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ABSTRACT

The parametric decay of the fast magnetosonic wave to an ion Bernstein
wave and a quasimode is analysed to estimate the amount of power converted
nonlinearly at the plasma edge during ion cyclotron heating. Low decay
thresholds for the pump wave amplitude are obtained when the quasimode
frequency is at the hydrogen cyciotron frequency and the fast wave frequency
is near appropriate cyclotron harmonics (or their sums) of the edge plasma.
To obtain an upper limit for the growth of the decay modes nonlinear Landau
damping of the Bernstein wave as a secondary process, in addition to the usual
convective and linear damping processes of the decay waves, is studied. It is
shown that due to the secondary process and finite interaction geometry in the
decay a negligible power conversion from the fast wave to Bernstein modes may
follow even if the pump wave amplitude clearly exceeds the threshold. At
larger pump wave fields (>200 V/cm) a non-negligible power conversion could be
obtained in spite of saturation of the instability. Because the wave fields
of the fast wave at the plasma edge of JET tokamak are estimated'to be less
than 200 V/cm no serious power losses for the heating wave due to the
Bernstein wave decay at the edge are expected. This seems to be in accordance
with the recent observations in JET. These dependences are described and
applications to H-minority heating of deuterium and deuterium-tritium plasma

by ICRF waves in JET are presented.
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1. INTRODUCTION

There is wide experimental evidence that parametric instabilities may
affect the power deposition in different wave heating schemes. Various decay
processes may cause anomalous absorption of the heating wave which may be
deleterious or beneficial depending on the spatial location of the
instability. During intense ICRF heating by fast magnetosonic wave, the decay
of the fast wave into an ion Bernstein wave and an ion quasimode has been
theoretically predicted [1-5] and has been observed in the scrape-off layer in
tokamaks [4,12]. It has been proposed [4,12] that the direct edge heating and
consequenf enhancement of density and impurity production in some ICRF heating
experiments could be due to this decay. Recently, however, no clear
connection between these deleterious phenomena and the fast wave decay to
Bernstein modes was found in JET [13]. 1In an earlier study 5] the
possibility of this decay at the plasma periphery during typical ICRF heating
scenarios was investipated and low thresholds typically < 100 V/em were :
obtained.

In this work we extend this study further. In particular we improve upon
the estimates of the threshold presented earlier for the decay process in D-H
plasmas by including proper geometrical effects. In addition, we also present
estimates of the threshold for this decay in deuteriﬁm—tritium—hydrogen
(D-T-H) plasma which is of great relevance to future experiments. Finally we
evaluate the amount of power conversion from the fast wave to the decay waves
as a function of relevant parameters. This power depends on the coupling
geometry, the electric field of the fast wave and on the noise level of the
decay waves. Generally, the calculations regarding converted power are
complicated due to the nonlinear nature of the instability andeifferent
damping mechanisms of the decay waves. The decay waves may experience the
collisional damping, the usual Landau damping, cyclotron damping or convective

damping due to the finite interaction region. The nonlinear wave particle
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interactions, secondary decay processes, pump depletion etc. also strongly
affect the power conversion provided the decay waves attain a large amplitude,
Since in the experiments the amplitudes of tﬁe &ecay waves at the edge have
been observed to be small [2,4] [at most 10-15% of the total coupled power is
attributed to the direct edge heating], we neglect pump depletion effects. To
obtain an upper limit on the power conversion at the edge, we consider the
secondary decay process of the Bernstein wave into another Bernstein wave and
an electron quasi-mode.

Without any saturation of the instability the decay wave amplitudes would
grow exponentially according to the exp(aE;L) dependence where a is some
constant depending on plasma parameters, Eo the fast wave field amplitude and
L the growth length. With a sufficiently large Eo the power converted from
the fast wave to the decay waves would be essential and the effect of the
reduction of Eo should be considered. However, the secondary decay process is
able to guench the exponential growth of the decay modes and, consequently,
the power conversion from the fast wave may remain small provided the daughter
modes in the secondary decay do not couple back to the fast wave, The
secondary decay process presented in this paper is the well-known nonlinear
electron Landau damping cf Bernstein waves and involves the transfer of energy
from long to short wavelengths. Although the frequency width in the spectrum
remains small, it is large enough to decouple the main part of the secondary
modes from the fast wave., Instead of solving the usual weak turbulence
kinetic equation for the whole spectrum we demonstrate the strength of the
secondary process by inspecting the coupling of two properly chosen resonant
Bernstein waves. The description turns out to be a good approximation due to
the ffequency and wavenumber dependences of the Bernstein wave damping and
growth. -

The results of this paper show the importance of the saturation mechanism

and one may find a negligible power conversion from the fast wave to the



Bernstein modes with Eo clearly exceeding the threshold but not being too
large with typicel tokamak edge parameters. Proper geometric effects on both
the primary and secondary decay are included to obtain sufficiently realistic
results. Speéial effort is also put to find the most dangerous (i.e. having
the lowest_threshold) primary decays from the various possible decay processes
in different heating scenarios. The numerical results are given only for
these special cases.

The plan of the paper is as follows. The main characteristics of the
decay are reviewed in Section 2, and the saturation model of the instability
is presented in Section 3. The method to evaluate the power conversion is
explained in Section 4. Section 5 deals with estimates of power conversion in
typical heating scenarios while in the last section we have discussed and

summarised our results.

