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ABSTRACT

The suppression of macroscopic oscillations (so-called "sawteeth") of the
central region of a magnetically confined plasma column is related to the
effect of magnetically trapped energetic nuclei produced by the injection of
rf waves or neutral beams. We evaluate the threshold for, and describe the
process involved in, the transition of m® = 1 modes, which trigger the crash

phase of sawtooth oscillations, to a regime that is shown to be stable.
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In experiments carried out by the JEf machine, the internal electron
temperature relaxation oscillations (the so-called "sawtooth“ oscillations),
whiéh are associated with the excitation of a mode with m¢ = 1, n® =1
poloidal and toroidal mode numbers, have been suppressed for periods of up to
3.2s during high power injection of ion-cyclotron frequency waves (with
coupled power Pre R 4MW) and/or neutral beams (with PypT 2 7MWy [1]. This
observation cannot be explained within the framework of ideal or resistive-mhd
models, even when the stabilising effects of the ion diamagnetic frequency and
of the electron drift wave frequency are considered [2]. In fact, according
to these models, stability would occur either when the value q of the g
parameter on the magnetic axis exceeds unity; or for sufficiently small values
of the plasma poloidal beta and low collisionality. Instead, Faraday rotation
measuréments [3] indicate that q, " 0.7, while high polqidal betas Bp(ro)
often in excess of the ideal mhd instability threshold [4] B?hd are reached
during sawtooth-free periods in JET. Here, ﬁp(ro) = [Bﬂ/Bé(ro)] {<p(ro)> -
p(ro)}, where Bp is the poloidal magnetic field, r is the mean radius of the
g = 1 surface, p is the plasma pressure, and <p(ro)> is its average value
within the q = 1 volume, Specifically we find [5] Bp(ro) > 0.2 at moderate
plasma currents (IP n 2MA), while taking into account the effects of plasma
shaping [5,6], thd " 0.1-0.2. |

7JET discharges which exhibit sawtooth suppression are characterised by
the presence of anisotropic energetic nuclei, accelerated by radio frequency
fields, and/or produced by energetic neutral beam injection (with injection
energy'ginj ~ 80keV)., In preliminary analyses [7,8] it was pointed out that
the energetic t:apped nuclei can indeed play a stabilising role, Possibly the
best experimental clue is p?ovided by "ICRH switch off" experiments [9]. In
these experiments, the stable period is terminated by a sudden interruption of

the applied rf fields (no neutral beams are injected in these cases). A time



delay of the order of 100ms is observed between the rf switch off time and the
collapse of the central electron temperature. This time delay is a finite
fraction of the fast nuclei slowing down time, therefore suggesting that the
loss cf these nuclei is the dominant destabilising effect [10].

Plasma stabilisation by energetic particle populations ﬁas proposed and
analysed for the case of Astron [11] and ion ring devices [12], and for the
ELMO bumpy torus [13]. In axisymmetric toroidal configurations, stability
against ballooning modes was theoretically shown to improve in the presence of
magnetically trapped fast nuclei (see e.g. Ref. 14). For the case of the
m¢ = 1 mode, energetic nuclei were initially considered [15,16] in order to
show that they can destabilise a branch of the m® = 1 dispersion relation. In
fact, following the analysis of Ref. [2], the relevant dispersion relation in
the absence of.suprathermél particles is

(D)

—_ = - 2
wlu — ug;) mhd’
where u is the mode frequency (in the frame of reference where the equilibrium

ExB drift vanishes at the q = 1 surface), u = [- c(dpi/dr)/enBr]o is the

di
bulk ion diamagnetic fregquency aﬁ =T and Yehd is the growth rate found by
the ideal mhd approximation [4). When Yohd < iwdiI/Z, Eg. (1) yields two
marginally stable roots. By introducing the effects of finite electrical
-resistivity, the one with the lower frequency becomes unstable [2] and is
believed to correspond to the mode responsible for the crash-phase of sawtooth
oscillations. The higher frequency mode {w=wdi) instead can be driven

unstable [15] by an "effective viscosity" arising from the resonance between

this mode and the trapped energetic nuclei with bounce averaged magnetic drift

frequency wé;) equal to w. This resonant interaction is most effective when
- . - . (o) . . . ‘

f

wdi ~ th, with Wy the characteristic value of wy, ' over the distribution o




the energetic nuclei.

