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ABSTRACT.

Fusion produced alpha particles may spontaneously enhance the stability of an ignited plasma
against m = 1 internal modes. Stable values of the peloidal beta of the thermal plasma component
significantly in excess of the ideal MHD threshold can be attained, provided the region where the
magnetic helical parameter q is below unity is not too wide and the ignition temperature is not too
high. A comprehensive analysis of the different instability regimes is presented, with special
attention to so-called "fishbone oscillations" and their influence on the ignition energy balance.
The theoretical predictions compare favourably with sawtooth suppression experiments in JET
with high power ion cyclotron resonant frequency heating, where energetic ions in the MeV

range are produced.



I INTRODUCTION

One of the goals of ignition experiments is to reach the conditions
where the plasma heating provided by the charged fusion reaction products can
compensate for all forms of energy loss. In particular, if we refer to a
Deuterium-Tritium (DT) plasma mixture, relevant questions are whether the
3.5MeV alpha particles produced by the DT reactions can be confined within
the plasma column for the duration of their slowing down and, if confined,
whether they will affect the plasma stability and energy transport. The
classical aspects of the energetic particle confinement, namely 'prompt'
losses due to intersection of their orbits with the wall of the vessel, as
well as classical diffusion across the magnetic field, 'ripple losses' etc.
have been extensively investipgated (see e.g. Ref.[l] and references therein
and ‘more recently Ref.[2]). These problems are to a great.extent solvable by
optimising the machine parameters, most notably the plasma current, and will
not be addressed here. From the point of view of stability, the effect of
the energetic particles produced by the fusion reactions on short wave length
modes, such as ballooning modes, has also received vast attention in the last
decade (see e.g. Refs.[3-7]).

The aim of the present paper is to examine the role that the fusion
produced particles will play on the stability of global modes in an ignited
or igniting plasma. In particular we will consider the oscillations of the
central part of the plasma column. These 'sawtooth' and 'fishbone’
oscillations, as they are dubbed, are considered to be a potential threat to
the attainment of ignition conditions: they could either cause too frequent a
relaxation of the central plasma temperature or spoil the confinement of the
fusion products in the central fegion of the plasma where thé energy they

deposit is needed in order teo sustain the fusion reactions.



Recent experiments have shown that high energy particles can indeed
significantly influence the stability of global modes. In the JET
experiment, the internal relaxation oscillations of the electron temperature
have been suppressed for periods of up to 3.2s during intense auxiliary
heating [8]. These sawtooth-free discharges are characterised by the
presence of anisotropic (mostly trapped) high energy ions, accelerated by
radio frequency fields at the ion cyclotron resonance, and/or produced by
neutral beam injectibn. On the other hand, bursts of fishbones oscillations
(after the characteristic signature of the detected magnetic fluctuations),
associated with the loss of high energy ions, were first discovered in the
Poloidal Divertor Experiment (PDX) at Princeton during high beta operation
with beams of fast neutrals injected at a quasi-perpendicular angle with
respect to the toroidal magnetic field [9]. Fishbone oscillations were later
fouﬁd to occur in a number of experimental devices under varying conditions,
including quasi-tangential beam injection [10] and occasiomally, although in
a2 milder form, in beam-heated discharges in the Tokamak Fusion Test Reactor
(TFTR) at Princeton [11], and during ion cyclotron heating in JET {12].

Sawtooth suppression by energetic particles [13] and fishbone
oscillations [14,15] are intrinsically related phenomena. They can be
described in terms of a single dispersion relation, as they arise from the
reaétive part and from the dissipative (resonant) part respectively of the
kinetic, as opposed to fluid, response of the high energy particle population
to magnetohydrodynamic (MHD) internal oscillations. In order to illustrate
this point we refer to the well known dispersion relation of internal "kink"
modes. In an axisymmetric toroidal configuration these have n = 1 toroidal
mode number and are dominated by the poloidal harmonic corresponding tom =
1. If we omit at first dissipation and energetic particle effects, but
retain the thermal ion diamagnetic¢ contribution, this dispersion relatijon is

quadratic in the mode frequency and takes the form [16,17]



Y. =
(wlw - wdi)] =iy g T 3w, Ay (1}

Here, w is the mode frequency in the plasma rest frame, Wa; =
[(kec/enB)(dpi/dr)]o is the ion diamagnetic frequency evaluated at the
surface r - T, where the magnetic helical parameter g(r) = (éﬁ)'l
I(E'VC)/(§°VG) dé equals unity, r is a generalised radial coordinate which
labels the nested magnetic surfaces, [ and © are the toroidal and generalised
poloidal angles respectively, ke = - 1/r, and P; is the thermal ion pressure.
The ideal MHD growth rate Yoha? obtained from {1} in the limit Way = 0, is
expressed in terms of the product of the Alfvén frequency, Wy = VA/ROJB, with

%
, P

VA = (B3/4npm) - is the mass density, and R0 the torus major radius,

multiplied by the ideal MHD driving term, A This is related [17] to the

H
negative of the ideal MHD energy functional &W and is of order (eo Bp)ﬂ,
whe;e € = rO/RO is the inverse aspect ratio at the g = 1 surface and Bp is
thg plasma poloidal beta. The dispersion relation (1) is valid for AH > 0:
in the absence of resistivity, this condition guarantees the spatial
regularity of the perturbed plasma displacement across the g = 1 surface.
Positive values of'}\H are obtained when BP is larger than a thresholéd value
Bp,mhd [18] which depends on the g profile and on the shape of the magnetic
surfaces [19]. Such values are often reached in the ion-cyclotron resonant
frequency (ICRF) heated sawtooth free regimes in JET when the total plasma
current IP £ 3 Ma, and are likely to be attained in ignited plasmas.

For Tohd’ wdi/z, Eq. (1) gives a growing and a damped mode. The growing

mode reduces to the ideal MHD internal m = 1 mode for Tmhd>> Wy The two

5

modes coalesce for Toha™ wdilz and then split into two purely oscillatory

modes, When wdi/Z > Tmﬁd’ the plasma stability depends on the effects of

finite electrical resistivity and of the relevant mode-fast particle

resonance. The latter plays the role of an effective viscosity [14), For

vanishing resistivity the stability threshold is AH = 0. The lower frequency
-4 -



mode {w < wdi/Z) is destabilised by resistivity and extends to negative
values of Ay This mode, generally referred to as resistive internal m = 1
mode {16,17], is believed to cause, through its nonlinear development, the
collapse phase of sawtooth oscillations in low Bp, collisional plasmas,
However, when AH £0, the gtability of this branch can no longer be described
by Eq.(1). Then, as will be shown in Section III-C, if resistivity is low, a
regime can be entered where a proper description of the physics in the layer
around the q = 1 surface leads to linear stability. Resistivity is indeed
very small in an igniting plasma, and on this basis it will be neglected in
the bulk of the paper.

For the relatively large valueé of Bp that are expected in an ignited
plasma, the higher freguency branch with uw > wdi/2 is of more concern.
When reéistivity is negligible, this branch connects to the ideal MHD
internal m = 1 mode as Tuhd is raised. TFor wdi/Z > Yong? the mode has been

shown [14] to be driven unstable by the resonant interaction with

magnetically trapped energetic ions with bounce averaged magnetic drift

(o)
Dh

of the central region of the plasma column appears as & natural by-product of

frequency w equal to w. The scattering of the resonant energetic ions out
this instability. The full fishbone cycle has been described [14] in terms
of a simple noﬁ—linear model, whereby the mode saturates and is resistively
damped once the number of resonanting particles that are being scattered has
dropped sufficiently.

The above picture in terms of a higher and of a lower frequency branch
remains essentially valid when the full response of the energetic particles
is properiy included in the dispersion equation (1). This was shown by the
analyses of Refs,[13] and [14}, which addressed the strongly anisotropic case
vhere th/pih Noeg applicable to quasi-perpendicular neutral beam injection

and ICRF heating schemes. Here, Pin and Py, &re the components of the fast



ion pressure tensor parallel and transverse to the confining magnetic field,
respectively, and we shall use the subscript "h" to indicate a generic fast
ion population. The focus of this paper is on isotropic fast ion
distributions, as is the case for the alpha particles produced in a DT
ignited plasma. The basic features of the dispersion relation are however

preserved in both cases [20,21]., This is modified into

¥

[wlw - wdi)} = iwA[AH + AK(w)]. (2)

where  the complex function AK(w) represents the contribution of the high
energy population.

The real and imaginary parts of A, correspond to the reactive and to the

K

dissipative fast ion responses. The sign of Re AK can be relasted to that of

the ‘work against the perturbed energetic particle current along the perturbed

electric field. Using their momentum conservation eguation, this work can be
N "
* * . > — L3 = — L 3
rewritten in the form -Re E*-V-Ph, while -Im E*'V-Ph expresses the dissipated

“

energy, agd_hK = - fd3x E*'V'fg. Here, £ is the lowest order plasma

i
—t

displacement, soluticn of the normal mode equation, and Ph the perturbed
energetic particle pressure tensor (see next section). When AK(w) is
included in the mode energy balance (see e.g. [22]), the change in the energy

available to the modes is represented by the substitution AH - AH + Re

AK(w).

