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Abstract

In relating the density scrape-cff layer thickness Rn to D), account
is taken of two aspects of the JET configuration: (a) the poloidally-
varying cross—section of plasma flux tubes in the scrape-off layex, and (b)
the different limiter configurations — discrete/continucus.

It is found that when poleidal variations are dominated by
configuration, rather than fluid flow effects, the density scrape—off
length at the outside mid-plane, Kn {6 = 0) is given by the theoretical
relation :

eghy 20 g (0) for q (0) > q.*(0)
0 nR +a) ‘g *(0) for q_(0) < q *(0)

for the case of N equally-spaced, -rail limiters each of plasma-wetted
height hW located symmetrically around the outside mid—plane.' f is a shape
factor of order 0.5 which varies slightly with plasma shape and the other
symbols have their usual meaning. 9 is the normalized pitch of the field
at the limiter, rather thanm a safety factor: qS(O) = r(0) B¢(0)/R(0)Be(0),
qs*(O) = ZWa/hWN.

_ For qS(O) 2 qs*(O) all field lines passing through the outside mid-
plane strike a limiter, hence the set of discrete limiters acts as a
complete toroidal (belt) limiter. The first expression also applies to the
latter type of limiter. For qs(O) < qs*(O), Ah is predicted to be
independent of q and dependent on N.

Edge measurements of Kn(O) in JET made by Langmuir Probes and
limiter~viewing cameras are used to deduce edge values of Di for olmic
discharges, over a range of conditions, I = 1-=5 MA, n_= 0.7 - 6 x 1019

m~3. Generally the values are found to be close to D, = 1019/Ee n?/s, that

1
is, Intor-Alcator scaling.



1. Introduction

The cross—field diffusion coefficient Di in the plasma edge can, in
principle, be evaluated from measurement of the density scrape-off length,
Kn. One has approximately that}

M= (Lr)l/cs)!ﬁ _ (M)

where L is the connection length {limiter spacing of 2L along E) and Cq is
the ion sound speed. It will be shown here that in a non—c¢ircular tokamak
such as JET employing discrete limiters, the usual expression for L

L=%R_ q, ’ (2)

can be significantly in error (Rm is the plasma major radius, dg is the
value of the safety factor on the Last Closed Flux Surface, LCFS§). As a
result, uncertainty is introduced in the inference of Di from hn.

The value of Dl is of interest in several contexts:

(a) In many circumstances it is possible to describe the complete plasma
profile n{r) by a model which assumes diffusion plus a small inward
pinch velocity \F typically

- .p 4n
Mr) = DL I + Via

- 2
with Vin = ZDi t/a

where I' = plasma flux density cross-field

a = plasma minor radius

This gives the result for an edge—fuelled plasma:

¢, 0 .
n(r) = 311— O+ A exp [1 - (x/a)?] (3)

where ¢HU = neutral hydrogen fuelling rate at the edge (H/sec)

A iz

q - @verage neutral hydrogen penetration, typically ~ 0.1 m.

Equation (3) is strictly only valid if DL is not a function of . I1f

Dl(r) then eqn. (3) is still approximately correct, provided the value

of D, near the edge (a - liz < ¢ < a) 1s employed. That is, the



(b)

(c)

(d)

entire density profile is dominated by the edge value of DL'
The radial profile of impurity ions is also often described? by the
equivalent of eqn. (3) with ¢ 0 replaced by ¢0 , the impurity influx
form the edge due, e.g., to sputtering of llmlters, and AH

replaced by Ki; ,» of order 1 cm. Thus the impurity levels throughout,_
the plasma are largely controlled by edge parameters, including Dlin
this anomalous (not neo-classical) transport model.

The achievement of high performance modes of tokamak operation such as
the H-mode, characterized by improved energy confinement, may be
dependent on reductions of D near the edgea.

Planning for the introduction of new components into the scrape-off
layer, SOL, e.g. R¥ Antennae, Pumped Limiters etc. requires knowledge
of DL since the additional components change I. and thus the value of
hn in their absgnce, effecting the thermal and particle loading.