2. NON-RESONANT BERNSTEIN WAVE DECAY OF THE FAST WAVE

The decay of fast magnetosonic wave with frequency W, and a wave number
- . .
ko to ion Bernstein waves obeys the energy and momentum conservaticn rules

which are -

(1)

The frequency and wave numbers of the resonant Bernstein mode are denoted by
Wy and EB’ while those of the non-resonant mode, called the quasimode, are
dencted by w and K, respectively. The dielectric function of the ion

Bernstein wave in & multi-ion species plasma is given by

efw,k) = 1 + xe(w,ﬁ) + ), xb(w,ﬁ) . (2)
o]



Here Xg and Xgo vhich are the susceptibilities of the electrons and ion

species & respectively, are defined as
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In Egs.{(3) and (4) wpe and w_, are the plasma freguencies of electron and ion

pb
species &, while Ve and Vg are their thermal velocities, respectively. Q6 is
the cyclotron frequency of the bth ion species, Am(bb) is Im(bb) exp (—bﬁ),
where Im is the is the modified Bessel function of the order of m, b6 = |
klzvg/zng, kl is the perpendicular component of the wave number and kz is the
parallel wave number of the Bernstein wave with respect to the magnetic field.
Z denotes the plasma dispersion function. For ions we include ion-ion
collisions through a collisional damping decrement Vg = bb“ii {11, vhere Vs
is the ion-ion collisional fregquency in the plasma.

For our purposes the susceptibilities in Egs.(3) and (4) for the resonant

Bernstein mode can be approximated as

w + 1iv

3
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which are valid for Q, >> w - ml, >» k v,, w » kv and w_2/k?*v? >> 1, These
6 o] z 6 ze pe e

conditions ensure a low cyclotron and electron Landau damping of the wave.



The resonant Bernstein mode is defined by the dispersion relation e(wB.EB) =
0. The quasimode is strongly damped by electrons and/or ions, and its
dielectric constant e(w,i) deviates from zero.

The decay process can be described by coupled wave equations, which for

the case of dipole approximation (kd = 0) and electrostatic decay waves may be

written as [},6]

-+ }Jg - - p’b — -
{e(wB,k) + E = xplu.k) - 2x6(wB,k)]} Ep = % - [xb(w,k) - xé(wB,k)] E, {(6a)

. )Jz - -+ H - I
(€8 + T =2 Ixg (ug ) ~ 2w, 01) E = T =5 [y (w,0) - x4 (up,B)] By, (60)
o] b

where the summation & is over all species, including electrons. Only the wave
equations for the Bernstein wave electric field EB and the quasimode electric
field E are considered because we assume a weak pump wave depletion (hence,
the pump wave field EO is nearly constant). Because of dipole approximation
we have ﬁB = - k. The parameter p, = i'vblwo is the ratio of drift excursion

to the wave length of the decay mode. It is given by [6]

q, IRE Iz - iu Q, (R )
Hs & o7 ety ! (7
5 m (wé Qé) woﬁ |

8 &

where % ﬁo exp(iwot) is the fast wave electric field., The decay fields EB and

E correspond to the phase dependence EB o exp{i(w—wo)t+iEB°§] and E « exp(iuwt

s , :—-lw:,
— ik+x). The contributions from other harmonics w + mwo, m=+1, 2 ... are

omitted. In deriving Egs.(6a) and (6b) the weak coupling approximation Ipéi<!

is used and thus higher order terms = pé,pg ... are not included, When both

decay waves are resonant, i.e. e(w,i) = 0 for both waves, it is possible to



drop the terms to O(pé) but for the non resonant case studied here the
inclusion of the second term on the left-hand side of Eq.(6a) is necessary
(the corresponding term in Eg.(6b) is written only for the sake of the
symmetry) [71.

Inspection of Eq.(7) reveals that for the fast wave pump with a frequency
in the ion cyclotron frequency range, both ExB-drift and polarization drift of
ions may contribute to the instability. However, Ha for electrons is mainly
determined by the ExB-drift of electrons unless k and Eo are parallel in which
case p is very small.

In the steady-state one is able to solve the nonresonant wave equation

(6b) directly to have an adiabatic solution for the quasimode wave field

6 - -
2 5 Ixglwk) - x(ug,K)IEg, (8)
e(w B 8 2 6B B

vhere the terms of order uj are neglected. Using Eq.(8) one can eliminate E

in Eg.{6a) and obtain a solution for convective amplification of EB by

=

+ i(aeR/ai)-(a/aQ) ik = k.. After

expanding e(mB,ﬁj = ¢, + ie. as € = ie B

R I I

some algebra one finds (6]