The "sawtooth-free" regimes in JET are generally characterised [6] by
Imdil % rmhd < th, while the ratioc between the transverse pressure of the
trapped energetic nuclei Py, and the bulk pressure p can be as high as the
inverse aspect ratio €, = rO/Ro. In this case, as shown by the derivation in

the second part of this Letter, the dispersion relation (1) for modes with

frequency u < aDh is modified into

%o,
[w(g—wdi)] = 1(Tmhd - H w), (2)
where
W
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s, = T4 (ro) is the dimensionless shear parameter, wy VA/ROJB, and vy
B/(#ﬂmini)% is the Alfvén velocity. Acceptable roots of Eq. (2) must satisfy
the condition Tuhd ~ H Re(w) > O for the corresponding eigenfunction to be

spatially regular [15]. Purely oscillatory modes are obtained from (2} for

' T w?, '
gepn =z-mhdf, _di} (4)
cr W 4y
di mhd
At H=H w=7v,./(1+H? )% < w,. and 71 - Hu =7 [1 - (1 +
cr’ mhd er’ N Tdi mhd mhd
H;;)—%]. As H is increased above fmhd/wdi’ only the lower frequency root



satisfies the condition Yohd Hw > 0. Stabilisation arises becauserenergy
must be spent to perturb the energetic trapped nuclei when their magnetic .
drift veiqcity isﬁlarger than the mode phase velocity. With [4] Yoha ™
mAeé[Bé - (thd)z], the stability criterion (4) for BP > thd‘can be rewritten

as

w
, “Dh
P ¥a3

ST

0 0
Bph>cx"R—B (5)

where a is a numerical factor of order unity which depends primarily on the q
profile. Condition (5) depends on the density of the energetic nuclei and on
their spatial profiles, and, since i, = 6%, is independent of their mean
energy €h' It is consistent with the plasma parameter values (Bph A 0,05, é%
n 100keV, aDh/wdi ~ 3, Bp " 0.2-0.3, and R/r_ ~ 6-7) of the regimes where
sawtooth oscillations are suppressed in JET, In addition, when off-axis ri
heating is applied, the profile of Pln may not be sufficiently peaked to
fulfill condition (5) and this can explain why sawteeth are difficult to
suppress in this case,

As the value of H is increased and the marginal stability condition is
fulfilled, a term representing the mode particle resonance w = mDéo) has to be
added on the r.h.s. of Eq. (2). 'Specificaily H is to be replaced by
HIl + 1 g(wR/ﬁDh)], where W = Re(w) and g(wR/aDh) depends on the velocity
distribution of the energetic nuclei. For the model given by Eq. (13), g
reduces to (wR/ﬁDh)3’3. With the addition of the resonant contribution, the
lower freguency root of Eq. (2) is damped.

However, the restriction to modes with frequency w < aDh ceases to be




relevant if H is increased above a second threshold value. A "macroscopic
stability window" is thus found [7]. In fact, beyond this second threshold,
anAunstable mode with w ~ aDh can be excited [16]. The second threshold
depends on the equilibrium distribution of the energetic nuclei, but generally
it involves values of H considerably larger than HCr in Eq. (4).

The conclusions given above do not take into account the effect of the

small but finite electron resistivity. When this is included, the relevant

dispersion relation is (see Refs. [2] and.[15])

- m(1 + igy) L TLQTLI/A (6)

¥ .
[wlw-w,.)1" =1 [y
di mhd 8 TI(Q+5)/4]

2 = 4 - -1 3 : = 2 ;
where Q? = iw{w wdi)(w w*e)/(wA en), with €, = ne so/(én r, wA) the inverse
magnetic Reynolds number. In the experiments cof interest, en is typically
10-7 - 10-8, The parameter Tyhg C&° become [5] larger than the characteristic

103 s ot d 0 = — : 173 -
growth rate wA EG cf resistive m 1 modes, while wy Eﬂ { Iw*et % iwdil’

with Wy = [(Tec/eBrn)(dn/dr) (l+l.7lne)]O and Ng™ dlnTe/dln n. The disper-

sion relation (2) is recovered from (6) to lowest order by taking IQ] > 1. In
this limit, treating the effect of resistivity as a perturbation, we find that
the mode-particle resonance overcomes the destabilising effect of resistivity

when

3(!1]

A -1 (7)