Dh’ with u a characteristic value of w(o) Re

Dh Dh '

AK(m) is negative. This leads to a reduction of the total instability drive,

For freguencies w << w

3s2
By order of magnitude, AK ~oe Bph for isotropic fast ion distributions,

vhere Bph is the energetic ion poloidal beta., This is to be compared with AK



“ Eonh in the strongly anisotropic limit where most fast ions are trapped,
the difference in the factor ef between the two cases being the ratio of
trépped to circulating particles for an isotropic distribution. The
energetic ion contribution becomes important when AK ~ AH. Thus the ordering

relevant to the present analysis is

%
Bpa " EOB;, (3

where the subscript "a" now refers to the isotropic fusion alphas. The

stability condition in the absence of resistivity is modified into AH + Re

Ax{w) < 0. Since, at small values of Bpa’ for both roots w 1s at most of

. 0 - -1 . : + ]
order Wy s and since typically wdi/wDa £ 10-1 in the proposed ignition

3
experiments, we can estimate Re AK(w) = AK(O) = - Ce

’2
o Bpa/so, where C is a

numérical factor of order unity (see Appendix) and S, = roq'(ro). The
modified stability criterion at small Bpathen reads

372

Ay § Ceg Bpa/so' (4)

Note that Eq.(4) does not involve the thermal-ion diamagnetic frequency
Wy We recall that, in the strongly anisotropic case th “ Eoplh' C is
reduced by a factor <1-g>, where the brackets indicate an average over the
volume within the g=1 surface. In fact, the trapped particle pressure
response t¢o a zero frequency perturbation vanishes with the parallel wave
vector k” " (l—q)/Ro [13,23]. 1f <1-g> is smaller than mdi/th’ the
approximation AK(w) = AK(O) for the frequencies corresponding to the two
branches of Eq.(1) is no longer appropriate, A term linear in w/GDh must be

retained. As a consequence, the stability condition becomes dependent on the

thermal-ion diamagnetic frequency in the strongly anisotropic limit [13,20].



To satisfy the stability condition (4), values of Bpa in excess of a
finite threshold are needed. When Bpa is below this threshold, the type of

instability will depend on TR If w i/mA < ZEAH + AK(O)], the internal

d
m = 1 mode will grow on an MHD time scale. If the opposite inequality holds,
then fishbone oscillations with w n Wy will be excited [14). However, as
pointed out in Ref. ({21}, only the alpha particles that have slowed down to
energies of the order of 300-400 keV can resonantly destabilise this mode.
The fraction of alpha particle heating power that is lost as a consequence of
the scattering of the resonating alphas is estimated to be at most a few
percent. Thus, these fishbone modes do not appear to have serious
consequences, On the contrary, their onset may serve the purpose of
expelling the trapped alpha particles after most of their energy has been
deposited, thus easing the problem of ash accumulation.

" At larger values of Bpa’ 1AK! > Ny and the higher frequency branch of

Eq.(1) is significantly modified. Its frequency increases with Bpa and
-372

becomes comparable with w. for values of B__ " s €
Da pa o0

(EDG/NA). When
w/GDa 2 1. the real part of AK becomes positive and the reactive response of
the energetic alphas becomes destebilising. Then, anm = 1 instability.
entirely supported by the alpha particles becomes possible. This mode,
discussed in Ref.[15], was also proposed as a candidate to explain the
original observation of fishbone oscillations in the presence of energetic
beam ions in PDX. This instability should be of more direct concern for the
attainment of ignition condition. In fact, it would scatter newly born alpha
particles carrying an energy € " € " 3.5 MeV, and significantly affect the
ignition energy balance. Under certain conditions, this scattering would
however be beneficial as it could help to prevent the fusion thermal

runavay.

We find that for parameters that are relevant to proposed ignition



experiments, there exists a stable interval of values of Bpa' In addition we

find that the maximum stable value of BP is characteristically given by

[niollolﬁcmq}lu

B = 0.9

p,max - 372 173 o (5)
(GIO/RO) .(RO/I.Zm) (B/10%G)

with n, the thermal ion density at r = r .

The existence of this stability window was first reported in Ref. [24],
in a preliminary analysis of alpha particle effects on m® = 1 modes. This
discovery stimulated the work which led us to propose [25,13] an explanation
for the suppression of sawteeth in JET auxiliary heated discharges.

Partly similar approaches have been followed in Refs,[26] and [27]. 1In
Refé:{26], the conclusion was drawn that values of Bp in excess of Bp,mhd are
needed to suppress the resistive branch. This conclusion follows primarily
from the use of a model where the low frequency energetic jon response is
negligible (AK(O) = 0), and differs from the results of the present analysis
(see Sec, III-c¢). In addition, Ref§;[26] lack the recognition of the
existence of the low-Bph fishbone regime with w n Wy e

Both the maximum stable polcidal beta in Eq.(5) and the Bpa—threshold
for the excitation of high frequency (w aDa) modes scale as strong inverse
povwers of the radius T, of the ¢ = 1 surface. Conseguently, the stable
domain in the (BP'BPG) pl?ne is considerably reduced if the area of the
plasma cross-section where g is below unity is large (say T, 2 0.5a, with a
the mean radius of the plasma column). Therefore, it becomes difficult for
the alpha particles to suppress sawteeth and fishbones when Bp exceeds Bp,mhd
and the g = 1 radius is large.

A reduction of the stable domasin also occurs in the so-callied

"ion~kinetic" regime [28]. This regime corresponds to large thermal ion



gyroradii, pi/ro >. AH’ and is expected to be approached or indeed entered by
some of the presently planned ignition experiments, Large thermal-ion gyro-
radius effects are more important on the modes oscillating with frequency w ™
gy and are found to be destabilising. A novel result of our analysis [29]
is that in the ion-kinetic regime fishbone modes with w % max{wdi.(pi/ro)wA}
can be excited even at values of Bp below the ideal MHD threshold for
instability, extending the instability domain obtained in the fluid thermal
ion limit {14]. Similar results have been obtained numerically in Ref,[27],
This paper is organised as follows. Section II describes the

alpha-particle response to m=1 perturbations. The dispersion relation and
stability criteria are discussed in general terms in Section III, while in
Section IV their dependence on plasma parameters such as Bp’ Bpa’ and T, is
shown explicitly. The extension of these results to the ion-kinetic regime

is discussed in Section V. Finally, our conclusions are presented in Sectioen

VI.



II  ALPHA PARTICLE RESPONSE AND THE OUTER REGION

The derivation of the dispersion relation for m® = 1 modes in a toroidal
axisymmetric plasma in the presence of energetic particles follows the
standard technique outlined in Refs.[16] and [30). The mode structure is
" characterised by the presence of & transition layer of thickness &, centred
around the surface r = T, {q(ro) = 1], where inertial as well as non-ideal
(such as resistive) éffects become important. Away from this layer the core
plasma motion is governed by the ideal MHD equations. The thickness of the
layer is characteristically smaller than the size of the orbits of the
energetic particles. Their contribution is therefore important only in the
"outer region", (that is, outside the transition layer) where it is obtained
from a kinetic treatment. The dispersion relation is obtained by matching
theiéolution of the nermal mede equation in the transition layer to the outer
solution. The existence of a transition layer relies on the implicit
assumption that the magnetic shear is finite within the volume enclosed by
the g = 1 surface.

In this section we evaluate the kinetic alpha-particle contribution in

the outer region explicitly, The alpha particle pressure tensor 5; is

included in the momentum balance eguation,

L }_. l - 1‘ 1‘ —
0=-Vp - V°Pa * [(Vx B x B+ (Vx B) x B}, (6)

where the inertial term is neglected. A tilde indicates perturbed
quantities. The perturbed thermal plasma pressure and magnetic field can be

expressed in terms of the displacement vector & through

A - —
P=- E*Vp - (5/3)p V&, (7)



v - -
B=V x (E x B), (8)

1l

We adopt a standard expansion in powers of €, ro/Ro. To leading order, the
structure of the displacement is dominated by its m = 1 component, which can

be written as
E = E(r) exp(- jwt + iR), R =17 - 6. (9)

Within this expansion procedure, we may disregard the effect of the energetic

alpha particles on the satellite {(m # 1) poloidal harmonics. The latter are
=
however included in the thermal plasma response. The tensor Pa is obtained

by taking the appropriate moment of the perturbed alpha particle

distribution. This can be conveniently split in twe parts,

¥ o= ?ad + %nad. (10)
a a a

The "adiagbatic" part for g” = 0 is simply
do o F v, (11)

with Foa = Foa(r,e) the isotropic equilibrium alpha particle distribution and

€ = mav3/2. For w < Wy with Uy the alpha particle bounce frequency, the
non-adiabatic part, to lowest order in €y is constant along the particle

orbits and is contributed by the trapped alphas only. As shown in the

%zad = fnad exp(-iwt + iS), where S = ({ - @8) and

Appendix, it is given by o



= T
“ E_w - uy oF
gnad | T a 0% 00s(q8)1%. (12)
a
Ro u - w(o) 3e
Da
3 3 T = - e L ] = v .
In thls.equatlon, (aFoa/ae) U = 7 & % VFDQ VR/(ma Qa)' ®ne = Vpg Vs,
-2 _AY: A B
Yoo ma_ i1 ¥ [(1 }{)‘ * 20 B ]’ (13)

Qa = ZeB/mac, e = B/B, Kk = (eH°V) e“, H{r,8) = BO/B with BO the strength of
B on the magnetic axis, and A = pBofe is the pitch angle in velocity space,
with ¢ = m, vi?/2. The superscript (o) indicates averaging over bounce
orbits, that is A(o) = (f A dﬂ/lvul)/(f di/lvnl), with 2 the coordinate along

a field line. For modes with frequencies w ™ w__we can neglect w in the

Da

numerator of (12) since it is one order higher in e compared with wza
Equations (6)-(8) can be reduced to a single equation for the m = 1
component of the radial displacement Er. To leading order in €ys wé find Er=
(- z) EO, where Eo is a constant, z = (r -~ ro)/ro, and ©(z) is the Heaviside
function. To the next relevant order we obtain, as r - L
at._ Ay + Agw)

H
dz 230 - T so z2 Eo' (14)

We recall that Ay ™ (eo Bp)z. The instability condition in the ideal

MHD approximation, A, > 0, is satisfied when Bp exceeds a critical threshold,

H

Bp ohd" The appropriate expression for the poloidal beta is
B = =2t [<p(r)> - p(r)) (15)
P BE(ro) Pia PTGy



with <p(ro)> the average of p within the volume enclosed by the g=1 surface.