It is therefore of interest to measure Di over a range of plasma

conditions - plasma current I , plasma density 5, magnetic field B . It is

also of interest to measure Dl near the plasma edge and to establish

whether it differs appreciably from central plasma values.

2.

Connection Lengths

2.1 Toroidal Belt Limiter

Geometrical quantities are defined in Fig. 1. For the case of a
complete toroidal belt limiter located at the outside mid-plane,
8 = 0, the flow symmetry point is at © = 7 and the connection length

is
" B(6)
L = £=Odl j §'T§_ r(9) ae (4)
where B _(8) = poloidal field on the LCFS

B(9)

It

total field on the LCFS.

One has the actual q, q¢, on the LCFS

! r(0)d6
s =77 (O 7 5_(O) )



and so approximately

L~mRoq . _ (6)

One may note that 4y is generally bigger than qcy

2
21 a“ x B¢o

q s %0 @)
cy Rm “b I

plasma elongation.

Hl

where k¥ = b/a

2.2 Discrete Limiters on JET

Until 1987 JET had ub to 8 discrete limiters with dimension-
(poloidal height) h = 0.8 m and (toroidal) width w = 0.4 m located on
the outside midplane at R = R{0) = 4.16 m.

Consider a set of N discrete limiters located symmetrically
(toroidal direction) around the outside mid-plane, each of poloidal
height h, see Fig. 2. There will be next—neighbour shadowing of
limiters when

Zn(Rm-+ a) ¢(0)
LR X Ol @)

(The toroidal width of the limiters can be neglected when w << h
B, (0) |
ﬁufﬁj’ as is general). In this situation the set of discrete limiters

wlll act, in effect, as a continuous toroidal limiter.

We may define a normalized field-line angle at the outside
midplane by qS(O):

_ r(0) B (0)
q (0) = iTﬁ)‘B_(—OT (9)
where R(0) = Rm-+ a
r(0) = a.

It may be noted that ¢ (0) has the form, although not the
function, of a safety factor.

Then criterion (8) can be re-written as

q4(0) > q *(0) (10)



2ma

where q *(0) 5

(11)
is the critical value of qS(O) for the discrete limiters to a~t as a

continuous toroidal one.

7 For illustration consider the example of JET discharge 3050 at
t=6sec R =2.98m, B = 3.44 T, T, = 3.6 MA, K = 1.445,

Qs = 4.505). Table 1 gives wvalues for B (9) etec. on the LCFS. One
thus finds that for this case qS(O) = 1,23 i.e. much smaller than q¢s,
which is, in fact, a general result.

The geometrical height of a discrete JET limiter is 0.8 m;
however, due to the poloidal curvature of the plasma and the fact that
the limiters are vertically straight, the plasma-wetted height hw is
less than 0.8 m. In some circumstances the information is available
from the limiter-viewing camera on the height h of the wetted area.
Otherwise h can be calculated from the measured value of A (0)
together w1th information on the plasma curvature at 9 = 2. The
latter is =~ ak, typically, on JET giving hw = Z(ZaKln(D)}z. For
purposes of illustration we take this to be 0.4 m in the following.
It should, however, be calculated individually for each discharge
condition.

For the case of Table 1 we thus find that for N > 2ma/
[hqu(O)} = 14 the discrete limiters will act as a toroidal one. For
N < 14, there will be field lines which do not strike a limiter on
their first pass through the outside mid-plane, but will require
additional toroidal/poloidal transits. For rational values of q¢
there will be some field lines which never strike a limiter.
Therefore, a wide range of connection lengths will exist for different

. flux tubes in the same SOL. In such a situation one might expect to

observe substantial “structure” in the S0L. For example, for some
values of q g an edge probe would be on a field line for which L = =
but with a small change in q, L would drop to = TRq. This might be
expected to result in sharp changes in values of density etc.
measured by the probe. Although JET has been operated with N = 4 and
8, such structure has not been observed in probe characteristics.