2(}'mhd - HwR) Hup g > (5/2) Eﬂ w3 (wp - &*e)

At H = Hcr' Eq. (7) reduces to wdi/(en1 3 wA) R (w for gluw

pn/¥ai’ r/¥py’

W )3cz . .
3" (wR/th) .- For larger. values of wdi/(en wA) we find a range in H where

both roots of Eq. (2) are stable. This is illustrated in Fig. 1 where the two

roots, as obtained from the numerical integration of the eigenvalue problem



leading to Eq. (6), are followed in the complex frequency plane as a function
of H for twe different values of mdi/(enf’3 wA). The oscillation frequency is
reduced when H is increased above Hcr' As a consequence, the mode damping due
to the resonance becomes weaker. A similar effect occurs for values of Yuhd
below Wy en1’3, and thus the dispersion relation (6} does-not‘yield complete
stabilisation when Tohd = 0. However, in this limit and for wdi/wA > 2€ﬂ1’3,
the viscous dissipation resulting from bulk ion collisions effectively

replaces the resonant damping and ensures stability [17], independently of the

presence of the trapped energetic nuclei.

A problemvremains for more realistic values of JET experimental para-
meters, corresponding to ﬁhe dashed curves of Fig., 1. 1In this case the
instability is not completely suppressed even though the ideal mhd growth rate
is strongly depressed. However one should bear in mind that in this case the
occurence of magnetic reconnection is necessary and that the linearised mode
description breaks down for rather small amplitudes, corresponding to a width
of the maénetic island of the order of the mode transition layer. Since this
layer becomes of the order of the ion gyroradius, the mode amplitude for which
the linear stability analysis breaks down is very modest. Another point to be
considered is that the set of equations that we have adopted to describe the
possible occurrence of resistive modes may not be adequate, given the low rate
of collisionality of the regime of interest.

The main analytical steps which lead to the conclusions we have given are
now-outlined. We assume the ordering Py, Noep. In addition, since we limit
our considerations to a population of trapped energetic nuclei, we have Pilh "
€ Pn° The dominant compénent of the Lagrangian displacement is represented
by g = i(r) exp(- iwt + iP) where P = [ - 8, [ and @ are the poloidal and
toroidal angles, respectively. The total momentum conservation equation is

written in the form




nm, — = — VeIl + 1 (BXB + Jxﬁ), ' (8)
i = g 5= 2=

where the pressure tensor Il contains the contributions of both the background
plasma and the energetic nuclei. Equation (8) can be reduced to an equation

in Er using a standard procedure [18]. Then we expand tr in powers of €

~ ~

To lowest order in €, ve find Er = 0(-x) EO, where Eo is a constant, X =
(r—ro)/ro, and ©(x} is the Heaviside function. To the next relevant order, we

find I15;18] for x << 1, i.e. approaching the g = 1 surface,

~

dEr _ AH + AK(w) g

o)
dx ﬂsox2

The parameter A, " O(eO Bp)z, which is derived e.g. in Refs. [4], [6] and

H

[19], is proportional to the mhd energy functional OW and is such that AH >0
mhd . .

when 3p > Bp . The parameter AK “ O{Eo Bph) represents the contribution of

the energetic nuclei and is expressed [15,20] in terms of their perturbed

perpendicular pressure Blh(w)

4y 23 %o T dgo - - l.
Aglw) = = ———— [Tdr 2 [ = [e; x k*¥p;; ()] exp(iut ~ i), (9)
B s E o -1 2%
po "o o
where 5“ = B/B and k = (5“°V)E”.‘ The solution for £ _ given above, which is

valid outside a small layer arcund x = 0, in a region where the inertial and
finite ion Larmor radius being contained in Eg. (6) are unimportant, can be
matched with the relevant asymptotic solution within this layer. Then we

arrive at the dispersion relation

o, )1 = du, Dy ()] (10)



of which Eq. (2) is a special case, showing that Tohd = wAAH.