E, = EN exp A =

Xg (0, B) X (0,8) .
: E iy = b 12 1Iml —— 11 - e (ug,k)
= Ey exp {f — € (u,k) dx}, (9)
8 laeR(mB,k)/ak]i-ﬁ= EB

where EN is the noise electric field, the summations & and n are over all



species, Im{} denotes the imaginary part of the value in the brackets and
x-integration is taken to be in the direction of the group velocity of the
resonant Bernstein mode. be(ma,ﬁ)i 144 Ixﬁ(m,i)l is assumed to be valid for
- all species, which usually is a good approximation for the nonresonant decay,
x-integration extends over the interaction region. The length of this region
is determined from the finite pump wave extent or from any spatial extent over
which the integrand has a non-negligible value, and from the frequency and
wave number matching restrictions due to the plasﬁa inhomogeneities. 1In a
tokamak the radial (in the direction of minor radius) and poloidal extent is
usually determined from the last two conditions while the parallel extent is
determined from the finite pump wave eXxtent,

In the earlier study [5] the threshold pump field was calculated for a

exp(n) growth of E_, at the tokamak plasma edge. The lowest thresholds were

B
found when the gquasimode frequency and the Bernstein wave frequency are near
any cyclotron harmonics of the ion species. The instability was also found to
be strong only at sufficiently low temperature typical of the plasma edge.
Because of the freguency matching condition a strong decay for a prescribed
pump wave frequency is then expected only at definite magnetic field
intervals. There is alsoc a relatively narrow kz-region over which A may have
values larger than m. Note that koz’ the parallel wave number of the pump
wave, may be of the same order as kz and has usually a broad spectrum. Hence,
sz of the resonant wave can deviate much from kz of the quasimode and the
threshold actually has to be minimised for kz and sz separately.

For K-minority heating of deuterium plasma in JET the decay of the fast
wave to a hydrogen quasimode (w " QH) and deuterium Bernstein mode (wB R QD)
in a scrape-off layer in front of the RF-antenna is possible. Due to the

inverse major radius R-! dependence of the magnetic field one should have the

resonant layer [wo = QH(R)] for the H-minority heating at radii R less than



3.0 m to satisfy the frequency matching for the instability at R = 4.15 m or
less, corresponding to the scrape-off layer, Here, the possible paramagnetic
correction to the R-! dependence of the magnetic field has alsoc been
accounted. In a D-T-plasma the corresponding resonant layer should be at
radii less than R = 3.1 m in order to have a strong decay to a hydrogen
quasimode and to a tritium Bernstein mode (or a decay to a deuterium quasimode
and a second harmonic tritium Bernstein mode at radii less than R = 3.4 m).
Placing the resonance layer at larger radii or having a minority ion with a
smaller cyclotron frequency (like He?) would remove the possible interaction
region of the parametric decay away from the tokamak plasma. In He’-minority
heating a possibility exists for the decay to majority ion quasimode and
Bernstein mode (at the fundamental cyclotron frequencies) but this decay would

have a fairly large threshold at any resonance layer lecation [3].

3. SATURATION MODEL

For any wave, the amplitude of the density fluctuation in the wave has to
remain below the background density to avoid wave breaking. For the
electrostatic waves one has in the linear regime the following relation

between density fiuctuation level and electric field

m

+ _k
ny Xg(w,k) =5 El , (10)

5 pd

where 6“6 is the density fluctuation, Ny is the background density of species
5 and |E| denotes the wave field amplitude. Using Eq.(5) for the
susceptibilities, one obtains E % 103 V/cm, corresponding to 50% density
fluctuations in a Bernstein wave with k ~ 100 cm~!. Due to the wave breaking

much larger wave fields are thus not possible. Nonlinearities like the

parametric decay may suppress the wave field to an even lower vealue which is



probable because the parametric processes for the fast wave are already strong
at the field level E ™ 100 V/cm. The Bernstein wave could decay to two other
smaller frequency Bernstein modes or quasimodes, for instance. However, for
the tritium Bernstein mode there is no obvious decay to lower frequency
Bernstein waves dué to the lack of ion species with lower ion cyclotron
frequencies. The second harmonic generaiion [8] has to be ruled out for the
Bernstein waves, because the second harmonic wavé with a frequenéy and wave
vector 2w and Zi, respectively, is & non resonant and in most cases weakly
damped mode. For the quasimode the decay is not possible but the coupling to
another quasimode at second harmonic is possible, However, as EB in Eq.(6a)
is driven by the third order term which does not depend on E, saturation of
the quasimode electric field will not affect the Bernstein wave. A

conceivable secondary decay would then be the decay of the Bernstein mode EBto

another Bernstein mode EB

with nearly the same frequency and to a low
frequency electron quasimode E". Obviously the condition m“/k;ve n 1 should

be satisfied for the beat frequency u" = wé - w, and beat wave number k; =

B
kéz— sz to have an electron quasimode at the beat frequency [here, wé and kéz
are the frequency and the parallel wave number of the secondary Bernstein
mode, respectively]. w" turns out to be typically much smaller than any ien
cyclotron freguency.

In the following, we assume that the group velocities of the Bernstein
modes are parallel to minimise the convective losses in the secondary decay.
The coupling equations between the Bernstein modes EB and Eé may then be

written as

B _ _ B
B ae(wB,kB)/akB

|E1'3|’ 1 (11)



ar
e
-

v B
= - — E! + — - |E |2 E! (12)
vg B ae(wB.kBllakB B B

|

o
¥

where y denotes the primary coupling strength and is given by the integrand in
the exponential function in Eq.(9}, v is the collisional damping decrement of
the secondary Bernstein wave and vé is the group velocity of that wave. The
coupling coefficient B can be calculated (see the Appendix) from the
expressions given [9] for the nonlinear Landau damping of the longitudinal

waves in a magnetic field, and is

2w 2 ©

1 p2Q? —x?, 2 1
p=(3d —Pp 1 , dx Y Im [ormgmy) o (13
v kgkiv,e? v (wy - p) (wp — pad) £ 1,p° boIm I emyd o )
where
k"v k. v klv
_ T B'T B'T
Yl,p = Jl( q x) Jp(_a- x) Jp(-—5~ X} , {14)

with Jp denoting the Bessel function of the order of p, and Im [ ] denotes the
imaginary part of the expression inside the brackets.

