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PLASMA MODES, PERIODICITY AND SYMPLECTIC STRUCTURE

F. Pegoraro
Scuola Normale Superiore, 56100 Pisa, Italy.

JET Joint Undertaking, Abingdon, Oxon. O0X14 3EA, UK

ABSTRACT
A group theoretical formulation of the so-called "ballooning" or
"extended variable" representation, commonly adopted for the study of the
linear eigenmodes of short wavelength excitations in a toroidal, axisymmetric
electromagnetic plasma, is presented. With the help of this novel
formulation, this representation is generalised so as to include the

non-linear evoliution of the excitations.

1. INTRODUCTION

The behaviour of a high temperature plasma in a strong magnetic field
depends on the global gecmetrical and topological features of its
configuration. Its properties are anisotropic because charged particles move
essentially freely along field lines, while they are effectively tied to them
in the perpendicular directions. These features are reflected in the
behaviour and spatial structure of the plasma collective excitations. These
generally exceed the thermal fluctuation level as plasmas are in most cases
far from thermodynamic equilibrium. In particular, short wavelength
collective excitations (micro-instabilities) are held responsible for the
observed enhanced particle and energy diffusion across the field lines in
inhomogeneous magnetically confined plasmas of the type that are of interest
for controlled thermonuclear fusion experiments.

It has long since been recognised that the most dangerous excitations

are those with an amplitude which is approximately constant along the



equilibrium magnetic field of the configuration. The reasen for this can be
easily shown, e.g. in the case of magnetic plasma excitations, as a strong
restoring- force would be produced by the tension of the field lines which are
stretched when the perturbed magnetic field varies along the eguilibrium
field. Whether, or to what degree, this condition can be satisfied, depends
on the global structure of the magnetic configuratioen.

In many experiments, the largely unrestrained motion of the plasma
particles along the field lines has led to the adoption of closed confinement
configurations. ‘The resulting topology is characteristically that of a
(full) torus with helically shaped magnetic field lines winding along
toroidal surfaces (magnetic surfaces) as sketched in Fig.la. Generally the
pitch of these helices is not constant across the toroidal surfaces (Fig.lb),
i.e. the magnetic field is sheared, and non-rational surfaces are covered
ergodically by the field lines. Sheared magnetic configurations of this type
are advantageous for plasma stability.

To illustrate this point we refer to & ubiguitous form of instability in
magnetically confined plasmas. Charged particles, as they move along curved
magnetic field lines, e.g. in the configuration depicted in Fig.la,
experience a centrifugal acceleration which is equivaleft to an effective
gravity. If this acceleration points in the direction opposite to the
gradient of the plasma pressure, the plasma can decrease its energy simply by
exchanging regions of high and low pressure. This instability is similar to
the Rayleigh-Taylor instability [1] which occurs in inhomogeneous or
stratified fluids. However, the motion of a highly conductive plasma is
constrained by the {(approximate) conservation of the magnetic flux. A
convenient way of accounting for this constraint is by imagining the plasma
to be made of tubes of constant magnetic flux that maintain their identity as
they move. If the magnetic field is sheared, these tubes can be thought of

as forming sheaths of skewed elastic strings. This net of strings cannot be
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opened to allow the exchange of different plasma regions without the
individual strings being stretched.

In a toroidally confined plasma the direction of the centrifugal
acceleration relative to that of the pressure gradient changes.- from the
inside to the outside of the torus as indicated in Fig.2, so that the energy
of the configuration is most efficiently reduced by displacing only that
portion of the magnetic tube where these two directions are opposite. BSuch a
deformation involves wave lengths that are short on the scale of the torus
minor radius and stretches the magnetic tube leading to a restoring force.

These qualitative arguments are taken here as a justification for
writing the linearised, local dispersion relation for magnetic plasma

excitations (plasma mecdes) of the type described above in the heuristic form

w? = kﬁ(r,e) ci - g{r,B)/rP. (1)
Here w is the mode frequency, k”(r,e) is the local value of the component of
fhe mode wave vector along the equilibrium magnetic field, r and 6 are
coordinates that label the magnetic surfaces and the poloidal angle
respectively (see Fig.2), s is the plasma Alfvén velocity (i.e. the
propagation velocity of magnetic perturbations in a plasma), —g is the
effective gravity projected onto the direction of the pressure gradient and
rp is the characteristic scale length of the pressure gradient. The
dispersion relation (1) applies to small amplitude excitations, and, if they
are growing in time, is restricted to their linear phase. Being local (its
r.h.s. is a function of r and 6), Eq.{l) cannot be used to determine the mode
frequency, which can only be obtained by solving the relevant dispersion
equation for the full mode spatial eigenfunction, but can be interpreted as
relating kH to w, for example in an eikonal (WKBJ) approximation scheme [2].