In Ref. 4 it is suggested that gq-related structure could be
smoothed out by (poloidal) cross—field transport between adjacent flux
tubes, some of which terminate on a limiter at the next mid-plane pass
and some which miss. Poloidal EXB drift velocities have been inferred
from probe measurements on JET4 of a magnitude approaching 103 w/s.
The poloidal distance which must be traversed in order to "short” out
very long connection lengths is a fraction of h. This must be

achieved in the parallel transport time 7T

g = L/cS = an/cS = 1 msec.,

=5=



A value of V ol - 103 n/s would be adequate to achieve such a shorting
effect, although if it were poloidally constant only a twist effect
would result, rather than a smocothing one.

For simplicity, we proceed on the assumptlon that all
parallel-field plasma flow in the S0L terminates at the outside

'mid-plane for N "large enough“. (It turns out, however, that this

assumption does not effect the final result see below). Thus the
collection of discrete limiters continues to act as a toroidal limiter
and L = anS. The question of how small a value of N still satisfies
this agsumption requires more information on poloidal transport.

For N sufficiently small one could approximate the collection of
discrete limiters as a partial poloidal limiter. Averaging over the
resonances which occur because of the periodicity of both the magnetic
and limiter structures, one has that the fraction of a full poloidal
ring spanned is

g = NhW/ZKa (12}

and omne could take the connection length to be approximately

L = 7R/g (13)

272 aR/Nh,_. C(14)

n

4 acts as a toroidal limiter for the case
4 eqn. (13) holds), this defines an

from eqn. (10) namely heff = 1.48 m.

If we assume that N
of Table 1, (while for N <
effective limiter height heff

In Appendix I a theoretical relation is found between Kn(O) and
Dl allowing for a non—circular plasma and limiters which are either
continuous (toroidal belt limiter) or a set of discrete rails. It is
found in agreement with simple modelling that A « Di s, however, the
constant of proportionality is smaller. For a set of discrete
limiters a regime is identified where hn is independant of g
(neglecting resonances between the periodicity of the limiter
structure and the magnetic field structure). The possibility that
non-geometrical factors play a role in the relation between An and Di
is examined in Appendix IT; it is concluded that such effects do not
appear to be strong for the JET cases considered.

Examples of D, from hn




We consider a number of examples of JET discharges, and assume that
n{6) = constant and A(®) = 1. From eqns. (I.8), (I.12) and (I.14) we have

(D, fn (R_+ a) q_(0)/c_ for q_(0) > q *(0)
2000 = ( o AT s ° ° (15)
( D, fm (Rm + a) qs*(O)/cS for qS(O) < qs*(o)

}.._

The f factors are calculated in Table 2 from computed magnetic
profiles during the current flat—top; ohmic discharges only.

Only top probe data were available for discharge 3752. For this
discharge hn(O) was inferred from the measured hn(80°) = 9.2 cm using
Ar(80°)/Ar(0) = 2.7 for this discharge, hence KH(O) = 3.4 cm. TFor the
other cases the values of KD(O) were taken from the mid-plane probes.

It may be noted that the values of D,y inferred using equation (15) are
2 - 3 times larger than deduced using the simpler formulation employed in
reference 4.

Rather than calculate qS(O) for each discharge, the simple straight
line fits to qcyl Vs qS(O) and q, vs qS(O), Fig. 7, were used. Figure 8
gives valuesg of D, obtained using eqn. SIS) for a number of ohmic JET
discharges, displayed as a function of n, and 1 . The discharges examined
were restricted to ones defined by the outer limiters (X-point and inner
wall discharges were excluded). '

The quality of probe data for the low current discharges is not good
which may account for the large scatter in Di values for low He and low
I,
P

The limiter was viewed with a CCD camera employing a filter for Ha
light. The footprints provide a measure of KP. Since the camera technique
does not provide a measure of kT’ for simplicity AF was used in egn. {15)
in place of An. The i.r. resulEs in Fig. (8) are for four individual
discharges followed in time as n, varied.

