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STABILITY OF THE IDEAL m = 1 MODE IN A TOKAMAK

M.F.F. Nave and J.A. Wesson

1. Introduction

The observation of a very fast collapse phase in JET sawtooth
oscillations [!] has led us to reconsider the stability of the ideal m = 1
mode . With a resonant surface in the plasma this mode is unstable in
eylindrical geometry [2] but can be stable in toroidal geometry [3].

The condition for toroidal stability was calculated by Bussac et al. [ 4]

in terms of the parameter

2“0 R2 r, .
Sp = ——— S . {-dp/dr) r? dr (1)
N 2 .
r1 B¢ e}

where R is the major radius of the plasma, B¢ the toroidal magnetic field; r,

the radius of the q = 1 surface and p is the plasma pressure. For current

profiles of the form

3=301 - eraye]’ (2)

they found that the m

r, < 0.3 and 0 < v ¢ ”'ch ties in the range 0.2 to 0.3. Sawtooth

oscillat;ons are observed in JET for valuss of Bp much smalier than the

1 mode is stable for Bp < ch where, for values of

critical value.

However there are thecretical arguments [5] and experimental results [6}
which suggest that the profile of the safety factor g might be flattened
inside the q = 1 surface.

The oalculétion desbribed below uses the procedure glven by Bussac et
al. [U] and recalculates Bpo For current profiles which, outside the q = 1

surface, take the form given by equation (2) but are flattened to a chosen

degree inside this surface. The eritical value of Bp ia determined as a

function of the safety factor on axis, qo, and the radius, r1, of the g = 1
surface, It is found that the value of Bp required to produce instability is
much reduced and for q, < 1 it is found that the eritical #_ -+ 0 as 1-qo+ 0.

These results lead to the possibility that the ideal m = 1 mode could be

the cause of the raplid sawtooth collapse. The detailed implications of this



result for the theory of sawtooth oscillétions are explored elsewhere [5,7}.

Here we describe the linear stability calculation.

2. The Cylinder

Although the tokamak problem has features which are fundamentally
different from the c¢ylindrical analogue it is useful, both as an introduction
and to give a perspective, to recall the theory of the m = 1 mode in a
eylinder. '

| The potential energy associated with an internal m = 1 radial displace-
ment & in a cylindrical plasma of length 2nR, with a radius a such that the

aspect ratio € = a/R << 1,1s given by

a Be2 de .2 1 Be2
sH = 21:2R5 [ (-2 (&5 + L {ppr - (1-a) (1+3q)} &2] rar
0o 2u dr R? 2u
o} : o
2r2 B 2 (2 .
N B } [0(52)(p 25) + 0(g") gz] rdr
N R o) dér

~ where Be and B¢ are the azimuthal and axial magnetic fields, p is the plasma

pressure and q = rB /RBBQ If there is a q¢ = 1 surface in-the plasma, the 2

¢

leading order term is minimised to zero for the displacement shown in Fig; 1.

W then becomes -

2

2WZ502 1 Be 1
§W = —— jr [rp' - (1-q)(1+3q) ] rdr. (3)
R 0 2uo '

which gives instability for the conventional case of p' < 0 and g < 1 in the

region r < r1.

3. Summary of Large Aspect-Ratio Calculation of &W

The +toroidal calculation is wunfortunately very complicated. The
analysis was first carried out by Bussac et al. [4], is given in a detailed
form by Connor and Hastie {8]. |

As in the oylindrical case the leading order, e?, terms in $§W are
minimised to zero by the funection shown in Fig. (1) but there are now

additional toroidal terms in O(e") which invalidate equation (3).



Physically there are three factors determining stability. The first is
the normally destabilising effect of £Lhe' pressure gradient which enters
through Bp defined in equation (i). The second is‘the stabilising effect of
shear arising from the difference betwsen g and unity in the regionr < r

1
and appearing as

2
3 = ? J 1(-1---- 3) r? dr. (1)
r.* Jo\g

The third contribution comes from the interaction of the cosd dependence of
the m = 1 part of the displacement to the cosg variation of the equilibrium
arising from the toroidal geometry. This leads fo a cos 28 coupling to the
m = 2 part of the displacementQ

The resulting potentlal energy takes the form

B 2 ST
§W = 2m2R =2 g2 (——) (ao *toa, Bt oo, sz)/a3 (5)

where the o's represent the contributions described above in the form

0, = = 1s2(c*3) (b%3) - 6s(b=1)(c+3) + Bs(b=e) + $(b-1)(1-c)
a, = - 85(c¥3) (6+3) - 6(b=1)(c+3)

oy = - 4(e43) (543)

ag = 16(b-c)

The, as yet, undefined quantities b and ¢ arise from the m = 2 couplingQ

They are determined from the solutions c¢f the Euler equation

_ 2 (2) 2
14 [Pa(l L % I (m2-1) (- - L 5{2) =0 withm = 2.  (6)
r dr q m dr q m

The solution of equation (&) in the region 0 < r < vy satisfying 5(2) = 0 at

r = 0 allows the determination of



(2)
b= L% e
( 2) -

(2}

and the solution in the region r > r, satisfying g = 0 at the radius

1
of the q = 2 surface (r = PZ) if this surface lies in the plasma, or other-

(2)

wise g =0 at r = a, determines

{2)
C=<—1£§)-ig- . " (8)
£ dr ro= r1

Thus for a given p(r) and q{r) the quantities Bp’ s, b and ¢ are
determined by equations (1), (4), (7) and (8) and stability is determined by

the resulting sign of 8W as given by equation (5).

b, Stability Calculation for Flattened Profiles

The case of current profiles j = jo(1 - r2/a?)" was treated numerically
by Bussac el al. [H]. In the limit r1<<a they obtained the analytic result
that the m = 1 mode is stable if

1
g < (13 )é
PNy
that is Bp.g 0.3. We shall now give the calculation for the case of
flattened current profiles.