The term quadratic in kH arises from the restoring force due to the tension
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of the magnetic field lines and depends on r becasuse the direction of the
magnetic field changes with r (magnetic shear). It also depends on 8 since
the relative orientation of the centrifugal acceleration and the pressure
gradient is a function of 8 so that energy is to be gained if the amplitude
of the mode is localised on the outside (6 = 0). If, for modes so localised,
the term —g/rp prevails in the r.h.s. of (1), w3 is negative and a purely
growing instability occurs, which is called the "ballooning®™ instability [3]

in the plasma physics literature in view of its spatial appearance.

2. SMALL AMPLITUDE EIGENFUNCTIONS

The onset of plasma excitations can be described in terms of a
dispersion equation for the mode eigenfunction, obtained by linearising the
appropriate set of dynamical equations around a prescribed equilibrium
configuration, In the case of the magnetic modes introduced above, the
simplest significant set of dynamical equations is provided by the so-called
"ideal magnetchydrodynamic" approximation. This portrays the plasma as a
perfectly conducting fluid. This description has a rather limited validity,
but will suffice for the scope of this presentation which simply aims to
elucidate the general mathematical properties and spatial structure of the
excitations.

The plasma confinement experiments that are considered in the present
analysis consist of toroidal magnetic equilibrium configurations (see Fig.l)
which are approximately axisymmetric. We may thus consider excitations
characterised, during their linear phase, by a well defined toroidal (the

long way around the torus) mode number n. We thus write



E(t,9,0,r) = E(8,r) exp(ing - iuwt), (2)

vhere ¢ is the toroidal angle and we have chosen a scalar quantity E to
represent the excitation. For instance  may be defined as the radial (i.e.
normal to the magnetic surfaces) component of the plasma displacement vector
associated with the perturbed magnetic field. On the contrary the excitation
amplitude 2(8,r) contains several poloidal (the short way arcound the torus)
mode numbers, as the different poloidal harmonics are coupled by the lack of
rotational symmetry in the poloidal plane. For the mode amplitude to be
poloidally localised, the expansion of E(e,r) in poloidal harmonics must
extend to large pcleidal mode numbers m. This condition can be consistent
with the requirement that the excitation be approximétely constant along the
equilibrium field lines only if the toroidal mode number n is also large
(short wavelength excitations}, More precisely the n/m ratio, with m the
central value of the pcloidal mode number spectrum, must match the pitch 1 of
the magnetic field lines. This is defined as the ratio on each toroidal
surface between the number of turns a field line must follow along the short
and the long way around the torus respectively before closing onto itself.
Thus we expect E{r,s) to be a non-factorisable function of r and € and the
spectrum of poloidal mode numbers to change with r so as to accommodate

the variation of | across magnetic surfacés. & residual mismatch between the
pitch of the mode and that of the field lines must remain on magnetic
surfaces which are not "mode rational" i.e. for which n/1(r} is not an
integer.

Since n is large, and provided the dimensionless shear parameter s

s =~d fn 1/d In r (3)



is not small, the distance between adjacent mode rational surfaces is much
smaller than the characteristic scale length of variation of the equilibrium
configuration {(such as rp in Eq.(1)). The latter is generally of the order
of the minor radius of the torus. Thus, when solving the mode dispersion
equation for B(r,8) we will adopt a two scale approach [2] corresponding to
an asymptotic expansion for large n. The additional radial coordinate is
defined as

§=n/1 - m°, (4)

with m? = n/1(r;) and r, @ reference mode rational surface. The distance
between two adjacent mode rational surfaces corresponds to AS = 1. Following

this procedure we consider S and r to be independent variables and write
£(r,8) = X(r,5,8) exp(- i m® 8), (5)

where, for the sake of convenience, part of the mode poloidal dependence has
been factorised. The dependence of the new amplitude X on r and S must be
determined separately by solving the mode dispersion equation in successive
orders of approximation for large n. The dependence on S describes the
response of the mode to the shear of the magnetic field lines, whereas the
dependence on r is due to the radial change of the equilibrium. To leading
order in the asymptotic expansion, only the S dependence comes into play.
The detailed derivatien of the dispersion equation requires algebraic
steps that we think convenient to bypass by referring to a model equation
(see e.g. ref.[4]) which retains the features essential for the present
analysis. Then, to leading order in 1/n, we write the mode dispersion

equation as



3 . 92 . 3 . . ... 8
(35 * i8) (1 - s? 3g7) (35 + i8) X(S,8) + I[cose + is sinb 3g) X(S.8)
+ Q1 - 82 257 X(5,8) = O - 6)
Y ' .