The exact value of Bp,mhd is determined by the shape of the q profile and of

the plasma cross-section, and varies characteristically between 0.1 and 0.3,

Being smaller for elongated configurations and for large values of rO/a, wvith
a the minor radius of the plasma column. The paramgter AK(w), which is

contributed by the alpha particles, is given by

r m
4m2i c 2 48 .= = g " P s
AK(m) 377;;75252 fo drr f_n zﬁ[e”x K V(pla + Pﬂa)] exp{iwt - iR) (16}

to lowest order in €, The parallel component of the pressure was neglected

in the expression for AK(w) given in Ref.[30] as the ordering P|n Nel Pl

was assumed.

__Following Eg.(10), the parameter AK(w) is also split in two terms,

_ ,ad nad
AK(N) = AK + AK (w), (17)
where
h}a(d ”ad cos®
rdrﬁ ds . “{18)
Anad(w) B?v(r )SOR E’ f %(?H la )nad cos(g®) .
K,

with Ezd and (;Ja + %”a)nad the corresponding moments of the adiabatic and
non-adiabatic parts of f&. Their explicit expression is given in the

Appendix. Since fzd is independent of the pitch angle variable, the

adiabatic pressure response is isotropic i.e. pig = pﬁi pzd. It follows

that Pa is independent of the poloidal angle to leading order in €,

Therefore



ad _ 2
A 0 (eo Spa). (19)
By contrast, the non-adiabatic pressure response is mainly contributed by
trapped alpha particles localised poloidally in the outer region of the
plasma torus. Thus we find

nad _ ,
AK =0 (Eé 3 Bpa)’ (20

s0 that hK(w) = h;ad(w)Il + O(Eé’I)J, i.e. to lowest order the adiabatic part
of the alpha particle pressure response can be neglected. More generally,
this result holds for weakly anisotropic distributions such that Pih g P
in which case both Pin and p”hhave a poloidal modulation of order € {311.
This would be ﬁhe case e.g. for the alpha particles produced in a spin

poclarised plasma with spins aligned along the magnetic field lines [32}. It

ad
K

by Mikhailovskii in Ref,[33], In the latter paper, trapped particle effects,

is also worth noting that our expression for A, corresponds to that derived

which lead teo hgad, were neglected. Thermal trapped particle effects on

internal kink modes were later included in Ref.[34] for frequencies in the
(o)

range <Cw < W .

D b
To evaluate AK’ we consider an isotropic slowing down distribution
function,
’ 32 -
F -3 (e Pa’ g 00y ~ © (21)
oo 4m\2 1+ 2xec/3€a eé" + g¥r3?

vhere Py = pa(r) is the equilibrium pressure of the alpha particles, €, =

. . . 273 1713 .
3.5MeV is their birth energy, €. v (3n/4) (ma/mi)(mi/me) T, is the



critical energy at which the alpha particles transfer an equal amount of
energy to the bulk ions and to the electrons via Coulomb collisions, X =

% -
in {(1+2)/(1 CC + Cé) J - ¥3{(n/6) + arctg [(2 Cc)/(JBCC)], and Cc =
(ecleu)%. By inserting (21) into (16) we obtain (see the Appendix for

details)

M(w) = (e372/5)B,, Aglulup ), (22)

where Upy = Ypg {e €y A=1+ €+ T = ro) cea/(ZeBRoro), and the

natural definition of Bpa’ apart from corrections of order 1-q and S, is

1 dp
- _—8m b2 O
Bpa = B’(ro) f dx x272 == , . (23)

where x = r/ro. A more general expression of the coefficient Bpa is given in
the Appendix, by Eq.(A.22). Peaked pressure profiles give comparatively
larger values of Bpa(at constant total alpha particle energy content). For
isotropic slowing down distributions the complex form factor AK’ vhose
explicit definition is given in the Appendix [Eq.(A.24)], depends on the g
profile through wéz){see Appendix], and only weakly on rO/a, on €c/€a (for
Ec/€a << 1) and on pressure profiles. For the sake of simplicity, these weak
dependences will be neglected in the following numerical computations.

Graphs of Re AK and Im AK versus u,, where QR Z Re 0, = wlana, are

R’
shown in Fig.l, displaying the standard features of a dispersion curve. A
parabolic g profile inside the g = 1 surface has been assumed. The real part
of AK is negative and thus stabilising for QR < Bo = 0.75, i.e. for modes

trailing the mean VB + magnetic curvature drift of the energetic ions. It is



positive, i.e. destabilising for modes that are leading, i.e. for GR >
~ S ~ o~ '%
-1 is2

W . For larger Wy, Re AK « WpTt el Bpa/so. When wp > €, s Re AK becomes
of higher order in € and can be neglected when compared to the thermal
plasma response, Im AK/wDals negative for up > 0 and Bpa> 0. AK(m) can bg
continued to negative values of wR,_where Im AK becomes negligible, while Re
AK goes monotonically to zero from negative values as W~ -, Negative

values of GR are of interest in the consideration of fast electron effects on

internal m = 1 modes.



III DISPERSION RELATION, STABILITY DOMAIN, AND UNSTABLE REGIMES

In the transition layer near the q = 1 surface, the normal mode equation
including the inertial term but neglecting resistive and other dissipative

effects is [16]

4 wiw - wdi) dEr )
E{[T—— - s? 22| o= o, (24)

with z = (v - ro)/ro. Eq.(24) is valid provided the gyroradius of the
thermal ions is smaller than the width of the transition layer, which is
approximately given by 0 » lAH + AKIrO. The modifications of the stability
analysis in the large gyroradius limit are discussed in Section V.
_Equation (24) is solved subject to the boundary conditions that, for z/8

> 1, ensure the matching of the layer solution onto the outer solution given

in Eq.(14). This leads to the radial displacement near the q = 1 surface,

2 5o? R
E [l - = arctg (-————**-)], (25)
o n hH + RK

and to the dispersion relation given in Eq.(2). Note that the eigenfunction

Er(x) =

B b

(25) is regular for Ay + Re A, 2 0.

Al Stable domain
On the basis of the dispersion relation (2), marginal stability is

possible for up = Re w > Was when Bpa # 0, and for wdi/Z S WS W, when Bpa =

0. The marginal stability condition is obtained from the system

lig (B - 01"

)" = Bogher (o) (26)



Tona * Bpafxr(Vg) = O - (27)

Nt

where we have defined Wy = wdi/wDa’ AKR

Re AK' AKI = Im AK' AK has been

introduced below Eg.(23),

W Y
~ — A _ m.hd
Tmhd - a )\H = _ [ (28}
Du wDa
and
- w € 3712 :
B =-A ° g5 | (29)
pa s pa
w o
Da

~

The parameter Bpa is proportional to the alpha particle density and depends
on gpe alpha particle preofiles, but is independent of their average energy.
The.resulting marginal stability curve in the (?mhd' épa) plane is shown in
Fig.2 for adi = 0.05. The corresponding values of the frequency at marginal

stability are shown in Fig.3. Note that w,, increases smoothly with épa from

R

n~ w_. . However, for w,. < 0.05, a discontinuity of the

= Wgy to ug M oup,

YR di
frequency along the boundary of the stable domain occurs. In this case in a
portion of the unstable domain, for a given pair of values of ?mhd and Epa'
the higher frequency branch is unstable for two different values of the
oscillation frequency as shown in Fig.4. A similar behaviour can also be
found for different fast ion distribution functions resulting in a more
abrupt change of AKE(Q) around w = 1.