These edge values of Dl may be compared with a number of measurements
made by other techniques on JET - for the main plasma:

(a) A spectroscopic measurementi? of D, = 1 m%/s was made in an ohmic
discharge, I_ = 2.8 MA, BT = 3,.4T, Ee =2 x 1019 n3, from the
temporal decay of a Ni XXVI {central plasma) line after a metal
injection.



(b) A reflectometer measurementi? of DL = 0.8 m2/s was made for an ohmic
discharge, Ip = 3MA, BT = 2.9T, ;é = 2.3 x 10!? w3 based on the rate
of radial propagation of density pulses associated with sawtooth
oscillations. '

{(e) Values of Dl(r) were obtained*" from the density build-up induced by

low level ICRF heating (2 MW), in a I = 2MA, By = 2.3T, Ee =2 x 101%

w3 plasma, giving

T

D, (r) = 0.33 (1 + 2r/a?)

valid for 0 < 0.8, which gives D, = 0.7 m?/s.

i
For comparison purposes these values of Di are also plotted in Fig. 8.
It would appear that for JET olmic discharges the edge values of Di do not
differ significantly from the average values, at least on the basis of this
limited comparison.

Aside from the I_ = 1MA data, which was characterised by poor probe
signal/noise and wide scatter in DL’ most of the values of DL approximate

to INTOR-ALCATOR scaling = 101° n, 1,

‘Since- operationally, Ee and I  tend to be coupled, the results of
Fig. 8 can also be viewed as evidence for a DL(I ) dependance. Finally,
Y of edge plasma temperature Te(a) on JET show that Te(a)
decreases with increasing n,; thus the results of Fig. B can also be viewed
as evidence of Bohm—~like diffusion.

probe measurements

4, Conclusion

A theory is presented for inferring values of the cross—field
diffusion coefficient Dl in the plasma edge from measurements of the
scrape~off layer thickness. The theory allows for discrete limiter

- geometry and non~circular plasma cross—sections.

Applied to data from ohmic JET discharges defined by 4 or 8 outer
limiters, the model gives values of Dl which are close to Di = 10195;'1
i.e. Intor—-Alcator scaling. These edge values are also close to the

measurement of central Dl made on JET.
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Table 1 SHOT # 3050 t

= 6 sec Rm = 2.98 m B¢m,= 3.44 T
POINTS ON LAST CLOSED FLUX SURFACE @ﬂ

(R, Z) = co-ordinates of points on LCFS

[deg-
rees

rA8 A8

Ad
[deg]

[deg]

IRAD

(m]

4.110

4.018

3.839

3.356

2.894

2.512

2.171

1.93

1.813

1.786

0.573

0.986

1.506

1.679

1.606

1.301

0.848

0.374

0.56
0.56
0.49
0.37
0.31
0.30
0.47
0.63
0.80

0.82

29°

49°

76°

93°

106°

122°

141°

162°

180°

1.13
1.18
131
1.55
1.68
1.67
1.53
1.35
1.21

1.19

0.60]0.067
0.4610.064
0.7310.175
0.50{0.193
0.3910.206
0.4310.194
0.4510.192
6.44 0.167

0.3710.142

39°

38°
103°
113°
121°
114°
113°

98°

83°

39°

77°

180°

293°

414°

528°

641°

739°

822°

2'73

2.55

6.03

6.11

5.30

4.32

3.10

2.60

1.79
2.2§
2.68
3;11
3.56
4.0

4.37

2.73

5.28
11.31
17.42
22.7
27.0
30.9
34.0

36'6

JE8S = 1.40 (0 < © < 180°)

B R
P
rAB
ROBWIZB§?
) —

= 4.57
compare q = 4.505

from full magnetic

-10-

code analysis.