In deriving the coupling coefficient B we have assumed that wB—pQ and
mé—pQ are much smaller than Q for a certain ion species and index p [q, M, Vip
wP, and Q denote the charge, mass, thermal velocity, plasma frequency and
cyclotron frequency of that species]. If more than one ion species satisfy
the previous conditions one has to sum the expression inside the square
bracket in Eg.(13) over various species.

From Eq.(12) one obtains a threshold for the secondary decay which is
defined by the collisional damping of E!

B

[Egl2 2 Y ae(u!

B B,ké)/awé . (15}



Provided that EB can grow sufficiently to exceed this threshold, the equation
system (11)-(12) leads to relaxation oscillations where the amplitudes of the
two waves oscillate periodically in space [7,10]. The saturation level of the
primary Bernstein wave is given by the maximum value of EB' The equations
(11) and (12) can be written for the energy densities using the relation W =

€ 3ec/3w E?, where W is the wave energy density and €, is the dielectric

constant, Normalising the energy densities as

v w
= = . '=_g__B.I =
W WB/WB(EB 160 V/cm); W vg Wé WB/WB(EB 100 V/cm), (16)
one can write Egs.(11) and (12) as
aW _ - ol
9% 2YW - oW'W (17)
aWw' _ 2w
x - v aWW', (18)
g
where
2B+ 104 [V3/cm?]
= . (19)
L] L} 1
ae(wB,kB)/akB
These equations have the constant of motion
2\ R \ ,
oW - v inWe=2y fIn W - aW' + ¢, (20)
g
which gives ¢ as a function of boundary values WN and Wﬁ as
¢ = al, + W) -2 W - 2y In W (21)
N N v! N N °



Wy, the maximum value of W can be obtained by solving Eq.({(17) for W' with the
condition 8W/8x = 0. Putting this W' then into Eq.(20) and using Eq.(21)

gives us

-

W - 2 g M 2y _
aWM o fn W 27 fn e 2r , (22)
g N N

where we have neglected a(WN + Wﬁ) in ¢, because the noise values are
typically very small. Eq.(22) can then be solved for Wﬂ, vhich can be used to
estimate the maximum power conversion in the primary fast wave decay.

Because of the Bernstein wave dispersion, the secondary Bernstein wave
will have a larger wave number than the primary Bernstein wave and is then
more strongly damped by collisions. It is obvious that this secondary decay
broadens the primary Bernstein wave k spectrum to larger values, i.e. up to
the collisional limit defined by the threshold of Eq.(15). We note that an
essential part of the secondary Bernstein wave spectrum is not able to couple
to the fast wave because of the higher collisional threshold and because of
the fregquency shift which does not allow any quasimode coupling back to the
fast wave at the same spatial location. The excitation region of secondary

Bernstein waves is also limited due to higher damping.

4, EVALUATION OF POWER CONVERSION

The amount of power converted in the fast wave decay can be estimated
with the help of Egs.(8) and (9) which determine the decay wave amplitudes at
the steady-state. The power balance in the decay (neglecting the secondary
decay for the time being) can be simply written as (assuming no linear damping

of the fast wave)

(23)



where P . (P ) is the fast wave power coming into (going out of) the
0 an o ocut .

interaction region. PB denotes the Eernstein wave power convecting out of the
interaction region or being absorbed there. P is the power absorbed by the
plasma particles through the quasimode. A special case is taken to illustrate
the coupling geometry (see Fig.l)., Here, the slab geometry is assumed. The
fast wave propagates through the interaction region in the radial direction
(x-direction). The extent of the interaction region in parallel direction

(z~direction) is L and in the radial direction is D, while the poloidal extent

is H. The fast wave power Po coming in is evidently WovgoHL’ where

W = 2¢ |E_|2u2, /02 (24)
o o oy pi'’i
is the fast wave energy density in the plasma and vgo =V, = Qic/wpi is the
group velocity of the fast wave. Similarly, PB can be written as WB(L)VgBDH,
where '
2 Yp m;e
WB(L) = EOIEB(L)I o - 0. kv ? (23)
B i e

is the amplified Eernstein wave energy density and vgB = 2(NB—Qi)kzvé/mi is
the group velocity of the Bernstein mode. Any absorption of power due to the
Bernstein wave damping is omitted because our interest is in a well-amplified
case, where eI{wB,E) can be neglected in A in Eq.(9). From the Manley-Rowe
relations of a three-wave interaction [7] the power P absorbed in the
quasimode is simply (w/wB)PB. Hence, the power conversion factor describing
the ratio of the power going into the decay waves and particles to that of the