The shape of the stability curve is determined by the mechanism
discussed in Sec. I, which is such that the non-resonant response of the

energetic alphas is stabilising at low frequency and destabilising at high

frequency relative to the alpha particle magnetic drift frequency., It



follows that there exists a maximum value of Ymhd/EDa above which stability
is no longer possible. In addition, since the mode frequency increases with

Epa along the marginal stability curve (Fig.3), the stable domain is also

limited byra maximum ﬁ .
pa

The stable domain is weakly dependent on plasma parameters by virtue of
the weak dependence of AK(G) on them, while the dependence on the q profile
can be significant. Once AK(G) is given, the solution of Egs.(26)~(27)
depends on the parameter adi only. Marginal stability curves for different
values of uy; are shown in Fig.4. It can be seen that for Yai % 0.05, Was
has a destabilising effect in so far as the maximum stable value of ?mhdis of
interest. Again this can be understood by recalling that the freguency of
this branch of the dispersion relation increases with adi at low constant

values of Epa. However, larger values of §Pa are needed to enter the stable

domain from the left for decreasing Was when Wys £ W (see Fig.4), with W =

0.1 the freguency at which AKR is minimum, Similar conciusions can be drawn
from the analysis of the stability curve in the (adi'éfa) plane (Fig.5).

Note in particular that there is a maximum value of Sdi above which stability
is no longer possible. |

Eliminating épa from Egs.(26) and (27), one has

¥ AKR(GR)

~ .. (30)
AKI(wR)

{w) = [wy(w, - wdi)

Tmhd ‘YR R'YR

This expression shows that the maximum value, ;ﬁiﬁ, of ?mhd(aR) depends on

the phase of Ay and on 0,,. The maximum stable value of Bpa is given by the

di

formula

mex S S N % ”
Bre = = lugluy = ug)1™/Ag (u), (31)



%

where %H is the higher frequency solution of the equaticn {Gﬁ(&R _'QAi)}

[AKR(mR)/AKI(wR)] ~ Ygha = O

B. Resonant and fluid-like unstable regimes

Above the marginal stability curve, the higher frequency branch of the
dispersion relation (2} is unstable. While the source of available energy to
the nature of

excite the mode is always measured by the parameter A, + Re A

H K?
the instability changes significantly in the different regimes. Just outside

the stable domain, the mode has a frequency of oscillation @, considerably

R
larger than its growth rate.} = Im w/wDa. Then, the dissipation provided by
the resonance between the mode and energetic trapped ions plays an essential
role. At small values of Epa' it allows the source of excitation energy,
which would otherwise be inaccessible due to the wdi—stabilization, to be
tapfed. At large Epa’ it determines the mode frequency raising it to values
such that AKR turns positive. A consequence of the resonant interaction is
the scattering of the energetic resonant ions. Therefore, these regimes
appear as viable candidates to explain the initial linear rise of
fishbone-like fluctuations. Further away from the stable domain, ¥ R &R and
the unstable mode is essentially an ideal MHD internal m = 1 mode with
kinetic corrections arising from the fast ions and from the thermal ion
finite diamagnetic frequency.

The lower corner region to the left of the stable domain in Fig.6, where
Was ? Tong 0 wAlAKI, corresponds to the regime studied in Ref.[21], which is
a natural extension to the case where wdi/th << 1 of the original fishbone
model of Ref.[14], The solution of the dispersion relation (2) in this
domain can be obtained perturbatively by setting w = W.. + dw. The mode

di

growth rate



(W)
o~ N5 AKI di ~ A ~
y = Im dw = ZBPcL }“ﬁ:“““*** 0Yona BPGEAKR(wdi)Il (32)

Yai

is determined by the resonant part of AK’ The boundary of this region can
thus be defined as the marginal stability condition when the resonant term is
neglected in Eq.(2). This boundary, dashed in Fig.6, is obtained by imposing
that the equation

%

[ﬁ(&di~ w1" = Tuha T BpaAKR(w> (33)

has coincident roots, which can occur for w < Gd The dashed curve is

e
interrupted for values of Epa such that EpaAKE " ?mhd + BpuAKR’ for which it
is no longer justified to treat the resonant term as a perturbation. Above
the dashed curve the m=l instability has a fluid-like character, as its
growth rate is not determined by the resonant term.

rFor %pa exceeding the value corresponding to the peak of the stabie
domain in the (?mhd' ﬁpa) plane, the dissipative part of AK is larger:than

the reactive part. Then, the nature of the instability changes completely.

For w > adi we obtain from Eq.(2)

~

v = Tmhd * Bpa AKR - (34)

~

R _Bpa At - (33)

= >
1]

The growth rate 7 in Eq.(34) is given by the ideal MHD growth rate, ?mhd'
modified by the reactive part of the alpha particle contribution, while the
dissipative part determines the mode oscillation frequency. The effect of

the resonance is to bring the mode frequency up to values of w R aDa’ vhere



AKR changes sign and the energetic ions become destabilising. When ?mhd is
negligible, this high frequency mode is entirely supported by the energetic
ion population for values of ﬁpa > ﬁgzx, with ﬁ?ix given in Eq.(31). In this

limit, near marginal stability, w = @o and the growth rate is

~ ~ a ”~
_ n _ pmax
T =, (_EE_)NO {Epa Bpa )y (36)

where we have used BAKI/aG =0 for @ n Go. This limit corresponds to the one
analysed in Ref.{15]. A precise boundary between the high frequency resonant
regime and the fluid-like regimé cannot be defined, e.g. following the rule
that we used on the left of the stable domain. However, the transition
between the two regimes can be identified as the region where the solution
of the dispersion relation is such that the reactive and the dissipative
parts of the fast ion contribution are of the same order. This region is
indicated in Fig.6 by a wiggled curve.

In Fig.7, the stable domain and unstable regimes are shown in the (adi’
ﬁpa) plane at constant ?mhd' The region where the growth rate is essentially
determined by ?mhd is now confined to the lower right corner delimited by the
dashed line. For values of zGdi n 1, there are no leonger two distinct
resonantly unstable regimes. The region limited from below by the stable
domain and by the dashed curve and, to the right, by adi > Epa corresponds to
the domain of validity of the analysis in Ref.[14].

Examples of the numerical solution of the dispersion relation are shown
in Fig.8, where the growth rate and oscillation freguency are plotted versus

~

Bpa for constant values of Tehd and Wy - When Bpa = 0 and Yohd < wdi/2, the
mode is purely oscillatory due to the stabilising effect of the thermal ion
diamagnetic frequency. The growth rate initially increases with Bpa’ reaches

a maximum value approximately given by



e c, ;;hd (37)
before decreasing to zero at the left boundary of the stable domain. This
behaviour is well represented by the analytic expression in Eq.(32). For the
form factor Ay of Fig.l, C, = 1.2. The mode is again destabilised for values
of ﬁpa such that the high frequency fishbone region to the right of the
stable domain is entered. When ?mhd > Gdi/z, the ideal MHD internal (m = 1
mode) is unstable at Bpa = 0, The growth rate is reduced as ﬁpa increases.
The change in the slope of the curves on the right of Fig.8 corresponds to
the crossing of the dashed line in Fig.6 and the entry in the fishbone domain
with w Wqs >T.

From the discussion in this section, it becomes clear why the existence
of a stable domain was not foreseen by the original analyses of the fishbone
instability in Refs,[14,15,21]. 1In Ref.[14], the limit wdi/aDh N 1 was
considered, in which case the stable domain disappears. However, when the
analysis of Ref.[14] was extended to the case of isotropic alpha particles
[21] and the case wdi/aDa << 1 was considered, the approximation [hKi < AH'
valid at low Bpa' excluded the stable domain. The existence of a finite
stability window did not appear in the analysis of Ref.[15] because of two
simultaneous approximations: (i} wdi/anh= 0, and (ii) a simplified model of
AK(w) was used, yielding A = 0 at w = 0, As a consequence of these two

assumptions, the width of the stable domain shrinks to zero.

C. Stability of the resistive internal m = 1 branch

When AH + RehK is positive, a dissipative correction to the dispersion
relation (2) arising from thermal particle collisions can be introduced
perturbatively. Then, as stated in the Introduction, the lower frequency

{resistive) branch of the dispersion relation can become unstable if



resistivity, arising from electron~-ion collisions, overcomes the "viscous"
terms associated with the ion-ion collisions and with the mode-energetic-ion
resonance. However, when Bpa‘is sufficiently large, AH + ReAK < 0 and thé
stability of the lower frequency branch can no longer be described by Eg.{(2).
For this root we can approximate Re AK(w) = Re AK(O) < 0. Then, as AH +
Re AK(O) becomes more negative with increasing Bpa' a regime is entered where
a propef description of the physics in the layer around the g = ] surface has
been shown [35-42] to lead to linear stability.

This point can be illustrated within the two-fluid description of the
thermal plasma. Initially, we consider resistivity as the only dissipative
process. The relevant dispersion relatioﬁ, including the energetic ion

effects according to the rule A, - AH + AK(w), is [14,16]

H

3,2
_ %, Q  T(Q - 1)/4]
fwlw wdi)] = 1wA[?\H + AK(N)] 8 TE(Q ¥ 5)/4] {38)

where

2 = Jy-3e-1 - ) -
Q iw en wlw wdi)(w W

i ), (39)

*e

with en = nﬂséc3/(4nréwA) the inverse magnetic Reynolds' number, | the
parallel resistivity, and Ugg = (cTe/eBrone)[dne/dr + l.7l(ne/Te)dTe/dr]o the
electron drift frequency at the g = 1 surface. For the sake of simplicity we

set wy. = = U, . Equation (2) is recovered in the limit 1Ql >> 1.

di
As shown in Refs.[35,36], a stable domain against both resistive and

13
drift-tearing m = 1 modes exists for Q.. = iwdi/(wAen )1 > 1 and for -

103 . ; -% .
{RH + ?\K(O)]/en negative and such that Qdi < tAHK‘ < Qdi' In the drift
13 + » L] - - -“,5
tearing domain, characterised by the inequalities IAHKI > Q. 0 IAHKE and

/\HK < 0, modes are very weakly unstable or completely stable in the presence



of electronrthérmal conductivity [37,38]}. Toroidal effects of the type
described in Ref.[39] may also lead to complete stability of the m = 1
tearing mode when Qdi is negligible, provided AHK is negative and
sufficiently large in absolute value.