Table 2 Dl from A
- - -

i

JET Discharge
I, [va]
n {10195 3]
By [T]
N

B _
A (0) [en]
b [m]
q_*(0)
q_(0)

T(a) [eV]
£

D, [m2/s ]

w n £

0.47

7108

oo L b
vt O

1.45

0.37
2.6
1.7
100
0.54
0.56

7126

1.7
3.5'

1.45
1.2
0.41
2.3
2.1

80
0.54
0.79

8928-36
3

2.2

2.9

8

1.45
1.0
0.37
2.6

1.4

40

0.54
G.35

~11-
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Appendix I. Expressions for Kn(Dl)

where

I.1 Toroidal Belt Limiter

For non—circular JET discharges the radial separation between
flux surfaces, Ar(0), is dependent on poloidal angle with separation
being greater at the top/bottom of the torus than the mid-planes.
(Ar(8) also varies somewhat with minor radius, but this effect is not
significant over the SOL thickness). This variation is plotted in
Fig. 3 for the example of Table 1. Clearly this effect by itself will
cause hn to strongly vary poloidally. We assume here that in the
absence of any other causes of poloidal variations (such as poloidal

variation in D Dl(e)) that

L!
A (8)/A_(0; = Ar(9)/Ar(0). . (1.1)

It is also evident from Fig. 3 that the poloidal width, w(8), of
any flux tube is also dependent on 0. 1In addition, the cross— sectio-
nal area of the flux tube also varies with 6, A(®); Fig. 3.

Consider an elemental area of plasma surface 0A, (not to be
confused with A(6)) its normal parallel to the {small) radial
-
direction, and aligned with B, see Fig. 4.

B, (9)
5,(9)

SA = w(8) r(6) 46 {(r.2)

For a full toroidal limiter at & = 0 one has from the balance between
particle flux cross~field into the flux tube and parallel flow at the
sound speed into the limiter:

J‘aw B¢(0) ' In
o ' (9 =0, r) w(0) dr = D ——-6A
=0 B{0) 6=0 1 dr
i) ifﬁs—-w(O) is the projected height of the flux tube
perpendicular to B.
ii) I'' (6 =0, r) the flux density at 8 = 0 is assumed to vary
exponentially with a characteristic length A_(0) (rather
than the more accurate [(K (O)_1 + (ZK (0)'l '1) i.e.
T(6 =0, 1) = n (0) cexp [“r/A_(0)].
1iii) a = distance to the wall., It is assumed that a_ >> Kn(O)-

~13-



iv) The SOL influx term, RHS, assumes that ionisation within the
SOL is a negligible source.

The foregoing leads to

0) 7 an
[n(o)cs 507 1A (0) w(0) = je=0 D, 5= OA (1.3)

One may allow for possible variation hn(e) due to factors other than
field line compression, such as fluid flow effects, which generalizes
eqn. (L.1) to:

A8 |
n _ Ar(8)
xn(o) = 7509 A (8). (T.4)

Where A{®) allows for sueh additional effects on hn.

Assuming that DL does not change as the separatrix is crossed radially, and
allowing for the possibility that density varies poloidaliy:

dn Q)
i %ﬁ(@j .5
plus the relatioms for Ar(9) and w(©) which may be shown to be:
Ar(8) R(0) B, (0)
Ar(0)  R(0O) B (%) (1-6)
w(9) R2(6) B_(9)
- . (1.7)
O x2(0) B _(0)
one obtains '
A2(0) = D, r(0) B(O) = n(8) 1 w(8) r(H) 40 (1.8)
n

A
¢, BO) | n(0) (B W(O) H0)
where DL is constant, or alternatively may be considered to be the
poloidally-weighted average according to the integral in eqn. (I.8).
The fact that BQ(G) R(6) = counstant has also been used.

