic in 6, which can be expanded into irreducible representations




following a procedure analogous to that developed in Sec. 2. The

generalisation of the extended variable representation is then obtained by

(2) (2)

relating the eigenfunctions of G to those of GZ' Since G is a
subgroup, this relationship involves the coupling of two eigenfunctions

belonging to different representations of G2. We find

za"(s,e) exp(iSa") = K,(25,8) exp(i2sB) + K (25,6) expli2s(B+m)] , (15)

B

Bim

where KB(ZS,G + 2n) = KB B B

- 7 < B <1 and the sign in B + 7 is chosen such that - m < B + m < + 7,

(25,6), K,(25 + 1,8) = K,(25,8) exp(- i6), B = a"/2,
Using the extended poloidal variable representation on the left and on the

right hand side of Eq.(l5) we obtain, for z&"(s,e) = x&(s,e) Y&,(S,e) with

2!,(5,0) = 2_,(5,6) exp(i2s0),

+co

z!.(5,0) = _Em (%B(a) + K, (8) exp(+ i2mS)) exp(- i2mm2s) ,  (16)

BLm

which is the counterpart of Eq.(5). Representation (16) involves two
functions (in the general case h functions) of a single extended variable.

These are given by the convolution products

+c
~ ~ ~ ~d4 A ~—=
Kg (6) = _EP X (8) Y ,(8), (17a)
+m + ”~ A
Kgn(0) = _EP X (6" F2m Y (6, (17b)
vhere ® = 6 + 2mm, %i =0 % 2rp =6 + 2u(m = p) A complementary




representation in terms of an extended radial variable is described in [10]

where the inversion formulae of Egs.(15) and (16) are also given.

5. CONCLUSIONS

In this letter the relationship between the so/called extended variable
("ballooning") representation and the invariance group of the mode dispersion
relation has been identified. As a result, the extension of this
representation to differentially rotating plasma equilibria has been derived.
Central to this extension is the choice of the eigenfunctions of the
invariance group as the normal modes of the dispersion relation. In the
presence of differential rotation, this leads to modes with a
non-factorisable time dependence. Nevertheless, a mode frequency can be
defined. The mode amplitude is periodic in time with a period given by the
time lag between adjacent mode rational surfaces.

The same group-theoretical formalism makes it possible to derive the
proper convolution product that expresses the extended variable
representation of a non linear term in the mode amplitude in terms of the
representations of the individual amplitudes. This method applies to modes
with equal (or multiple) toroidal mode numbers n and provides a convenient
“Fourier" basis for studying the non linear evolution of high n-modes in a

toroidal axisymmetric configuration.
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