We derive gih(w) from the perturbed distribution function %h neglecting
effects related to the presence of a radial equilibrium electric field.
Solving the linearised Vlasov equation in the drift kinetic approximation, }h
can be conveniently split in two parts: ¥h = %ﬁd + }Ead. The adiabatic part
. ad _ _ %, . ey . . . .
is %h =, El VFoh’ with Foh the equilibrium distribution function of the
energetic trapped nuclei, For w < Wpp s with Wy the fast nuclei bounce
frequency, and neglecting finite banana orbit effects, the non-adiabatic part

is }nad : smad
h

to lowest order in €, fh exp(-iwt+iS}, where S = ({-q9) and

g T

w-w oF
fgad . *h £ oh [cos(qﬂ)](O) ’ (11)
Ro MHw(O) 8
Dh

with (8FD/Bé§m£h = - EHXVFOh°VP/(thh), and €= mhv7/2. The superscript "(o}"
indicates particle orbit averaging. The phases of %id and }gad differ by a
factor S-P = (1-¢)8, as in the considered frequency range %gad must be
constant to lowest order along the trapped particle orbit, i.e. EH°V}Ead = 0,

The parameter A, is also split in two terms,

K
_,ad nad
}\K(m_) =N 7 AK (w)

where

ad ad

A T i §4] cos8

K = — 2 ©ar [ de 1h (12)

A;ad BI.2>oso Rogo ° - ﬁzid cos{gb)
and Blh = (mh/Z) Jd3v vi Ah.



The perturbed perpendicular pressure Blh of the energetic nuclei depends
rather sensitively on their equilibrium distribution function Foh' For the

present analysis, we take

372 n (r) 172
Foh =(mh ) h exp (— f—)é (B") (A - )}, (13
26, K(1/2)¥n 6; or

where A = (vl/v)zBo/B is the pitch angle variable in velocity space, BO is the

value of B on the axis, BO/B = 1 + (r/R) cos8, and K(x) is the elliptic
integral of the second kind (X(1/2) = 1.85). For simplicity 65 ig taken to be
a constant value Eh " 100keV. This distribution function represents trapped
energetic nuclei with a magnetic turning point at GO = /2. It can be used as
a rough model for the anisotropic energetic nuclei tail which is formed during
ICRH heating in a toroidal magnetic confinement configuration, since trapped
nuclei having the tips of their banana orbits on the rf resonant layer along a
vertical chord across the centre of the plasma column tend to absorb relative-

ly more power from the launched wave compared with the other nuclei.

For w/GDh< 1, AK(N) becomes simply

. y W _w ¥
M) = A (0) + Xp —— + xK’res + 0 ( ) C{14)

“bh YDh

ad nad

where AK(O) = At A (0) and hK,res represents the co§tr1but10n of the

resonant nuclei.

We observe [21] that le(O)/A;dI {1-4q, In this Letter, we treat
AK(O) as a correction to AH. When the simple analytic form of Foh given in
Eq. (13} is used, the coefficient of the linear term becomes A} = -

K

(W/BSO)EOBph which corresponds to the expression for H entering Eq. (2).




We note that a distribution function which includes passing particles, as
would be the case during neutral beam injection, yields an expression for AK

similar to (12), where h;d is contributed, with opposite signs, by both

passing and trapped particles, and A;ad by trapped particles only. A near
cancellafion of h;d occurs for Ph| g Py As a result, at constant energy
content of the fast nuclei, A, is smaller. This can explain why higher power

K

levels are required to suppress the sawtooth oscillations with quasi-
tangential beam injection.

In adopting the expansion (14) for AK’ we have disregarded the
possibility fhat modes with m/anh 31 become significant [16]. The reason for
this is that the actual distribution function th is expected, unlike
expression (13), to have a spread in the pitch angle variable A. Preliminary
results from our numericalAanalysis [71 indicate that the threshold value of
Bph for the onset of modes in this high freQuency range is significantly
larger than the value required to stabilise modes with w < aDh' It was the
discovery of this "macroscopic stability window" which induced us to first
report [7,8] the possibility that sawtooth oscillations are suppressed by the

presence of energetic trapped particles.
Useful discussions with D. Campbell, D.F. Diichs and J. Wesson are
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Fig. 1 Path in the complex plane of the two relevant roots of the dispersion
relation (6), for increasing H and for the following set of parameters:
Y= 0ai=20we/ 3= Gpn/3 (all curves); wai/wa=4.5€,"" (solid curve);

wai/ wa=1.5€,""* (dashed curves). The solid curves show complete
stabilisation for values of 1.2H,, = H < 3H,,. The roots with higher values
of wg violate the condition ymus— Hewr } 0 (needed for their spatial
regularity} at the indicated x-points..
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