One may consider the example of a circular discharge:

R(B) = R, + a cos 9

_14_



(0) = a

B¢(9)/BP(9) const. (1.9)

It

Also assume n(9) constant and A(8) = 1, thus xn(e) = constaﬁt. One

obtains

hn(o) = (DiL/cS)%

_ B(0) R )
with L= m q. (my) G ) (I.10)
| : n
a (Rm-+ a) B¢(0)
where qcy = .2 BP(O) (I.11)

m

from egn. (7).

Example: Rm = 3m, a =1 m,
B¢m = 3.4T, = B¢(0) = 3.4 x 0.75 = 2.55 T,
=3 MA & B (0) = pr/Zna = 0.6 T»%B=2.62T
and L = 0.58 = Rm qcy’ which is close to the simple
estimate, eqn (2).

=
=l

Turning to the case of non-circular plasmas with a full toroidal,
mid-plane limiter, we initially takern(e) = const. and A{©) = 1, and
define '

_ 1 mow(®) £(8)
£ =7 fo T ORIO] a8. (1.12)

The value of f for the specific example of Table 1 is found to be
0.54. Thus for this specific case

0.54 D, ™ r(0) B(0)
cg BP(O)

2
AZ(0) (1.13)

1]

0.54 D, = (Rm-+ a) qS(O)/cS. (I.14)

Strictly, each discharge condition should be separately anmalysed to
evaluate the integral in eqn. (I.8) for the actual LCFS shape, also
using the particular values of r(0), B(0) and B _(0). It turns out,
however, that the integral differs little between discharges; see
Table 2. One can then generalize by using q¢ to replace the

-15-



parameters in eqn. (1.13). For the example of Table 1 it is found
that

3.63 r(0) B¢(O)
q, = - . ' (I.15)
¢ (Rm + a) BP(O)

Assuming that B¢(0) = B(0) one then has the generalization that
2 =
kn(O) = 0.14 Dw (Rm_+ a),q¢/cs. (1.16)

One may note that the effective connection length Leff

Leff = 0.4 (Rm + g) q¢ (I1.17)

is substantially smaller than the simple wvalue, eqn. (6). 1In the case
of Table 1’»Leff/L =0.14 (R_+ a)/Rm = 0.19. Accordingly, the value
of Dl inferred from measured values of Kn(O) is underestimated by a
factor of ~ 5, for this case, using the simple relatiocn.

I.2 Discrete Limiters

For N > N___ = 2na/hqu(0) the discrete limiters act as a
continuous toroidal limiter and the result of eqn. (I.12) apply.

For N ax >N > Noin = 2Ea/(heff qS(O)) the discrete limiters act
as a toroidal limiter s¢ far as connection length is concerned. In
calculating Kn, however, one must allow for the fact that the flux
tube terminating on the limiter receives (radial) cross—field influx
from the main plasma over a larger plasma surface area than that of
the flux tube. That is the w(8) in eqn. (IL.2) should be replaced by
w(8) h'/hw, see Fig. 1

~ n! B (0) 2n(R, + a)
where = (I.18)
hw B¢(O) th
27ma
= e —— L) . (I.lg)
N g_(0)

This means that the expressions for hﬁ(o), equns. (I.13) and
(I.16) should be increased by the same factor h'/hw. Introducing this
to eqn. (I.13) we find

(0.54) 272 a(R + a)p;

¢ Nh
s W

A2(0) =

(1.20)

~16~




and thus one obtains the result that An does not depend on g for this
regime. That is for qS(O) < Zna/NhW there is no q-dependence. For
the example of a = 1.16 m, N = 8, hW = 0.4 m this gives qS(O) < 2.28.
Making the assumption that qé(O) « q¢S one has from the example of
Table 1, Uy < 8.