In an ignition experiment, on account of the high plasma temperature,
the parameter Q.. is significantly larger than unity. Thus the relevant
threshold is AHK < - Q;?. Expressing this threshold in terms of the alpha

particle poloidal beta, we conclude that the resistive branch is suppressed

by the energetic ions when

3s2
o %
C :, Bpa Ayt EenwA/wdiE . (40)
where C = IAK(O)I. For vanishing resistivity, this condition reduces to

Eq. (4).

Stabilisation can occur for values of Bpa lower than indicated by
Eq. (40) when ion dissipation processes are considered. As shown in Ref.[40],
transverse (Braginskii's) viscosity arising from bulk ion-ion collisions is
strongly stebilising when IAHKI < 1 and ndi is large. An even stronger ion
collisional damping can be expected in the neoclassical banana regime
{41,42]. We recall that, when IAHK! is small, the resistive m = 1 mode is
nearly purely growing in the plasma rest frame, so that the contributioen of
the mode-fast ion resonance is negligible. The latter becomes more important
than collisional viscosity Qhen AHK > 1, as the m = 1 mode acquires a
frequency of coscillation vy £ wdi/Z. In this regime, the stability threshold
of the lower frequency branch is determined by the balance between

resistivity and the resonant term [13].

A numerical example of the lower frequency solution of the relevant



dispersion relatien at AH = 0, including resistivity and a small bulk ion
viscosity [40], is shown in Fig.9. The parameters are chosen so that when
iﬂpa = 0, a positive growth rate is found. The instability is suppressed for
valués of Bpa in agreement with the threshold given above.

The above results are intended to be indicative since, as noted in
Ref.[{13], the two fluid model is not entirely appropriate in low
collisionality regimes, which are approached, e.g. in JET during sawtooth
free periods, and which are relevant to an ignited plasma. In these regimes,
the resistive instability can be expected to be even weaker.

In Refs.{26], a model for A, such that AK(O) = 0 was used. Then the

K
basic stabilisation mechanism that we have described, which censists in

pushing AH + Re A, to negative values by increasing Bpa' cannot be realised.

K
Within such a model, the only possibility to obtain full stabilisation is to
keeg AH positive and sufficiently large. In this case, as we have already
noted, the mode acgquires a finite frequency of oscillation related to Was o
and conditions can be found where the mode-particle resonance prevails over
resistivity. Consequently, in the second of Refs.[26], the conclusion was
reached that only for values of BP in excess of the ideal MHD stability
threshold Bp,mhd by an amount determined by resistivity could the m = 1
instability be completely suppressed in the presence of energetic ions., In
contrast, we have shown that, if a model for AK(w) which properly reproduces

the zero-frequency energetic ion response is used, the condition Bp > BP whd
¥

for fast ion stabilisation is not required,



IV SCALING OF THE‘STABILITY THRESHOLDS

We are now in the position to quantify the scaling of the stability
thresholds in terms of the plasma parameters [43]. In order tc obtain
expedient estimates, we adopt a simplified model for the ideal MHD energy
functicnal:

. 3T

-OW . = A .

min H 2 Eé (BS - a;,mhd)' (41)

This model has been initially derived [18] for a toroidal plasma with
circular cross section, in the limit where the g profile in the region where
g < 1 can be approximated by a parabola, and l—qo is relatively small. The
same model can alsoc be used for non circular plasmas, provided the ideal MHD
threshold Bp,mhd is appropriately modified [19]. The relevant definition of
the poloidal beta parameter Bp is given by Eq.(15), together with the typical
range of variation of Bp,mhd for varying q = 1 radii and plasma shaping.

The maximum stable values of Bp and qu in the presence of alpha
particles is obtained from Eqs.(28)-(31), and (41). As an example, for the

realistic value W.,. = 0.05, and for the form factor AK in Fig.1,

di

(BT = e ‘7.8 x 102 Do S0 (42)
p ~ p,mhd o X w, \T
Q
and
G /R a0
BI2% = 0.45 s_ % (;9-) ) (43)
p A o

In Eq.(43) we have chosen Bp.= B

p,mhd’ Expressing the ratio wDa/wA in terms



max

of ni(ro}, B, T, Ro and neglecting terms of order (Bp,mhd/Bp )2 Eqg.{42)
reduces to Eq.(5). Similarly,
max (nio/loiscm‘s)%(Zso)
BI2Y = 1.2 — , (44)
P (6x /R ) (R_/1.2m)(B/10%G)

Using Egs. (28}, (29), and (42), we can represent the stability domain in
 J— 2 = - ¥
the plane (ABp Bpa)’ where ABP = Bp Bp,mhd’ once the values of €, Sg»

GDa/wA’ and wdi/wA are piven. In this plane, the width and the height of the

stable domain scale as strong inverse powers of the g=1 radius. In fact,

from Egs.(43) and (44}, neglecting the weak radial dependence of the density,

~3r2

-5¢2
one finds approximately BEaX < T,

and Bmax « r . Therefore, it becomes
pa 0

increasingly difficult to suppress the m = 1 mode as the g = 1 radius

expands. This is shown in Fig.10. Three examples are given, corresponding

to three values of rO/a at fixed a/RO, CH and plasma profiles. We have

o] o
= —— n = - T 1 = =
taken n, = ni(O)(l ri/a?} and Ti Ti(O)(l r3/a?) with o, 1, O 3/2,

vhich gives aDa/wA o (a/ro)(lwré/az)% and wdifaDa « (ro/a)(l-rg/az)%. The g
profile was chosen to be q(r) = 9, * (1 - qc)(r/ra}2 for 0 g r« L with d,
= 0.8 for all three cases.

In an ignited plasma Bpa and EP are not independent parameters.
Following Ref.[44] we recall that the alpha particle pressure scales as Py ™

ir2

T n. <o_v>, where the reaction rate <o

e Ty <op v> depends on the ion temperature.

F
Then, the ratio pa/p depends only on the bulk plasma temperature. For
example, for Te = 'I‘i = 20 keV, one finds pG/p = 0.26., The pressure profile
of the alpha particles is thus obtained from the temperature and density

profiles of the thermal plasma., Assuming parabola-like profiles as defined

above, and Té = Ti, P, can be written as



pa(r) = pa(O)(l-rzlaz)o, (45)

vhere, taking for simplicity <0Fv> < Ti for Ti £ 25 keV, we have o < (7cT/2)
+ oL The equality sign corresponds to the profile at birth. The diffusion
from the location at birth due to the finite size of the particle orbit can
be accounted for by considering a smaller value of o, while keeping the alpha
particle energy content constant.

By combining Egs.(15), (23) and (45) we obtain

Boa ) P, (0)
B - po(O) P(xo.on,cT,c), (46)

where the profile factor P is defined by

—

0 ’ —
J ax x (1-x2)° 1
o{g+l) o) .
P = , (47>
(on+oT)(7cT/2 + on+1) X °n+°Thl
[ oax x® (1-x2)
o

with x = r /a. Plots of B_ /B._ versus x_ for various central plasma
o o pa’ 'p o

temperatures are shown in Fig.ll for o, 1, 0. = 3/2, and o = 6,

T
Equation (46) ﬁan be used to restrict the accessible portion of the
(5p’8pa) stability plane, once the central plasma temperature T(0) is given.
Two examples are shown in Figs.12 and 13 for ra/a = 0.3, and for ro/a = (0.5,

respectively, assuming Bp,mhd = 0.2 for both cases. A straight line
corresponds to a fixed ratio BPG/BP’ as determined by Eq.(46). As the
temperature increases, the slope of the straight line decreases and regions

to the right of the stable domain become accessible. These examples indicate

that the larpgest stable values of Bp can be attained at relatively low



ignition temperatures (T(0) ~ 20 keV) and small values of ro/a. The low
frequency fishbone region to the left of the stable domain can always be
visited if the ignition conditions are approached for values of Bp R Bp,mhd'

On the other hand, the more dangerous higher frequency fishbone regime with w

" w, can only be entered at relatively high values of T(0) and large ro/a.

Da



v LARGE THERMAL ION GYRORADIUS REGIME

Kinetic modifications of the dispersion relation (2) due to the thermal
ions become important when their mean gyroradius, Py = (Ti/mi)x(mic/eB), is
of the order of or larger than the width of the fluid transition layer at the
q = 1 surface. In Ref,[28] it was shown that these effects lead to growth
rates in the linear phase that are larger than those which would be obtained
in the fluid approxiﬁation. The relevance of this kinetic regime to the
analysis of fishbone excitation and sawtooth suppression has been pointed out
recently [27].