incoming pump power is

_ PB + P ] B, Vv BWB(L) D

C= = 2 E22 2 (26)
P . i v L
o 1in B go o



which can be easily calculated once the convective amplification A and, hence,
EB(L) is determined. Note that Egq.(26) is agplicable to other interaction
geometries as well when one substitutes for D ﬁnd L the lengths of the
interaction geometry in the direction of the pump wave group velocity and
Bernstein wave group velocity, respectively. For example, in the case when

the Bernstein wave energy propagates in the x direction (small kz), P, is

B
equal to WB(D)vgBLH vhere vgB is given by (wB - Qi)/k' Consequently the power

conversion € is

w v _ W_(D)

c=-2 _EE_E____ (27)
w v
B go o

The effect of the secondary decay can be introduced roughly by using the
maximum Bernstein wave energy density Wy defined in Eq.(225 for WB(L) or for
WB(D) in Egs.(26) and (27). However, C will be much larger if the saturation
amplitude is achieved at-a shortér distance than L or D. To account for this
effect and for the fact that the secondary decay is actually & many mode
coupling system involving a bfoad spectrum of secondary waves, we adapt here a
simple model in which the primary Bernstein wave grows to the saturation
level, defined by WM’ with the growth rate of the primary instability and
thereafter maintains a constant energy density WM while propagating out of the
interaction region. It is then possible to obtain from the wave equations
describing the primary instability a power conversion from the fast wave,
vhich is

C'=(1+a4a- Ao) c. (28)

Here C can be calculated from Eqs.(26) or (27), and A is defined in Eq.(9),

while A = In EM/EN where Ey is defined as the maximum electric field



amplitude of the Bernstein wave calculated in the satursted model of Eg.(22).
Hence, saturation as a function of the incoming‘fast wave power intensity is
obtained but no saturation is found with respect to the interaction length or
température, which, for instance, define A. However, power conversion is
clearly strongly restrained with respect to the latter parameters by the

secondary decay.
5. CALCULATICNS

5.1 The Threshold of the Instability

In the following examples the quasimode freguency is chosen to be the
hydrogen cyclotron freguency {fundamental). The coupling was shown [5] to be
strongest for that particular case because deuterium (as well as tritium) ionms
resonate at that frequency and Im{xDxH/e} in A (see Eq.(9)) becomes large. 1In
the hydregen minority-heating of a deuterium plasma the decay to the hydrogen
quasimode (w " QH) and deuterium Bernstein mode could be possible in JET
provided the resonance layer (wo = QH(R)) for ion cyclotron heating lies in
the inner side of the torus (R { 3.0 m). In D-T plasma the decay to the
hydrogen quasimode and tritium Bernstein mode would exist if the resonance
layer were located at major radii less than R = 3.1 m.

In the following calculations the center value of the magnetic field is
taken to be B = 3.15 T. This corresponds to the edge value of the magnetic
field B = 2.24 T at R = 4.15 m. The edge temperature T is taken to be 50 eV
for electrons aﬁd ions, while the edge electron density n, is taken to be
4,75x101¢ m-¢2,

As the first example we étudy the decay to the hydrogen quasimode and the
deuterium Bernstein mode in a deuterium-hydrogen plasma. Choosing fo = 52,84
MHz for the pump wave frequency, one has Wg = 1.094 QD and k = 93 em~?! for the

Bernstein wave. The maximum for A is obtained at a specific kz for the
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quasimode once the geometry of the interaction region is defined. Here, we
assume that the parallel wave number koz of the.pump wave has a narrow peak at
zero. Hence, ké " o= sz should be well satisfied for the decay waves. The
optimum Bernstein perpendicular wave number direction is obviously poloidal
because in radial direction the interaction region is limited by the quasimode
condition w - QH £ ksz under the spatial variation of QH. This gives d =
2Rk v, /Q, for the width d of the interaction region in the radial direction.
Here the instability is driven mainly by the relative drift of deuterium and-
hydrogen ions, and Im{xDxH/e} in Eq.(9) is maximised for relatively low values
of kz less than 0,02 cm~*. Hence, d is onl& a few millimetres for the chosen
parameters and radial convection would be very rapid. To see that the
instability is mainly driven by the relative drift of ions one has to note
that Im[xexD/e} or Im{xelee} is maximised for relatively large values of kz
of the order of 0.2 cm™!. Large kz leads to a very large parallel group
velocity of the Bernstein mode (note lkBZI = [kzl) with an excessive parallel
convective damping.

The widths of the interaction region in parallel and poloidal directions
have the upper limits determined by the finite extent of the pump wave. We
take L = H = 50 cm for the upper limits in the parallel (L) and poloidal (H)
directions. However, a more stringent limit may come from the radial
component of the Bernstein wave group velocity which may cause a more rapid
convection than the parallel and poloidal components. Note that the radial
component will develop even if one initially assumes no radial wave number

component: This is due to the effect of radial inhomogeneities on the ray

%

Y
v __/v
EZ BY

propagation. A simple calculation gives L = 2(4LTd) and H = 2(4LTd) .
where LT(>> d) is the local gradient scale length of the temperature, which is
the most important source of inhomogeneity. In the following we take LT =

3 cm.