The function I' = I'(r), which is a constant on the S scale, is proportional to
the radial gradient of the plasma pressure. The poloidal variation of the
effective gravity is represented by the trigonometric functions of 6, while Q
is a properly normalised frequency. The operator (3/86 + iS) plays the role
of the mode wave number along the equilibrium field and the linear term in S
is due to the shear of the magnetic field, 1If, formally, we substitute —ikH
for (8/86 + iS) and disregard the S derivatives, we recover the heuristic

dispersion relation (1} with T cos8 -~ g.

3. PERIODICITY AND EXTENDED POLCIDAL VARIABLE
It would appear that Eq.{6) can be reduced to an ordinary differential

equation in 8 by means of the transformation
X'(5,6) = X(5,8) exp(ise), (7}
and by subsequently expanding X'(S,®) into plane-wave sclutions in S.

However X(5,6) is a single valued function of the poloidal angle 6. This

pericdicity reintroduces an S-dependence through the conditien

X'(8,8 + 2m) = X'(S,8) exp(i2ns). (8)

A solution to this problem was found in almost the same months by
different researchers, including the present author in collaboration with

Dr. T.J. Schep (see refs.{5-8]}). Setting aside differences in their



formulation, all the solutions that were presented relied on introducing an
"extended" poloidal variable 0 ranging from -= to +w, and an extended mode
amplitude'i(ﬁ) from which the physical amplitude X(S$,0) can be reconstructed
through a summation procedure.

The approach of ref.[5]}, which is described in detail in ref.[9], is
based on the observation that the dependence on S introduced by the
exponential factor in (8) is periodic with peried one. Then, solutions for
X'(5,8) can be sought that, aside for a phase factor, are periodic in S with
period one,

These are obtained by writing

+7

X'(s,8) = [ % X!(s,8) exp(iSa), (9)
-1
with
+co
X! (5,8) exp(isa) = EP X'(s + p,0) exp(-ipa), {10}
where
x&(s +1,8) = X&(S,B) (11)

and a, -1 < a < 7, plays the role of a radial wave number. The S-periodic

amplitude X& is subsequently expanded in a Fourier series

+a
x&(s,e) = _Em xa’m(e) exp(-i2mmS}. (12)

When (8) is imposed, the following relationship between the Fourier

coefficients X {8) is found
a,m



X, (8 = X, (8 + 2mm) = ﬁu(S). (13)

finally leading to the "extended poloidal variable" representation

o ~ A

X, (s,8) = _Em X (8) exp(-i2mmS), (14)

with 8 = 8 + 2mm the extended poloidal variable.

Equation (14) can be inverted in the form
X (8 = [ ds X! (5,0) exp(i2ms). (15)

Combining (15) and (10) with (7), and (14) and (9) with (7) we have

+om
ol

R (&) = [ dsx(s,0 exp[iS(8 - a)) (16)

-0

and

+o 1
X(s,0) = I [ S2R (B) expl-is(8 - a)]. (17)
mo

A corresponding representation can be obtained in terms of an extended
S-variable by expanding the 6-periodic amplitude XQ(S,B) = X&{S,B) exp(-150)
in poloidal harmonics and subseguently using Eg.(11) to find a relationship
analogous to (13) between the poloidal Fourier coefficients, The resulting

expressions are

+om
X (5,8) = “EE X (5) exp(ife), (18)



with S = S + % the extended S variable, and

oo T g
= [ o %,(5.,8) exp(-ife). {19}
-7 -

It is easy to verify that the representaticn in the extended pocloidal

amplitude and that in the extended S-variable are related by the Fourier

transformation
- —_ teo dfe\ ~ ~ N
X, (5) = ”i o X, (8) exp(-i56), (20)
and
ey ral +m - - -
X () = [ as X (S) exp(ise). (21)

Furthermore the norm is preserved as

+% LU to B A A
_j ds F{ 3. 1% (5,01 = ”i ds 1X_(5)1* = _£ o X ()17, (22)

Representations (14) and {18) associate a function of a single variable
on the interval -«, +o to the functions X&(S,B) and xu(s,e). When applied to
the dispersion equation (6) they reduce it into an ordinary differential
equation which includes the periodicity conditions.