A dispersion relation valid for arbitrary values of the ion gyroradius
and negligible resistivity is given in Eq.(13) of Ref.[28]. Including the
energetic particles according to the rule Ay w Ayt AK(w), this dispersion

relation becomes

A A A % ) _osrn A ~
(W=, YITF() = 407 4 + BPaAK(w)] , (48)
wvhere
5+2v
172 T )
(2v-1) 4
F{v) = 4 ~ , {49)
(2v+1)°" 123
(o+t, ) (W-0,.)
v = _j; _ *1 di (50)

nz
P1

with 1 = Te/Ti, Wys = -(cTi/eBrowDa)(dinni/dr), and



p. = . (51)

all parameters being evaluated at the g=1 surface, The fluid limit is
recovered for Bi << 1 (ivl >» 1/72), whefe F(v) approaches unity. The
dispersion relation given in Eq.(13) of Ref.[2B] has been derived for ny =
anTi/d!lnni = 0. However it can be shown that for the higher frequency
branch under consideration in this paper, it may be extended to N # 0 by
re-defining the ion diamagnetic frequency adi as adi = G*i[l + a(u)ni] vhere
the real coefficient a(v) approaches unity in the fluid limit, and decreases
to a{v) = 0.5 in the kinetic limit where |u-1/2| < 1., For the sake of

simplicity, we take a(v) = const, which allows us to consider Gd as an

i
independent parameter. We also consider equal electron and ion temperatures
(T=i).

We are interested in the marginal stability condition arising from (50).
For real frequencies, v? acquires negative and positive real values. The
mode eigenfunction becomes singular when v? < 1/4, However, this singularity
is resolved [28] by a small resistivity, provided the determination of
(2u—1)% is chosen corresponding to the branch-cut -« ( Re v £ 1/2 and to v =
—ilulsgn{wdi) for v? < 0, with sgn (x) = 1 for x 2 0, respectively.

A plot of F versus real v? is shown in Fig.l4. F is complex for v? < 0,

it is purely imaginary for 0 < v? < 1/4, and it is real for v? 2 1/4. When

ﬁpa = 0, the higher frequency branch of Eq.(48) is marginally stable if max
~ oo ” ~min .
[(wdi/2), Clﬂpi] > Tond > Tmhd with

~min

Yopa = - IFO [0 @) - 6,01 = - £(Brp; (52)



- Py — -~ ~ x — _ -
C, ~ 173, IF(O)] = 2.2, v, (wi; + P2/4)7, By = 4ul,/3p% = (L;/r;) Bior By

10

= 2 = = -1 R 3
= Bnpi(ro)/B » Lo = Ro/so, rp = idﬁnpi/dri , and f£(B) a numerical factor

which varies monotonically between f = 0.77 for B >> 1 and f = 1.1 for

B << 1. The mode frequency ranges in the interval Gdi/z < ﬁR < Gp. This
neutral mode is destabilised by the resonance with the energetic ions. Then,
when Bpa # 0, it becomes possible to excite fishbone oscillations for values
of Bp below the MHD stability threshold.Bp’mhd [29], extending the

instability domain obtained by the fluid thermal ion approximation [14]. The

frequency in this extended domain is & = &, for B > 1, and § = py/2 for B

di

¢ 1. This resonant mode does not rely on & finite thermal ion diamagnetic
frequency, in contrast with the fluid instability condition in the fluid
limit.

Examples of the marginal stability curve are shown in Figs.l5 and 16.

The frequency along the marginal stability curve increases with Epa from

W=u tow~rl, In Fig.1l5 we have set u

., = 0, in order to emphasise the
P di _

existence of a fishbone regime to the left of the stzble domain with a‘;

frequency not determined by either Wy OF W Figure 16 shows stability

Da’

curves for adi = 0.05 and different values of Si. When 6i << 1, the left

boundary of the stable domain, which in the fluid bulk limit is
approximately given by Eg.(4), is now shifted to the right by an amount

™ ~min .
éspa N Yohat 1-€-

) 3r2
6Bpa ~ (so/eo )(pi/ro), {53)

while the right boundary of the stability curve is not significantly
affected, For Bi 2 0.5, the mode frequency becomes comparable or larger than

the frequency ao at which Re A, changes sign and the stable domain

K



disappears. Such high values of Ei are however unlikely to occur in the
presently envisaged ignition experiments.

Resistive effects are important in the frequency range w " wp vhere they
partly modify the stability boundary. These effects will be discussed in a

separate paper.



VI  CONCLUSIONS

We have shown that particles with energies in the MeV range in a
magnetically confined, axisymmetric toroidal plasma can significantly affect
the stability of m = 1, n = 1 internal modes. These particles modify both
the reactive and the dissipative part of the plasma respcnse and can cause
either fishbone-like instabilities, or, under certain conditions, they can
allow for stable values of the bulk plasma poloidal beta, BP. significantly
higher than those predicted by the ideal MHDltheory. The stabilisation
arises because energetic particles with poloidally trapped orbits experience
a magnetic drift motion which on average is much faster than the
characteristic phase velocity of m = 1 modes driven by the thermal plasma
pressure gradient. Under these circumstances, energy must be spent to
disélace the fast particles, leading to a more favourable stability
threshold, as given e.g. by Eg.(4) in the limit w <K GDh {w is the mode
frequency in the plasma rest frame). If Yohd is the growth rate in the ideal
MHb limit, then there is a maximum ratio of rmhd/anh that can be stabilised,
as shown in Fig.2. Since Tuhd is related to BP, this in turn implies a-
maximum stable value of BP, estimated in Eq.(5) for the case of alpha
particles preduced in a DT burning plasma.

The focus of this paper has been on the effects of alpha particles
produced isotropically in.an ignition experiment. A number of theoretical
issues have been addressed. Firstly, we have shown that the alpha particle
response to the m = 1 perturbation, which is a function of W/aDa’ remains
finite in the limit (w/aDa) - 0. As a consequence, it is possible to
suppress overstable as well as purely growing modes. Since at low values of
Bpa the mode freguency is related to the thermal ion diamagnetic freguency,

Wass stabilisation can be demonstrated with the simplest ideal MHD model for



the plasma bulk where w,. is set equal to zero. When resistive effects are

di
considered, the use of the relevant dispersion relation shows that the
energetic alpha particles can suppress the resistive m = 1 internal
instability as well. Finite values of gy reduce the maximum steble EP. In
fact, as the value of w increases with vy et constant Bpa' the stabilisation
mechanism becomes less effective (see Fig.4).

Secondly, we have clarified the relationship between the two models
[14,15] of fishbone oscillations that have appeared in the literature. We
have shown that, in the limit wdi/aDa (¢ 1, two distinct regimes exist where
the m = 1 mode is destabilised by the resonant interaction with the trapped
alpha particles (see Fig.6). In the first regime, corresponding to the

analysis of Ref.[l4] (see also Ref.[21]), Bpa is relatively low and the

relevant mode frequency is related to Wy

—_

g This mode is suppressed as Bpa is

raised beyond the value indicated in Eq.(4) and the stable domain is entered.
When Bpa exceeds a second threshold, given e.g. in Eq.(44) for AH negligible,
the higher frequency branch of the dispersion relation (2) has w GDa'
Since the reactive part of the alpha particle response changes sign for w

g aDa' an instability entirely supported by these particles becomes possible.
This instability corresponds to the one analysed in Ref.[15]. We have shown
that the higher frequency branch of the dispefsion relation can be followed
from one regime to the other along the marginal stability curve, where the
oscillation frequency is found to increase from w = Was

at large Bpa (see Fig.3). For intermediate values of Bpa and sufficiently

at low Bpa to w v Upg

large values of A,, & transition region exists where the fishbone instability

H’

has hybrid features, i.e. it is driven by the bulk plasma pressure gradient

ai D’ For values of wdi 3

aDa, there are no longer two distinct fishbone regimes.

but has a frequency intermediate between w,. and w



Thirdly, we have extended these results to the large thermal ion
gyroradius regime, along the lines of Ref.{28]. In this regime, them =1
instability in the linear phase is generally stronger than what would be
predicted if the fluid approximation were used. The stable domain disappears
when Bi =1 +1 (pi/ro)(sowA/ﬁDa) 2 0.5. For smaller values of Bi, a stable
domain persists, but in the (?mhd’ épa) plane (Fig.16) is eroded from the
left by an amount 6§pa i Bi’ This eroded region is now occupied by fishbone
oscillations with a frequency approximately determined by the maximum between
Wy and (pi/ZrO)wA. A novel result is that these fishbone oscillations occur
in a wider parameter domain than that obtained in the fluid limit in Ref.[14]
extending for vanishing resistivity to negative values of AH. This unstable
regime extends that obtained in the fluid limit in Ref.[14].