The Landau and cyclotron damping of the Bernstein mode proves to be

.._17_



negligible for the optimum kZ (» 0.01 em-!). However, ion collisional damping
limits the attainable perpendicular wave nuﬁber‘which has & fairly strict
upper limit given by ka/QD ~ 5 with the assumed temperature.

At kz = 0.01 em~! and 5% hydrogen concentration the decay has a threshold
electric field Eo = 45 V/cm (A = w). With kz = 0.01 cm~! we get 4 » 3.8 mm,
ng/vgy v 10, L = 43 cm, and H ™ 4.3 cm.defining the dimensions of the
interaction region. Pump wave electric field was assumed to be in the
poloidal direction. As is evident from Eq.{(7) this assumption does not have
significant effect on the threshold.

As a second example we assume a D-T-H plasma with concentfations 47.5%,
47.5% and 5% for deuterium, tritium and hydrogen, respectively. The decay to
the hydrogen gquasimode and the tritium Bernstein mode has a threshold field Eo
= 49 V/cm at kz = 0.01 cem-!, Again the instability is driven by the relative
drift of ions, and the amplification is maximised for relatively low kz‘ Here
again d = 3.8 nm, H = 4.3 cm, but as vgz/vgy n 20, L = 50 em, The Bernstein

wave frequency w, is near the tritium cyclotron frequency, i.e. wg ~ QT =

B
0.045 QT which gives k = 72 cm~! and fo = 46,05 MHz. At smaller kz the
thresholds are smaller but the radial extent d of the interaction region may
become so small that a well defined Bernstein mode may not exist (for
comparison, the perpendicular wave length of the Bernstein mode is about 0.6
mm). At larger kz the coupling decreases and the parallel convective damping
increases the threshold.

Diminishing wp - QT (or Wy - QD in the previous example) implies stronger
couﬁling via the increase of k but the conditien kADe < 1, where hDe is the
Debye length, for the existence of weakly damped electrostatic Bernstein modes
may be violated. Also the increasing collisional damping will make the
thresholds higher at larger k. At smaller temperatures or smaller magnetic
fields the thresholds become lower due to the increase of k at constant up -

QT {or vy = QD)' For example, with T = 30 eV (kz = 0.013 em™?!, k = 93 cm~1)
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one obtains EO = 40 V/cm for the decay to the hydrogen quasimode and tritium
Bernstein mode. At still lower temperatures the collisional damping begins to
dominate the convective damping and the threshold stops decreasing. At higher
temperatures the threshold increases as Eo « T%. In Fig.2 we plot the
amplification factor A vs. temperature T for different pump electric fields.
For low temperatures (< 100 eV) A increases with decreasing T, while for
higher temperatures (> 100 eV) it decreases roughly as T-3‘%. The dependence
p

on the magnetic field is roughly E_ « (no collisional damping) as is

evident from Egs.(7) and (9). The increase of hydrogen concentration ny
-% c o s cq s
lowers the thresholds as Eo « (nH) , which is valid in the range 2% { ny £

15%.

5.2 Power Conversion

To calculate the power conversion factor from Egs.(26) and (28) one has
to determine the dimensions L and D. Because vgz > vgy ig valid for the
Bernstein wave group velocities in the previous examples, the geometry of
Fig.l is applicable to the present case. L is taken to be the width of the RF
antenna which is 50 em. D can be estimated from the temperature dependence of
the threshold field. This being relatively weak between 25 eV aﬁd 75 eV we
choose D = 3 cm corresponding to the main part of the scrape-off layer of JET
plasma. In calculating A the values T = 50 eV and n = 4.75x101% m~? will be
used. The magnetic field is 2.24 T at R = 4.15 m, as previously, and the pump
wave electric field is assumed to be 100 V/em. In the deuterium plasma the
corresponding A is then 22.6 and in the deuterium-tritium plasma one gets A =
21.0 with the parameters of the previous section., Assuming a noise field EN "

10-¢ V/cm for the Bernstein waves in the unstable E—spectrum, one chtains the

amplified field level EN exp A = 6.4x10% V/cm and 1.3x10% V/em for the



deuterium Bernstein mode and tritium Bernstein mode, respectively. We see
that the obtained amplified Bernstein wave fields are of the same order as the
wave breaking limit E, = 10° V/cm from Eq.(10). Using this saturation level
in Eq.(26) one obtains for the case of the deuterium Bernstein wave, a power
conversion factor C ™~ 0.025 with the power influx 3 MW/m? of the fast wave,
Assuming an area of 0.5 m? for the antenna, the power absorbed by the
parametric instability per antenna amounts to about 40 kW in the scrape-off
layer. For the tritium Bernstein wave case C n 0.06, the power absorbed per
antenna is about 90 kW.