It should not be thought that this transition to a q-independent
value of hn at small g is a result of the assumption of poloidal
transport between flux tubes. Consider the situation for no poloidail
transport and the case of qS(O) =% q:(O), say. For this q half the
field lines do not strike a limiter omn the first pass. Thus the wmost
probable (although not average) trajectory is one of length 2w Rq
(rather than T Rq which applies for q > g*). Since 27 Rq =
2MR (Bq*) = TRq* one finds the result of a gq—independent hn without
invoking poloidal transport (at least for the most probable
trajectory). This same conclusion can also be reached by considering
the integral of eqn. (I.3) around the toroidal direction. That is,
consider the entire scrape—off layer to be unravelled and flattened to
a slab. The RHS would then give the total particle outflux of the
plasma while the LHS would give the total flux to the limiters. This
integration contributes the same factor to each side of the equation
for a continuous (or effectively continuous collection of) limiter(s)
but‘aS(O) < 2'na/NhW the LHS only contributes for a fraction of the
total toroidal circumference. This fraction is readily shown to be
hw/h', giving eqn. (I1.20) again.
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Appendix II.  The Question of Poloidal Density Variations n(0) and A(D)

One expects that the plasma density along the separatrix will vary for
several reasons. In the simplest picture, that is constant-temperature
inviscid flow along a duct of constant cross—sectional area, one assumes
constant total pressure which implies that as the flow accelerates from
stagnation at the symmetry point, its density drops by a factor 0.5 when
the sound speed is reached (at the sheath edge). This density reduction
can, however, be offset by a number of factors, and even reversed:

{a) Cowmpression of the cross-sectional area of the plasma flux tube as it
approaches the inside mid—-plane in toroidal geometry, may be expected
to cause a density increase.

(b) The plasma cools somewhat as it accelerates, and so the constant
pressure assumption impiies a density increase. This effect can be
enormously enhanced by strong ionisation recycling near the limiter
particularly if Te is low (thus causing poor heat conduction along ﬁ)
and/or when flow friction is strong.

In short, the neglect of n(8) and A(8) variations is dependent on the
S0L being "simple", defined® as one in which the limiter is the dominant
energy and particle sink while cross—-field transport from the main plasma
is the dominant source. Local ionization of neutrals within the 50L, for
example, must make a small countribution to particle balance, if the SOL is
to be considered as simple; when local ionization is important Kn

1>6  Griteria have been deriveds, which use S0L values of n,T and

increases
L to indicate whether the S50L is simple or not’’8, For ohmic discharges on
JET the SOL can thus be identified as being siwmple for much of the
operating range, although the situation is marginal for the highest
densities. Consider, for example, the question of ionization within the

S0L. On JET the edge temperatures“

are rather high compared to those
measured in smaller tokamaks, with Te at the LCFS ranging 30-200eV. In
~this situation direct ionization of the re-cycling D, becomes important
(rather than dissociation into fast, Frank-Condon, atoms followed by atomic
lonization). The penetration distance of a thermal D, molecule is only ~ 1
cm at the highest edge densities measured in JET, ~ 1019 w3 at the LCFS,
and assuming the maximum ionization rate. This distance 1s to be compared
with values' of Kn(O) which range down to about 1 cm at the highest I  and

n,, indicating that ionization within the SOL is not negligeable in this
case.

One can also consider the experimental information on this question.

Such data is very limited on JET. 1t consists of comparisons between
Langmuir Probe data taken at the top of the torus, © = 80°, and at the
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outside mid-plane, © = 0. Data of this nature is only available for the N
= 8 limiter configuration. Figures 5 and 6 give an example of such data.
The basic probe measurement is of ISAT’ the particle flux to the probe,
Fig. 5. In this figure the spatial scale for the two probe positions has
been corrected solely for the compression of the magnetic field lines
between the top of the torus and the outside mid-plane. As can be seen
this results in near coincidence of the two sets of data. '

The primary quantity of interest, however, is the plasma number
density n_. The usual relation between n_ and I} is
e e SAT