Although this paper has mainly addressed the effects of isotropic fusion
reaction products, most results apply equally well to a population of
energetic ions distributed anisotropically in velocity space. Indeed, this
theory was initially aimed [25,13] at explaining sawtooth suppression in JET
discharges with high power ICRF heating [8]. In these discharges, mincrity
ions are accelerated to mean energies € * 1 MeV, and can reach a pressure
that is a substantial fraction of the total plasma pressure. In additibn,
the distribution of energetic ions is strongly anisotropic, with ratios of
plh/pﬂh believed to reach values of the order of ten or larger. When
applying the present theory to the anisotropic case, it must be observed
that, independently of the velocity space distribution, the order of
magnitude of their contribution to the dispersion relation is related to the
pressure of the poloidally trapped energetic fast ions. The second
difference is that, when PHh§ (ro/Ro) plh’ the zero frequency kinetic
response vanishes with the average of l1-q within the q = 1 volume. Then, if

<1fq> is smaller than w di/QDh, the 1ow~spCJL stability threshold



(corresponding to Eq.{(4) for the Piin "~ Piy case) becomes AH 3" s;‘eé’“ﬁph
[wdi/aDh + 0(<1-g>)]}, as shown in Refs.[13] and [20]. In addition, the
actual fast ion distribution determines the detailed form of AK(w/GDh). from
which the numerical factors in the relevant scalings are obtained. 7
Taking into account these differences arising from their large
anisotropy, the energetic ions in JET ICRF heated plasmas can provide first-
hand experimental information of the would-be alpha particle effects onm = 1]
modes in an ignited plasma {45]., At moderate currents (Ip £3 MA), sawteeth
in JET can be suppressed in a reproducible manner for periods exceeding 3s
and auxiliary powers PRF 2 4 MW, In this case, values of Bp 2 0.3, i.e. in
excess of the ideal MHD threshold, are often achieved, while wdifanh ~ 1071,
Expe;imental evidence in support of an active role of the energetic ions in
supg;essing the sawteeth was reported in Refs.[8] and [46]. Our predictions
in Refs.[lB] and [20] were found to be in reasonable agreement with the
relevant experimental conditions. In this paper, we have shown that the
stable domain shrinks considerabiy as the q = 1 radius is increased (see
Fig.10). This, together with the fact that Bp,mhd is usually lower at large
rS [18], may account for the increasing difficulty in stabilising sawteeth in
JET for plasma currents Ip > 3 MA, as T tends to increase with Ip.
Fishbone-like oscillations have alsoc been observed in JET during ICRF
heating [12]. These oscillations have a low amplitude compared with that of
the original PDX fishboneg [9]. No noticeable loss of fast ions associated
with the bursts is observed in JET, at least within the time resolution of
the relevant diagnostics. Although more analysis is needed, the mode
frequency in the initial rise of the burst appears to be correlated with the
ion diamagnetic frequency. The weakness of these fluctuations, and the lack

of significant fast ion losses may be explained by the fact that only those



minority ions that have slowed down to energies of the order of 100 keV can
satisfy the relevant resonance condition.

These results indicate that fusion alpha particles can indeed help to
control the onset of m = 1 internal modes in an ignited plasma. This control
is most effective when the plasma region where q ¢ 1 is not too large, while
it becomes very difficult to suppress the m = 1 mode when BP > 8p,mhd and
ro/a X 0.5. Other key parameters are GDd/mA (to which both BEax and Bgzx are
proportional) and the central ignition temperature, T(0). The latter
pafameter determines the ratio Bpa/Bp. It turns out that there exists an
optimum value of T(0), typically T(0) = 20 keV, at which the largest stable
values of Bp can be obtained (see Figs.l2 and 13). If ignition is to be
achieved at higher values of T(0), the enhanced stability is partly lost and,
if also ro/a 2 0.5, it becomes possible to excite high frequency fishbone

oscillations with w ~ w The consequences of this instability can be

Do’
rather unfavourable on the ignition energy balance, as newly born alpha
particles carrying energies above 1 MeV would be scattered. However, under
certain circumstances, this instability could have the desirable effect of
preventing the thermonuclear runaway,

Kinetic effects of the thermal ions are expected to be important in
ignition regimes. For a DT thermonuclear plasma, the relevant parameter can
be rewritten as Bi = O.4(Ti0/3.5 MeV)soB;f, where Bio = BnnioTiolB’, n.. and
Tioare the thermal ion density and temperature at the q = 1 surface, and we
have assumed T, = T,. Realistic values are Bi A 0.1. For these values of
Si, the main effect is an extension of the low frequency fishbone regime to
negative values of Ay

domain, as discussed previously in this section (see also Section V). This

and larger values of Bpa at the expense of the stable

unstable regime could be entered at the onset of ignition, when Bpa is still



small. However, the instability should scatter slowed down alpha particles

and is not expected to
may even be beneficial

In conclugion, in
fusion burning plasma,

temperatures and small

affect the energy balance significantly. In fact, it
in easing the problem of ash accumulation [21].

order to avoid dangerous m = 1 instsbilities in a

it is most favourable to operate at relatively low

q = 1 radii, finding & compromise between minimising

e e = % ] .
Bp and maximising wDa/wA « nio/(roB ). An effective strategy would be to

approach ignition conditions with the highest plasma currents, trying to keep

Bp below its ideal MHD

substantial population

threshold. The current could be reduced after a

of alpha particles has been produced, in order to

diminish the g < 1 volume and increase the ratio aDa/wA' The stabilising

influence of the fusion products on global plasma modes will then allow to

raise BP above its ideal MHD threshold.



ACKNOWLEDGEMENTS

The role played by R.J. Hastie in the early analysis of the sawtooth
suppression mechanism and in pointing out the importance of the zero
frequency response is gratefully acknowledged. We also thank H.L. Berk, D.J.
Campbell, P. Detragiache, D.F. Diichs, T. Stringer, J.A. Wesson and Y.Z. Zhang

for useful discussions. This work was sponsored in part by the U.S.

Department of Energy.



APPENDIX - EVALUATION OF hK
In this Appendix we provide the main analytic steps in the evaluation of
AK(w}. We start from the linearised Vliasov equation for the a-particles (we

drop the subscript "a" to simplify the notation):

. _ 8f _ _ 2e o~ l.— =.
+ VoVt - Q E+ JvxBevE, (A.1)

where Fo = Fo(r,e) is the equilibrium distribution function, Q = 2eB/mc and ¢
is the gyroangle in velocity space. We seek a solution of Eq.(A.1l) to
leading order in the smallness parameters €, = ro/R0 and ep = p/Ro, with p
the alpha éyroradius. This solution can be split in two parts [30], ¥ = }ad

+ %nad, where

ad _ _ 5 .
yad o 1°Y (A.2)
T
aF w
ynad _ f (1 - f) 5, (A.3)

where I satisfies the equation
(w + 30V + iv, & D = -~ w(E}ri0 (4.4)

We have used E = (iw/c) Ex B and Eq. (8) to relate E and B to the plasma
displacement vector F in Egs.(A.2) and (A.4); wz is defined below Eq.(12),
the magnetic drift veloclity ;D is given in Eq.(13) and the subscripts || and 1
refer to the parallel and perpendicular directions to the egquilibrium

magnetic field, respectively.



We consider modes with freguencies w < Wy, ((q-l)wt), with Wy and Wy the
bounce and the transit frequencies of the trapped and circulating alpha
particles. Then, the contribution of the circulating alphas to the solution
of Eq.(A.4) can be neglected. To evaluate the trapped particle contribution,

we expand B in powers of (w/wb). To lowest order, neglecting finite banana

orbit effects, we have E”'V %o = 0 This implies that %o must have the form
K = ﬁo(r) e . (A.5)

where S = ({ - @8}, such that E“'VS = 0 to leading order in €, To next

order in w/wb, we have

{(w + iv

o0 B+ dvy, & VB = - w(E] k) (4.6)

TS 1

Setting %i ='ﬁl(r, B) exp(- iuwt + iS), and multiplying Eq. (A.6) by exp(iut -

i§8}, we cobtain

~

dh
br dr

U:II o
H @
mlm
@

(w - ¥,°vs) ?10 + v + v By = - w0 expliR - 5] (A7)

I
where R is defined in Eq.(9).
Averaging along the particle orbits, the term involving Vpr? which is
odd in 8, and the term involving h1 are annihilated. Thus we obtain
w (o)

hy = - ;_:__TST {(ii'K) expli(q - 1) 81} R (A.8)

“p

where



() _ ;o ooy (0) _ €
wp” = (Vs = 5‘%;?’5 (I + sI) (4.9)

with IC = (cose)(o) and Is = (8 sinB)(o). In the limit of concentric

circular magnetic surfaces, Ic and Is are simple to evaluate and yield
I(y?) = [ZE(y*)/K(y*)] - 13 I_(y?) = 4[E(y?)/K(y*)] + 4(y* - 1); (A.10)

where 2y? = 1 + (R/r)(1 - A), K(y?*) and E(y’) are elliptic integrals of the
first and second kind, respectivély, and the pitch angle variable A is

defined below Eq,(13). For trapped particles, 0 < y? < 1, and Ic + sIS =]
in the deeply trapped limit y? - 0. Adopting Eq.(A.10), we have to exclude
relatively high beta plasmas (EOBP " 1) and highly elongated flux surfaces,

where the departure from the result in Eq.(A.10) becomes significant [47].

In order to reduce Eq.(A.8) further, we use E; = const and fé = —ié;, as
V‘El= O(El/Ro) in the outer region. Since ko = -{cosB)/R, and Kg =
(sinS)/Ro, we find

{El'z) expli(qg~1)8] = - (gr/Ro)(coqu) (A.1D)

vhere odd terms in 8, which are annihilated once the average along the
particle orbit is taken, have been disregarded. Using (A.1l) in (A.B) and
inserting the result into (4.3), Egq. (12} in the text is recovered.