To consider the effect of the secondary decay we have to calculate B of
Eq.(13). We concentrate only on the tritium Bernstein wave case and take
wé - QT = 0.0225 QT which gives ké = 137 em~! and k" = - 65 cm~! for the
electron guasimode, The parallel wave numbers are chosen to be 0,006 cm™? and
0.004 cm~?! for the secondary Bernstein wave and the quasimode, respectively.
With these parameters the quasimode is strongly damped on electrons and we
have e(w",k") = 49 + i29. The group velocities of the Bernstein waves are
also nearly parallel and predominantly in the z-direction. B turns out to be
for tritium species with p = 1 equal to 1.65x10-3 cm?/V:. From Eg.(15) one
then obtains a collisional threshold EB ~ 20 V/em., a from Eq.(lg)'is 26.5

B
1.1 em~ !, With E0 = 100 V/cm, A is 21, and 2y, consequently, is 0.84 cm™!

cm-1, where we have used the z-component of ae(m',ﬁg)/aiﬁ. Similarly 2u/véz =

10-¢ V/em for the Bernstein wave field

1l

. - . g
with L = 50 cm. Assuming EN EN

noises, one finds from Eq.{22) WM

It

2.6 which corresponds to & saturation

amplitude E_ = 160 V/cm. The amplification factor Ao needed to reach this

B
value is about 19, and from Egs.(26) and (28) one gets C' ~ 0.0046 with the
power influx 3 MW/m? of the fast wave, and C computed with EB(L) = 160 V/cm.

For the deuterium Bernstein wave case, a somewhat smaller power conversion is

obtained. Hence, only a few kilowatts or less is absorbed by the fast wave



decay per antenna in our examples if the secondary decay process presented in
this paper can operate. The result is not very sensitive to the noise levels

assumed but depends strongly on the collisional damping decrement assumed.

6. DISCUSSION

Edge absorption of RF power by a non resonant parametric decay of the
fast wave in the ICRF heating of a JET plasma is estimated. It is shown that
at a relatively low fast wave electric field level 100 V/cm, the decay to
hydrogen guasimode and the deuterium or tritium Bernstein mode may be easily
observed at the plasma edge. In a deuterium plasma the decay would be
possibly present in a non optimal heating case where the ion cyclotron
resonance layer for hydrogen minority heating is located in the inner side of
the torus at major radii less than 3.0 m. In the deuterium-tritium plasma the
decay would be possible with typical heating conditions where the resonance
layer for the hydrogen minority (or deuterium second harmonic) heating is
located at major radii less than 3.1 m.

The power conversion depends sensitively on the fast wave electric field
Eo’ the decay interaction geometry and on some plasma parameters. The power
going into the Bernstein wave energy in the linear phase of the instability is
proportional to exp{2A) where A is defined in Eq.{(9). Because A is roughly
proportional to IEOE2 the power conversion is sensitive to Eo‘ For instance,
with EO = 80 V/cm instead of 100 V/om in our examples, the converted power
would have been less than 10-¢ times the obtained value and hence negligible.
The dependence of the power conversion on the Bernstein wave noise level EN is
C « EZ (from Egs.{9) and (26)) and therefore affects the result strongly.
These dependences, of course, do not hold when the Bernstein wave field
amplitude approaches and exceeds the nonlinear saturation level. This was
assumed to be of the order of 10? V/cm in this paper. At larger fields the

ion density fluctuations approach the background density and it is shown that
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a secondary decay of the Bernstein wave to another Bernstein wave and an
elecfron quasimode may quench or restrain the growth of the instability. The
results of this paper indicate that this nonliﬁear regime can be achieved with
pump fields of abeout 100 V/cm in JET. The seconda;y decay restricts the power
conversion to a few kilowatts for power influx of 3 MW/m? which is typical of
JET ICRH heating scenarios,

The exponential growth factor A is also sensitive to the plasma
temperature, magnetic field and the hydrogen concentration, while there is no
strong dependence on electron density [5]. Roughly, a dependence A ™
T'3’=B'1nH may be derived from Eq.(9) for an optimum growth (collisidnal
damping neglected). According to this, larger amplification may be obtained
at lower temperatures and weaker magnetic fields. The radial width D of the
interaction region was based on this dependence which may imply an error in C
by a factor of about 2. However, noting the extreme sensitivity of the power
conversion factor to E such errors in defining C are admissable in Eq.(26).
The accuracy of the estimates presented in this paper depends mostly on the
accuracy in obtaining A and in defining the nonlinear saturation limit for the
Bernstein wave amplitude. Therefore, more detailed calculations should be
made to assess the Bernstein wave ray trajectory in the interaction region
where the inhomogeneities as well as any possible magnetic noise should be
known precisely. Any broadening of the fast wave number (or freguency)
spectrum would evidently decrease A [11), For instance, if the fast wave has
a spectral width Akoz in parallel wave number, the previously obtained A
should be multiplied by bkz/Akoz, where ékz is the characteristic width of the
unstable quasimode spectrum in parallel wave number.

Accbrding to the results presented in this paper, the secondary decay of
the Bernstein wave could restrict the electric field level of the Bernstein

wave at the same level as that of fast wave electric field, Because of the



slow group velocity of the Bernstein wave as compared to the fast wave group
velocity, the power conversion would remain negligible in the coupiing
geometries studied in this paper. We note that the present saturation
mechanism should be applicable to any non-resonant or resonant Bernstein wave
decay of the fast wave. Further consideration should evidently be given for
the full spectrum of the secondary decay wave as well as for the effect of the
width in the primary Bernstein wave spectrum, which, in turn, may weaken the

secondary decay process.
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APPENDIX
Coupling Equations in the Secondary Decay

Qur starting point is

the three-wave equation system [9]
E
__§ = - _____jL____ TR
3 - " L 3w k)7ok EEE (A1)
B'B
aE!
___.B. - .............._..._I-.I_._..- "
ax ~ L Be(or,kn)/ok UBT (A2)
B''B
E" = -1} —H ___ pup (A3)
J E(w",k“) B B
which describes the nonlinear electron Landau damping of the Bernstein wave
field EB' The frequency and wave number matching conditions w" = wé - g,
k" = iﬁ - iB' respectively, are assumed with a definition

EB(x,t) = Eg exp [i(kgex - th)}-+ Eg exp [-1(kB°x -.th)3

(AL)
valid for EB’ and similarly for the other waves.
H is given by

The interaction coefficient

qu_?