IgAT 0.5 n.ce (I1.1)
where n, is the density far from the probe (about one probe collection
length, some metres for the JET top probe). The factor of 0.5 in eqn.
(II.1) is due to the acceleration of the ions by the pre~shéath electric
field created by insertion of the probe. It is due precisely to the
acceleration effect described earlier which results in the plasma density
just near the probe being approximately one half of the far field demsity.
If a probe is immersed in a plasma which is already flowing toward it, then
the factor of 0.5 is to be replaced by a larger value, approximately unity
if the flow is sonic. Such is the case for the probes mounted near the
outside mid-plane i.e. near the limiter. Thus the densities inferred from
the IEAT measurements are different by about 0.5 for the two probes on the
same field line, Fig. 6. One may note, however, thdt the densities
extrapolated to the LCFS (at R__ =~ Rpl 0) are less different. This
experimental result is therefore not quite compatible with the simplest
plcture that ln(e) and n{®) are constant, but it is rather close. 1t is
also worth noting that this experimental result implies a very much simpler
SOL structure in JET than has been reported for poloidal limiter tokamaks

“such as Alcatorg. In the latter device enprmous poloidal variations have
been observed with xn(e) varying by 3 - 8 times with © and the density (at
the same minor radius) varying by even greater amounts. Smaller poloidal
variations in A (9) and n(6), of order 2, have been observed in the edge
plasma of TEXTOR10 operating with a set of movable rail limiters
approximating to a poloidal limiter.

It must be acknowledged that the probe data for JET is very limited,
consisting of only two locations (by contrast the Alcator data is based on
80 probe locations, poloidally distributed). It is quite possible that the
apparent sgimplicity of the JET SOL is misleading and would be disproved by
the use of data from additional probe positions. Assuming for the present,
however, that the apparent simplicity 1s real, one may consider one obvious
explanation: poloidal limiters interrupt communication between SOL flux
tubes and thus facilitate the development of strong asymmetries. Consider,
for example, the consequences of a poloidally varying Dl<9)' For a
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pelridal limiter, particularly, at high q, each S0L flux bundle has a
relatively gmall poloidal excursion, A8, over its length. Thus since Kn ~
(DLCS)L/C5)2 one could have relatively strong variations in xn(e). For a
toroidal limiter, however, each flux bundle has a poloidal excursion A8 = =
from the stagnation point. While the source strength for particle influx,
Di(a) %%3 would then vary along the leungth of the flux tube, this does not
cause Xn to vary with 0 (assuming pressure coustancy along an
{uninterrupted field line). Camera viewing of the limiters indicated
next-neighbour shadowing of one limiter by another. The mid-plane probe
was not located in such a shadow but had a clean "view" around the torus.
On T10, long distance shadowing has been observedli, that is, shadows
resulting from multiple-toroidal-transits by flux tubes. If such long
range shadowing occurred in JET it might be expected to be evidenced by
abrupt changes in the probe signals as g varied slightly. Such structure
has not been observed on JET and thus it is postutated, as discussed
- earlier, that.poloidal cross—-field mixing obliterates long range shadows on
JET. Clearly for cases where multiple-toroidal transit shadowing persists,
the extraction of DL values from measurements of An is more complex than

outlined here.
Finally, with regard to A(9), Fig. 5 implies that A(8) = 1 for this

rather limited data set since hn(o) = hn(80°) when fielcd-line compression
is allowed for.
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Fig. 1 Geometry of non-circular toroidal plasma.
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Fig.2 Limiter spacing.
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Fig.3 Poloidal variation in flux tube cross-section for
tube lying on Last Closed Flux Surface for JET discharge
3050 at ¢=6s
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Fig.4 Incremental area of flux tube surface.
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Fig.5 Comparison of particle flux density

measured by top Langmuir probe (00) and mid-

plane probe (2). Discharges 8928, 8931-6.
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Fig.6 Comparison of plasma density measured

. by top Langmuir probe (o) and mid-plane probe

(O using I'* g,7=n,ec,.). Discharges 8928, 8931-6,
I,=3MA. B, =238T. £,=2.2x10"m7, Indicated
scrape-off lengths, A, are for mid-plane.
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Fig.8 Values of D, obtained from measurements
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