The presence of the trigonometric terms in & in Eq. (6) makes the use of
the extended poloidal representation more suitable. Then, for each

a-cemponent, we obtain
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[1+ s3(8-0021 & % (8) + I'lcosd + s?(B-a) sind] X_(8)
Y a a

&%

+ 021 4 52 (8~a) 1] ia(ﬁ) = 0. (23)

Equation (23) is to be solved for the eigenvalue Q2 with the condition that
for 18] - w, iata) vanishes sufficiently rapidly* for the inverse
transformation (15) to converge for all S.

The linear stability condition against these "ballooning" excitations is
obtained by regquiring that an initial perturbation does not grow
(exponentially) i.e. by imposing that the eigenvalue Q; is positive for all
values of o¢. This leads to an instability threshold of the form I' = Tth(s),
vhich expresses the balance between the combined destabilising effect of the

pressure gradient and of the magnetic curvature, I', and the opposing effect

of the magnetic shear s,

4, EXTENDED VARIABLE REPRESENTATIONS
The extended variable representations can be conveniently reinterpreted
by adopting a group theoretical formalism. First we notice that the
differential operators 8/38 + iS and 3/3S in (6) satisfy the commutation
relation ¢f the Heisenberg algebra [11]
3 2

e ag + 18]

as' a¢ (24)

|
[N

This is the same symplectic conditicn [12] that is satisfied by a coordinate

and its conjugate momentum in phase space, which hints directly at an

- *Weaker conditions can be adopted when this method is extended [10] to the
description of excitations characterised by the presence of a boundary
layer.
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interpretation for the Fourier relationships (19) and (20). We denote the
three-dimensional Lie algebra generated by the operators 3/35, 3/38 + iS5 and
ibylL.

Transformation (7), leads to an equivalent realisation of- this algebra
in terms of the operators 3/35 - i6, 9/80 and i. We deﬁote the algebra

generated by the latter operators by L'. Then we find

[L,L'*] = [L',L*] = 0, (25)

where a star denotes complex conjugation. We are thus led to consider the
invariance properties of the dispersion equation (23) under the action of the
group H generated by L'*, i.e. by the operators 8/85 + i8, 38/36 and -i. Its

action on the mode amplitude X(5,8) is defined by

A, X(5,8) = X(5 + »,,8) exp(ir,8) (26a)
A, X{(5,8) = X(5,8 + A,) (26b)
A, X(5,8) = X(5,8) exp(-iA,) (26c)

with A, A, and A, elements of the one dimensional subgroups generated by
3/a3% + 16, 8/86 and -1 respectively, and A,, A,, A, the parameters that label
the transformations.

Due to its B-dependent terms, the dispersion equation (23) is invariant
only under the subgroup of H defined by the condition that A,/2w be an
integer. In addition, for the mode amplitude to remain periodic in 8, we
must further reduce the invariance group to integer values of A,. We are

thus left with the discrete subgroup G of H generated by the transformations

-12-



corresponding to 6 - 8 + 2m and to S+ 5 + 1.* Since G is Abelian, we can
expand the mode amplitude X(S,8) into common eigenfunctions of the
transformations X(5,8) - X(S,0 + 2m) and X(5,6) —~ X(5 + 1,8) exp(i8)}.
Periodicity in 6 requires that the eigenvalue under the first transformation
be equal to one. The eigenvalue of the second transformation can be written
as exp(ia), where a coincides with the “"radial" mode number in Eq.(9) and
labels the irreducible unitary representations** [11] of G on the space of
the functicns Xa(S,B) exp(iSa). The transformation (7} leads te an
equivalent representation of G on the functions X'a(S,B) exp(iSa).

The extended variable representations (l4) and (18) are thus simply a
consequence of the restriction of the invariance group from H to G and arise
from the decomposition of irreducible representations of H into irreducible
representations of G. The possibility of employing two different extended
variable representations stems from the fact that the group H is not Abelian.
In the case of Eq.(18) the starting point is the set of the (periodic)
eigenfunctions of the transformations (26b) generated by the operator 8/36,
The restriction of the invariance group couples these eigenfunctions, leading
to the summation over %, but, since the subgroup G is Abelian, allows for the
simultaneous implementation of the discrete invariance S = § + 1, which
introduces a relationship between the Fourier coefficients. In the case of
Eq.(14) (rewritten in terms of the amplitude xq(s,e} instead of X&(S,G)) the
starting point is the set of the eigenfunctions of the transformations (26a)
generated by the operator 8/3S + i6. The restricted invariance results now
in the coupling between eigenfunctions with eigenvalues differing by 2n times
an integer number and in the relationship (13) between their coefficients.
*Since these transformations commute we do not need the constant phase
transformations of H.