_p_ 3 . k"Z__o (k) + kyZ, (k")

= ]

H kBkék"M Z I dvzf dV.LVl YR,S kB (w! - s0 - X v )2 -q3°® (AS)
5.t © B Bz 'z

where g and ¥ are the charge and mass of the jth species with w_ denoting the
corresponding plasma frequency.

Yﬁ,s is defined by



Yﬂ,s = JQ(k"vl/Q) Js—ﬁ(kEVl/n) Js(kévl/Q) . {A6)

where JQ, for instance, is the Bessel function of order f£. Zn is defined by

(nﬂ/vi)aFo/Bvi + szFo/avz
w-nR - kv '
z 2z

z_(k) = (A7)

where FO is the background distribution function {for jth speciés). In the
expression for H we have neglected terms which are smaller by a factor of
k;/k2 and the total wave number is used for the ?erpendicular wave number.

The equations (Al-A3) reduce readily to those of Eqs.(11) and (12) if one
eliminates E" from Egs.(Al) and (A2) with the help of Eq.{(A3). The

interaction coefficient B is then

1

B = Eg Hl? Im[ET;“_E“T

1, (48)
j .

vhere Im[ ]} denotes the imaginary part of the expression inside the brackets.
The third order corrections have been neglected in Egs.(Al-A3) because we
have assumed that the quasimode is damped only by electrons for which case the
third order term can be shown to be negligible in the assumed coupling
geometry X' x EB = Q). This can be seen directly from Egs.(6a), (6b) and (7)
which are valid for electrons with some algebraical corrections coming from
the finite_pump wave number. From the same reason, H computed for electrons
turns out to be negligible, which in fact has allowed us to place the square

of YH outside of the imaginary operator Im in Eq.(A8). The summation over j
3

here is meant only to include the ieons.
To compute H we assume that Wy ~ PR and wé - pQ are much smaller than Q

for some ion species and index p. Consegquently, w" is much less than Q and



the quasimode has a negligible ion cyclotron damping. Similarly, wp - i »>

| - i : .
szvz and wg pl2 >> szvz are valid. Hence, we can approximate H for that

particular ion species as

quw 2 w -5 k"v
I I w80 _zz
i KKk [ av, ] avjvy (X Yo, s wo—sa X u" - kv )
—a o _ s B . - A
+ %Y (k — oY) “ - & v Fexp(-visva)1, (A9)
'y STIS ug - 0 B (mé - sQ)* - Q2 v% Xp T °°*

s#r

where we have introduced a Maxwellian distribution for Fo' We now pick up the
largest terms from the sum which evidently are in the second part inside the
square brackets with r = p and s = ptl. Using the Bessel function identity

(2p/x}Jp(x) = Jp+1(X) + Jp_l(x) one obtains from Eq. (A9)

4y 2 ©

1 pZQZ —x3
H= 3P - - — faxy, e, (A10)
M kBkaT’ VTQ (wB pﬂ}(wB po) 2 1,p
where
kv kv klv,
_ T BT B'T
Yl,p = Jl(——E;-x) Jp(——a- x) Jp(__ﬁ_ x) . (All)

For other ion species, H is evidently much smaller ;nd is neglected. We note
that in tﬁe dipole approximation limit (IkBI €4 ikél, 1k"}) the integral in
.Eq.(AIO) simplifies and one readily obtains the coupling coefficients on the
right hand side of Egs.(6a) and (6b)} from Egs.(A2) and (A3) within the
approximations used. However, note that the electric fields in this Appendix
have to be multiplied by a factor 2 to obtain the electric fields defined in
Egs.(6a) and (6b).because of the different definitions used. Noting this and

using Eqs.(A8) and (Al0Q) one obtains the coupling coefficient of Eq.(13).
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Fig.l Directions of the group velocities of the fast wave v o) and the
Bernstein wave (v B) inside the coupling region having a length D in
radial directicn %x) and L in parallel direction (z). The Bernstein
wave has alsc a group velocity component in poloidal direction (y)
which is not shown. The magnitude of the group velecity of the
Bernstein wave is much smaller (10-2 - 10-? times} as compared to the
magnitude of the fast wave group velocity.
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Fig.2 Exponential amplification factor A computed as a functicn of
temperature T and fast wave electric field E° for the fast wave decay
to the tritium Bernstein wave (wB L QT) and tKe hydrogen quasimode (w ~
QH). 5% hydrogen concentration with egual amounts of deuterium and
tritium is assumed, The parameters are; f = 46.05 MHz, k = 72 em™?,
kz = 0.0l ecm~?, L =50 ¢cm, B=2.24 T and n, = 4,75x1018 m-3,
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