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Abstract

The power deposition profiles during minority ion¥eyclotron heating are
analysed in large tokamaks by using the global, tofoidal-wave code LION. For
tokamaks with large aspect ratio and with circuiar cross-section, the wave is
focused on the magnetic axis and can be absorbed there by cyclotron
absorption when the cyclotron resonance passes through the magnetic axis..
The power deposition profile is then essentially determined by the Doppler
broadening of the ion~cyolotfon resonance. For equilibria either -
non-cireular or with a small aspect ratio the power deposition profile
depends also on the strength of the damping. In this case the power
deposition profile can be expressed as a sum of two power deposition
profiles. One is related to the power absorbed in a single pass, and its
shape is similar to that obﬁained for large aspect ratio and eircular
cross-section. The other profile is obtained by calchlating the power
deposition in the limit of weak damping, in which case the wave electric
field is almost constant along the cyclotron resonance layer. An heuristic
formula for the power deposition is given. The formula includes a number of
calibration curves and fuﬁgtions which has been calculated with the LION code

for JET relevant equilibria. The formula enables one to calculate the power



deposition in a simple way when the launched wave spectrum and damping

coefficients are known.

1. Introduction

Ion oycloﬁron heating by the fast magnetosonic wave has recently become
an often used supplementary heating method in tokamaks. The absorption of
the wave due to ion eyclotron heating occurs in the neighbourhood of the
cyclotron resonances or their harmonics. Since these resonances may inter-
sect the whole plasma volume it is important to determine where on these
resonances the power is absorbed. To know the power density is important for
determining the distortion of the velocity distribution of the heated ions
which in turn will determine energy transfer to electrons and bulk ions, the
modification of the absorption, and the enhancement of fusion reaotiviﬁy in
case the heated species undergoes fusion reactions. To calculate the power
deposition one has to solve the wave equation for the magnetosonic wave,
which is a rather camplicated partial differential equation, in a non-trivial
gecmetry. In tokamak geometry only the toroidal angle becomes an ignorable
coordinate. The wave'field has then to be calculated by numerical methods.
Two numerical methods have been adopted for this problem; ray tracing
pechniques [1,2] and global wave calculations with finite element methods
[3-5]. Each method has both advantages and disadvantages. With the global
wave calculations one can, in principle, solve the wave equation with
appropriate boundary conditions and iﬁclude mode conversion in a
self-consistent way. However, the method suffers in that it requires large
computer space and long computing times to obtain sufficient accuracy, €.g.
the calculation of the power deposition with the LION code [4] for a mesh
having 5000 cells takes about 40 seconds on a CRAY!1 and needs 130,000 words

of central memory storage. The disadvantage of the ray tracing technique is



much more fundamental. It is not valid close to the plasma boundary and
gannot treat cavity resonances.

In this paper we analyse what determines the power deposition profile in
a tokamak plasma where the wave is launched from the low field side, using a
global wave code. A simplified model for calculating the power deposition is
given for the case where the power is absorbed along one ¢yclotron resonance.
In Section 2 a formula for the power deposition is given for the case where
the cyclotron resonance passes through the magnetic axis. In Section 3 a
formula for off-axis heating is given for a particular shape of the plasma

oross—-section.

2. Analysis of the power deposition
To calculate wave field and power deposition during ion cyclotron
heating we use the global wave code LION [4]. This code solves the wave
equation which in the 1imit of zero electron mass and zero electron and ion
gyro radius takes the following form in toroidal geometry
w?
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in a coordinate system described by the unit vectors

'éN = vw/iv¢|, EA = &ux &y» Oy - B’O/BO.

ei, Eiy dencte the components of the dielectric tensor in the limit of zero
gyro radius in a local cartesian coordinate system where the z-direction is
parallel to the magnetic fieldf For the calculation of gi and Egy we -
approximate kz by n/R, where n is the toroidal mode number and R is the
distance to the axis of the torus. Z denotes the Fried-Conte function. No
phenomenclogical damping as mentioned in Ref. [H] is being used in this
paper. The second term in the dielectric tensor appears due to the finite
equilibrium current along the magnetic field [6].