%nad

The phases of ¥ad and differ by a factor i(R-5)6 = i(q-1)9, that

is
¥ad = %ad(r,e)exp(—imt + iR) (A.12)

ed _ pnad o A)exp(-iwt + iS) (A.13)



s . . g .
Using corresponding definitions for o = p; + P ve obtain

gad a2 H fad(r,e)

= 2m (r-i) f U - A/ZH)dﬁ [ de 7 (A.14)

- Hi{l - A/H) A
onad L fnad(r,e,A)

H(r,0) = BO/B, Bo is the magnetic field strength on axis, HL = 0 for the

adiabatic term, and HL = Hmin = H(r,m) = 1-r/R for the nonadiabatic term. We

~nad

cbserve that o (r,8) is an even function of € such that in magnitude

“nad'

laS“ad/ael v o On the other hand sad does not depend on 6 to leading

order in €, since the equilibrium distribution function is assumed

isotropic,
Now.we set AK = h;d + Aﬁad, where
A;d 4mi o T4 - - VI Badexp(iR)]éxp(-iR)
= - f drrzf PR , » (A.15)
2 - ~
Agad BpsoEo © T v onadexp(is)]exp(*iR)

To leading order in €y EHX E'Voad is odd in & and therefore does not

contribute to the integral. Since E“><E'VR = (i/rRo)cosB, we find

. %o n
A;d = T__EE___ [ rar [ de o®dcose (A.16)
B2s £ R o} Ll
P o0 0

To leading order %ad is independent of ® and thus the integral {(A.16)

vanishes, More generally, Aad is negligible when aBad/ae " eoaad, which

X
holds for moderately anisotropic eguilibria with P| ™ Py Thus, AK = Aﬁad



d

To calculate A8 we write

K
ir? (e, %o75) o2 exp i (1-q)0] =

“n
= o

%3 adq (cos6 + sBsinB)cos{(1-q}8] + odd terms
o
and
£ (8 x K*¥0" %) expli (1-)6] =

da -
r T30 0 ar

nad aGnad

= ir2(x ) sin[(l-g)8} + odd terms

d

and integrate by parts the terms involving ac“ad/ae and ac"%%sr.

straightforward algebra we arrive at

T
o w

aad . _2m [ rdr [ ae o"%%c0s (q8)

K Bzg R & o) -
p o oo

Now we substitute Bnad from Eq.{A.14) into Eq.(A.19). Using

jﬁdejH ar = [ arn | ade
H

-T v .
min min [#]

(A.17)

(A.18)

After

(A,19)

(A.20)

where Hmax = H(r,6=0) and BO(A) is the magnetic turning angle of a trapped

particle orbit, we find



H

r 372 arz 1 max
Mg = A;ad - 22n® () (ﬁ) [sfax [ dA I2(x,A)T_(x,A)
Bls o 0 H . q
P . min
T
© ., 8F  u-w, .
x [ dee 2« © (A.2D)
(o] w—w
D
€
(0) ¥ ©
where x = r/ro, Iq(x,A) = [cos(g®)] , and Io(x,A) = (2r/Ro) [ (a8/2m)
_eo
(1-a/m) 8.

In the limit of concentric circular magnetic surfaces, Io = ZK(y2)/m,

reducing to Io = 1 for deeply trapped particles.

Using the distribution function (22) with €. = const, neglecting terms

T (0)

. . T . .
of order eclea, and noticing that w/w, £ un lug ™ €, for isotropic

distributions, Eq.(A.21) can be recast in the form given by Eq.(22) in the

text, where

1 dp
81 3cz a
= - dx —, A.22
Bpa B;(ro) g x IB(X) dx ( )
i X |
3_ g T _fofo (A.23)
I.(x) = —————— , .
B 8eoxq(x) B Ic + sIS
min
AK(&) = - ¥2/2 [1 + wd(w)) (A.24)



: H
1 dxx% dp, ~max 131

QX _a —g9° -

qi{x) dx IH da Ic + sIs Glx,A,u)
&(w) = - e . (A.25)

1 dxx% dpa max I’I0
swm I, T
min
and
~ 1 A872 dz\
Glx,A W) = (1 + 2xe /3¢ ) | oo (A.26)
0 €, t+e w - (eq/x)(Ic+sIs)

with @ = w/GDa and ¢ = E/Ea' The A-integrals in Eqs.(A.23) and (A.25) are
extended to the trapped particle population only. The energy iﬁtegral (A4.26)
can be solved analytically in terms of logarithms and arcotangents, leaving
the radial and pitch angle integrations tc be performed numerically. A

simplification of Egs.(A.22)-(A.268) is obtained when {l-q)} eand s are small,

1

Then, apart from corrections, Iq =1, I,=1 (using [ dy2[2E(y?)-K(y?)] =
0

c” "B
2/3), and de reduces to Eg.(23) in the text. The function AK(G) depends

weakly on plasma parameters. The most significant dependence is on the

{o)

Dat is propertional. This

magnetic shear through the term-IC + sIs to which w

dependence is illustrated by the examples in Fig.1l7.
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Fig.1 Real and imaginary parts of Ag (@0/@pe) =5, Boa €57 Ac{0/

3pa), Where Ay is the alpha particle contribution to the dispersion

relation [see Eq.(21)]. A parabolic g profile inside the g =1 surface with
g(0)=0.8 has been assumed.
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Fig.2 Marginal stability curve in the { §sq» Ana) Plane, for a constant

value of the normalised diamagnetic frequency @y =0.05 and the same

g profile as in Fig. 1. The stable domain lies below the curve. The

normalised quantities §,,4q, §5, and @, are defined in Eqs.(28), (29),
and below Eq.(27), respectively.
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values of 4,4 indicated in the figure. The corresponding stable domain
lies below each curve.
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Fig.6 Stable domain and unstable regimes in the (¥4, .@m) plane, for
édi = 01 .



;{mhd =01
06
- e
05 o
&
§Q’
o4
Q\
&di
0.3F
0.2k Stable
\
\\
HD )
oir N Rhggion Fishbones
W~ ‘IJDa g
] i A A A %
00 00 0.1 0.2 03 04 05 0.6

Bpa

Fig.7 Stable domain and unstable regimes in the (G, Epa) plane, for
fixed Value {’mhd=0°l'
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Fig.8 Graphs of (a) the ratio v/{wl, and of (b) the normalised oscillation frequency,

Wr/ @pe» Of the higher frequency solution of the dispersion relation (2), as a function
of B, for different values of 4,4 (indictaed in the fxgure), @4 =0.1 for all curves.
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Fig.9 Graphs of the normalised growth rate, v/ wy; (solid line)
and of the normalised oscillation frequency —wg/wy; (dashed
line) of the lower frequency solution of the relevant dispersion
relation, in the presence of resistivity y and transverse
viscosity u; (see Ref.40), as a function of B},a The values of
the relevant parameters are: Ay = 0; Wz/Gp, =0.1, Oy = Loyl
/(wy e“’) 4,€,=125x107, and D=E€, /€, = 0.08. Here,
€= S¢ ¢ 2/(47rr wf,), and €,=57 M/m n;,r2 Note that
D (3/10)(T, m;/ Ty m )2 Beos thh Bop=871,(r,) T.(1,)/ B
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Fig. 10 Marginal stability curves in the (AB7, 6,.) plane, where

AB2 =87~ B7 mua» for the following parameter values:

Wai/ Gipo =0.05; &,/ w3y =0.2; 5,=0.6, a/R, =4, and different values

of r/a indicated near each curve. At r,/a=0.3, we have taken

W/ @, =0.05; and @y, /w4 = 0.2, their radial dependence being given

below Eq.(44). The corresponding values of §, assuming £, ;.55 =0.2
are indicated on the scale to the right.
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Fig. 11 Theratio 8,,/f,as a function of the central plasma temperature

T(0), for different values of r,/a indicated near each curve, and for the

following values of the parabolic profile exponents [see Eq.(46)]: 0 =06;
. 0n=l; O';r=3/2..
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Fig.12 Marginal stability curve in the (8,, 8,,) plane, assuming
By mra=0.2 and the following parameter values: wy/dp,=0.05;
@pa’/ Wy =0.2; 5,=0.6; and r,/R, =0.1. The straight lines correspond to
different ratios of 8,/8,, for different values of the central temperature
T(0), and the following parabolic profile exponents {see Eq.(46}]: 0=6;
0,=1, or=",
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Fig. 13 Equivalent of Fig. 12, for r,/R,=0.17, &/ &p,=0.076, and

Bp /03 =0.11, assuming the radial scaling w,,/ G, = (r,/2) 1— r2/a’)*,

@ /Waec(a/r) (1—r2/a®)*, and a/R,=Yi. Note change of scale
compared with previous figure,
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Fig. 14 Real and imaginary parts of the function F(»), defined in
Eq.(49), versus real »*, defined in Eq.(50).
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Fig. 15 Marginal stability curve in the (4,54, Bpa) plane, for @&;;=0and
f=0.1 [see definition in Eq.(51)].
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Fig. 16 Marginal stability curves in the (4,,4q- Epm) plane, for &; =0.05
and different values of p; indicated near each curve.
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Fig. 17 Real andimaginary parts of Ay (@) for different values of g (0).
A parabolic ¢ profile inside the g=1 surface has been assumed.