The j and q profiles used are illustrated in Fig. 2. The j profiles

have the form

Co_ s oz V ) a
J JC(E r2/a?) roo T (9)
2B s
Rgq : ° r? ‘
o} 1
where
.. 2B¢ (2 - 1/q )
Q

R (1 - r%2/a2)v

and the corresponding q profiles are




r2/a?

1"2 2—1/q —n2 2\J+1 ' ’
L. o ({izr7/a’) - - 11 - r2/a?)
a? w1 (1-r12/a2)v
q
q = ° r<r (12)

1 - (- g )r?r*)

We note that whereas in the case of the unflattened profiles qo is a function

of r, for a given v,-with the present profiles qO and r., are independent.

1 1

"We now proceed to caleculate the coefficients b and ¢ for the case r1<<a.

It is convenient to transform equation {(6) using

(2)

b = B (m-q) ¢ (13)
to give
1a g%y . 4 v - _mgiigﬁ_f =0 (14)
r dr dr r? Be(T-q/E)

Expanding ¢ in orders of (r1/a)2, Y = ¢O + ¢1 ey wo is determined by

dy
1d 0y i g =0

r dr dr r

and the solution may be written

=
1

(r/r1)2 _ r<r {15)

and

=
it

(r‘i/r*)2 ro>r (16)

The next corder term w1 satisfies

dy |
Ll b -y - (17)
r dr dr r2
where
v = dj/dr 0y
Be(1—q/2)



and the soclution of equation (17} is

1

Up?

2z
¢1=£_Ildrl-
b

[ ¥r? dr (18)

=

Using equations (9)-(12), (15} and (16) the appropriate limiting expressions

for V are
r 2
¥ =-16(1-q) r<r
o} N i
1 .
and :
8ur12
V=- - r>r..
a?r® !

The corresponding solutions of equation (17) given by equation (18) are

4
= w1=—£(1-q)(1-) r<r
.0 1
‘ 3 T,
and
1"1 z
v, = 2v(—) ro>or..
. a

It is now possible to determine the required coefficients b and ¢ defined by ] |

equations (7) and (8) from the relation

-3
|&

ry!

= — + 2q'r - 1 r=r
5(2) dr v 1
. derived from equaticn (13). Thus using
w_‘ } wol + wii
L wo + wl
we obtain .
=1 + 2 (1 - a) (19)
3 0
and
r 2
¢ = =3+ by(h) o+ 4(1-q ). (20)
a



In the same approximation equation (H) gives the remaining unknown

and allows the determination of 6W from equation (5).

s = (1-’qo)

1
6

appearing in this equation are found to be

%3

_ 22 (4o
o 3 (? qo)
r L)
1
1= 0(—)
. a
r12
> = = 64[1-q  + v(—)]
a
= 64

The condition for instability, &W < 0, may therefore be written

that is the m

where

and

Ag¥* being the value of 1

profiles.

8W < 0 and the condition for ihstability of the m = 1 mode is then

1 mode is unatable if

o]
2 > _——_
Bp ™
1 1
8 >( 3 389 \% (a < D
P\ 1un aq + 2aq*
Aq =1 - qo
r1 2
AQ¥® = X (—)
2 a

For the case where qO > 1, there still being a ¢ = 1 surface at r

sp >0 (qo > 1)f

(21)

The coefficients

(22)

R which would exlst with no flattening of the

:r'_i’

(23)




In the limiting case of no flattening, that is Aq = Aq¥, inequality (22)

takes the form given by Bussac et al. [4]

%
6 > ( 13)

P \1ay
Graphs of the results for several values of y for r1/a = 0.3 are shown in
Fig. 3. '

Discussion .

From equations (22) and (23) and Fig.3 it is seen that whereas
conventional g-profiles require a substantial'sp in order to be unstable to
the ideal m = 1 mode, a flattened g-profile allows instability for a low and
even zero BpQ' The significance of this is that the ideal m = 1 mode, which
had previously been ruled out as the cause of the sawtooth collapse, can now
be considered as a candidate for this role. It would also appear to offer an
explanation of the short collapse time obsérved in somé experiments.

In the calculation described here it was assumed that 1 - qo was not as
samall as r1/R. This allowed use of the approximate leading order eigen-
function § = constant forr < r, and £ =0 for r > r

1 17
derived results for flatter profiles with 1 - qO £ ri/R, the £ functions used

In order to use the

must be regarded as trial functions. It is then known that the true eigen-
functions would give a lower value of SW. Thus the derived stability
criteria can be regarded as necessary conditions for stability and the plasma
will actuzlly be more unstable than the conditions imply.

The'significance of these results is more fully explored in references
[5] and [7] where the relation of the results to experiment is discussed and
the implications of the modification ¢f the eigenfunction for small 1-qo are

described.
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Figure 1 E{r) which minimises leading order contribution in &w to zero.
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Figure 2 Jj(r) and q(r) profiles showing unflattened profile with 1 - q{0) =
AqQ* and flattened q profile with 1 - gq(0) = Aq. )
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Figure 3 Graphs giving the initial values of B_ as a function of q{{) for
v=1,2and 4. The m = ! mode is unsgable above the curves.