**An ambiguity in denominations can arise here. We recall that the
representation of the group action on a linear space, and the representation

of a function of two variables in terms of a function of a single extended
variable are different mathematical objects.
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5. REPRESENTATION PRODUCT

The extended variable representation can be generalised to the product
of the amplitudes of the excitations. Let Xa(S,B) exp(iSa) and Ya.(S.B)
exp(iSa') belong to the a and to the o' representations of G respectively.
The product Za“(S,G) = xa(s,e) Ya,(S,B) satisfies the periodicity

conditions
za"{s,e + 271) = Za“(S,B) . (27

and

Zn(S + 1,8 = 2 ,(5,0) exp(-i20) , (28)

where a" = a + a'. Thus Zu"(S,B) exp{iSa") = XG(S,B) Ya,(S,S) expliS{a+a’)]
belongs to the irreducible representation labelled by <a"> = a" - 2k (with k

(2)

= 0,+1 such that -7 < <a"> < 7n) of the group G generated by the

transformations 2(§5,8) = Z(5,86 + 2n) and Z(S,8) - Z(S + 1,8) exp(i2®).

(2)

The group G can be seen as a subgroup of the group G2. This is

isomorphic to G and its action is obtained from that of G by substituting 25

for 5. The group G{Z)

is obtained from G, by restricting the transformations
25 - 25 + p to even values of p.

The group G. acts on functions K(25,8) periodic in 8. These can be

2
expanded into components belonging to irreducible representations of G2 which
can be expressed as functions of a single extended variable following a
procedure analogous to that developed in the previous two sections. The new
radial scale length is half that of the group G and corresponds to the
distance between the mode rational surfaces of perturbations with toroidal

number 2n, as consistent with the multiplication of the mode amplitudes in

Egs.(2) and (5).
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The generalisation of the extended variable representation to quadratic

terms in the excitation amplitude is then obtained by finding the

relationship between the eigenfunctions of G(z) and those of GZ' Since

(2)

G '“"is a subgroup of G,, this relationship must involve the coupling of (two)

2!

eigenfunctions of G. belonging to different representations. It is easily

2

seen that

Z,u(s,8) exp(iSa") = K,(25,8) exp(i2SB) + K,. (25,8) expl[i2S(Bin}]}, (29)

B

Bxm

where KB(ZS,B + 21) = KB B B

(@ + a')/2, -1 < B < 7 and the sign in (B % n) must be chosen such that -m <

(28,8), K,{28 + 1,8) = K,(25,6) exp(-i6), B = a"/2 =

B+tm< + m., Equation (29) is inverted in the form

Ky (25,8) = 3 [Z,(5,0) + Z_,(3 + %,8) exp(i®)] , (30)

B
and
_ 1 _ . —
KBin{ZS,B) =3 {Za"(S,B) Za"(S + %,8) exp(if)] exp(¥i2mns). (31)
The explicit form of the generalised extended variable representations
can be derived by inserting the extended variable representations of X(§,8),
of Y(S,8) and of K(25,8) into Eq.(9).
In the following part of this section we list a few groups of relevant

formulae:

i) Addition rule for the radial mode number

If 2'(5,8) = X'(S,8) Y'(5,8) = X(5,8) Y(S,8) exp(i2§6), then
+17 d
2'(s,0) = J ﬁx;czs,e) exp(i2sy) , (32)
-7
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"

where K%(ZS,G) KT(2S,9) exp(i2se), K}(ZS+1,6) = K}(ZS,B) and

+7

_dit. 1 L ‘ 1
_£ 5n [Kpag(5,8) Y1 (5,8) + X0, (5+4,0) ¥

K%(ZS,G) a(s+%,e)].(33)

r

Here X;+a = X<T+a> exp(-i2kn}, Y}_a = er-u> exp(-i2kn), and <yte> = 7y ta -

2km, with k = 0,21, such that -m ¢ <yfe> < n. The amplitudes Xér+a>(s'e) and

YéT_a>(S,B) are obtained from X'(S$,0) and Y'(S,8) according to Eq.(9).

i3) Product of extended poloidal variable representations

If 2‘;,,(5,9) = Xc'l(S,e) Y&,(S,G}, then

+o
Zoa(s,0) = L [Kg(®) + K

-0

B+"(§) exp(+i2nS)] exp(- i2mm28) ,  (34)

vhere B = a"/2 and RB(Q), with 8 = 8+2mm, is the extended poloidel variable

representation of K1(25,8) = K

P

Equation (34) is inverted by

B(28,9) exp(i256), with Kﬁ(ZS,B) from Eqg. (30).