For the power deposition we study the Poynting flux through a magnetic

surface
P(s) = §= f (ExB) » dI . (3)

Instead of using the magnetic flux, ¢, to label the flux surfaces, we
use a variable, s, such that s « V. The variable s is zero on the magnetic
axis and is normalised to 1 at the plasma boundary. The advantage of using s
is that it is nearly proportional to the minor radius of the plasma.

The power density averaged over a magnetic surface, p, is obtained by



differentiating P(s) with respect to the enclosed volume, V,

dv '
' & (4)
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In Fig. 1 we give (dV/ds)/Rés for an elliptic JET equilibrium, where RO is
the radius of the magnetic axis. For this equilibriﬁm the radius of the
magnetic axis, the aspect ratio, the ellipticity and the triangularity of the
plasma boundary are 309cm, 2.6, 1.4 and 0.19 respectively.

In this section we restrict our study to the case where the ion
cyclotron resonance passes through the magnetic axis and when ion cyclotron
absorption is the only absorption mechanism.

When comparing the results of the LION code for different equilibria we
have found that the power deposition profile for equilibria with circular
cross-section and large aspect ratio differ in the functional form from that
for other equilibria. For equilibria with large aspect ratio, circular
cross-section and a low minority concentration, the plasma boundary acts as a
mirror, focusing the wave field on the magnetic axis, as can be seen in Fig.
2a. For equilibria with a non-circular cross-section or with small aspect
ratio, the regular field structure is destroyed as can be seen in Fig. 2b.

In case of large minority concentrations when a cut-off appears on the high
field side of the cyclotron resonance of the minority species, the wave field
will also spread along the cyélotron resonance. This appears also for the
small toroidal mode numbers when dispersion due to the "poloidal mode"
nunbers becomes important. The lack of focusing of the wave field for these
cases leads to a large field along the entire cyclotron resonance and hence
the power deposition becomes less peaked. Figure 3 shows the magnetic
surface averaged Poynting flux P versus s for equilibria with an aspect ratio -

of 10 but with different ellipticities during minority heating of hydrogen in



deuterium with flat density profile and the following parameters: n, =
3x10*%em™, ny = 7.5x10*°em™, Ty = 10keV, f = 33MHz and n = 30, where n is
the toroidal mode number. Similar results are obtained for circular
cross-sections when the aspect ratio is varied. The large aspect ratio
approximation is found to be valid for-equilibria with aspect ratios larger
than 5.

For an antenna located on the low field side and for equilibria having a
large aspect ratio and circular cross-section we use the following ansatz to

deseribe the flux surface averaged Poynting flux, 51(8),
?1(5) = 51(1){1 - exp - (s/s,)? n 21}1/[1 - exp [~ (1/s)? &n 2]] (5)

This ansatz is found to fairly well describe the power deposition when the
wave is focussed on the magnetic axis and when the minor radius is large

compared to a wavelength. The half width, Sy is calculated with the code.

In Fig. Y4a we plot 8, against a parameter d = nJQ;IZS/er, which determines
the Doppler broadening of the cyclotron resonance. <v,*> = 2kT/m is the
parallel velocity squared of the heated ions averaged over the velocity
space, w/21 1s the wave frequency and r, is the minor radius at the midplane
on the outboard side. The calculations have been performed for various
heating scenarios, densities, temperatures and toroidal mode numbers:
hydrogen minority in deuterium with a concentration of 4% and helium-3
minority in deuterium with a concentration varied between 4% and 1b%; gentral
deuterium density Npg = B.10%° to 1.102°m~®, two different density profiles;
central minority temperature TO = 5 to 10keV, two different temperature
profiles; toroidal mode number n = 10 to 160; aspect ratio 10; major radius
RO = 10 to 20m; central magnetic field B0 =1 to 2T. In all cases the wave

fregeuncy was tuned such that the cyclotron resonance of the minority



passes through the magnetic axis. In Fig.4a the half width S, was obtained
in two independent ways from the comparison between the results of the LION
code and the ansatz Eg.(5): firstly from the radius s = s% inside which half
the power is absorbed and secondly from the derivative of the Poynting flux
at s = s%. The error bars in Fig.Ha 1ink together both evaluations of Sqe
Thus it provides an estimate of how well Eq.(5) oan'approximate the power
deposition profile. In spite of the numerous different cases studied the
rather narrow grouping of the points evicences that S, essentially depends on
d for a given antenna. The half width Sy however, depends also on the type
of antenna. Throughout this report we have used the same antenna located on
the low field side having a constant unidirectional curfent. The angular
extension of the antenna is from 40° below the midplane to 40° above the
midplane measured from magnetic axis. The antenna is described in Ref.[4].
Equation (5) satisfies that dP(0)/ds = O which is necessary in order to have
a finite power density on the magnetic axis (see Eq.(4) and Fig.1).