~ ~ %
K. (8) = [ ds z',(5,8) exp(i2mm2S) , (35)
B - a
and
~ ~ % 1
KBiﬂ(B) = _i ds 2),(s,8) expli2s (m ¥ 3) 28] . (36)

The relationship between the extended pcloidal variable representation of

Z&“(S,B) and those of X&(S.B) and Yé,(S,e) is expressed by the convolution

-16-



preduct

Fal ”~ +w e ~ -~ ~

KB(B) = _EP X (6°) Y ,(87) , (37)
Fal ~ +w ~ ”~ ~
Kﬁin(e) = _EP X (6* ¥ 2m) Ya(e-) , (38)

~

where 6 = 8 + 2mm, 6* = 8 + 275p =8 + 2n(m + p), and 8- = 6 - 2Mp = & +

2n(m - p).

iii) Product of extended radial variable representations

Irz ,(s,0) =X (5,0) Y ,(5,8), then

+o
Zgn(8,0) = I, [Rg(3) + ()4 Ry, (25) exp(£i25m)] exp(ife) , (39)

-0

where B = a"/2 and K(28), with 25 = 25 + 1, is the extended radial variable

representation of KB(ZS,B) from Eq.{(30). Equation (39) is inverted by

+1

1 jols] . .
KB(2S) =3 ,£ >0 {ZQ"(S,B) + Za“(S + ¥,0) exp(ie)] exp(- i28), (40)

+Tt
-2 g% [2,,(5,8) = Z_,(5+%,8) exp(i8)] exp(Fi2ns - i18).  (41)
-

The relationship between the extended radial variable representation of

w]7-



za"(s,a) and those of Xu(S.B) and Ya,(s.e) is expressed by the convolution

product

_ 1 Yo - I T |
KB(ZS) =5 _EP [xa(s*) Ya.(S') + xa(s* + 3) Ya,(S' = -5)] (42)
- 1 e -
Rosn (@S = 3 ,EP (X (5+) ¥, ,(57)
SR G+ B T G- 37 exp(F i2n8) (43)
a 2/ g 2’4 &¥P

where 25 = 25 + ¢, S+ =5 + /2 + p and S- =8+ §/2 - P.

The functions K, (25) and K,(8), and K, , (25) and K

8 B Btw Biw

a Fourier transformation analogous to that in Egs.(10) and (21).

{8), are related by

CONCLUSIONS

We have shown that the extended variable representation, employed in the
plasma physics literature for the description of short wavelength excitations
in a toroidal axisymmetric plasma configuration, is related to the
irreducible representation of an Abelian subgroup G of the Heisenberg group
H. The Lie algebra of H commutes with the differential operators in the
dispersion equation of the excitations. The subgroup G corresponds to
discrete transformations in the poleidal and in the radial directions. The
reduced invariance from H tc G arises from the poloidal modulation of the
coefficients of the dispersion equation and from the requirement that the
excitation amplitude be a single valued function of the poloidal angle.

The action of G can be suitably extended so as to include products of
the amplitudes of excitations with equal (or multiple) toroidal mode numbers.

The expansion of these products into irreducible representations allows us to

_18_



generalise the formalism of the exﬁended variable representation to the
description of the non linear evolution of the excitations.

In this paper we have explicitly developed this formalism in the case of
quadratic terms. It can be extended to the general case along the same
lines. In a future paper these results will be applied to the solution of
the non linear dynamical eguations for the magnetic excitations described in

the introduction.
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(1a)

JGB9.258/1

Fig.la Section of a torcidal magnetic egquilibrium configuration. Two
magnetic surfaces and two magnetic field lines (thin lines} are

displayed.

(b)

7

JG89.258/2

Fig.lb Section of two (straightened) magnetic surfaces displaying the change

in the pitch of the magnetic field lines {(thin lines).



Fig.2
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Toroidal and poloidal angles ¢ and & and radial coordinate r.
Relative orientation of the effective gravity and of the pressure
gradient at the outside (8 = 0, tight) and at the inside (8 = m,

left) of the torus,