For equilibria with non-circular cross-section or small aspect ratio the
flux surface averaged Poynting flux can no longer be approximated by Eq.(5)
since_the reflected wave is not focused on the magnetic axis. To study such
cases we focus our study on typical elliptical JET equilibria and cases where
the absorption occurs through a single ion cyclotron resonance passing
through the magnetic axis. When analysing the magnetic surface averaged
Poynting fiux we first study.two idealised cases; strong damping and weak
damping. We shall later show that the case of finite damping can be
expressed as a linear superposition of these two idealised cases.

By strong damping scenario$ we mean close to 100% damping of the wave
during a single pass. Such scenarics are obﬁained for minority heating of H

at its fundamental cyclotron resonance in a high density D-plasma,

n = 10'* om=2, with a ratio of ng/ny ~ 0.04 and Ty - 10keV. 1In this case



the global wave calculation with the LION code verifies the ray tracing
picture. The wave is focused on the centre of the plasma where it is
absorbed. The position of the focal point will depend on the shape of the
cross-section and does not necessarily coincide with the magnetic axis. In
case the distance between the focal point and the magnetic axis does not
exceed one wavelength the power deposition can be approximated by Eq.(5).

As in the circular large aspect ratio case, 8, Was obtained from calculations
with the LION code for a wide variety of parameters: 3 different equilibria

(all of JET-type) were chosen, with a central deuterium density L 4.10'°

5 to

to 102°m~3, two different density profiles; minority temperature To
20keV; toroidal mode number n = 15 to 70; aspect ratio 2.4 and 2.6,
ellipticity 1.4 and 1.68, triangularity 0.19 and 0.4; major radius RO = 1.5
to 6m; central magnetic field Bo = 1 to 2T; 2 different current profilés.

The computed values of S5, are reported in Fig.4b. As in the large aspect
ratio case we conclude that s essentially depends on d, hence Eq.(5) is a
sufficiently good ansatz for the power deposition profile. Moreover, the
comparison of Figs.lda and 4b shows that the dependence of 8, on d is the same
in both cases.

In the case of incomplete damping of the launched wave, the coupling of
the wave by the antennae is characterised by cavity resonances. These are
recognised by oscillations of the coupling resistance. The presence of
cavity resonances leads to spatial oscillations of the power deposition
depending on the position of maxima and minima of the wave field along the
cyclotron resonance. For heating scenarios in large tokamaks with at least
moderate damping, the antennae couple to a large number of eigenmodes. The
osecillations of the wave field along the cyclotron resonance, when summing
over the toroidal spectrum, then become small. For such situations one does

not need to know the exact wave field at each point of the cyclotron



resonance but it is sufficient to know the value averaged over a wavelength
to calculate the power deposition.

To study weak damping scenarios we choose minority heating of H in a
D-plasma with a low H/D ratio ~ 107, Weak damping is possible fo obtain
with the LION code for this scenario since the code does not calculate
absorption at the harmonics of the cyclotron resonahoes. Nu absorption
oceurs then at the second harmonic of the cyclotron resonance of deuterium,
which otherwise could have been fairly strong. In the weak damping case the
structure of the wave field varies considerably for small changes in
equilibrium parameters or toroidal mode number, depending on which eigenmodes
the antennae couple to. We have not found any correlation‘between the
toroidal mode number or coupling resistance with the power deposition. We
then take the mean value of the flux surface averaged Poynting flux for same
randomly chosen toroidal modes within the launched wave spectrum, such that
the contribution to the mean value for each separate mode is small. This is
justified when the antennae generate a wide toroidal Fourier decomposition
and the absorption coefficient is not too small so that the antenna couples
simultanecusly to several eigenmodes. We define this mean value P,(s) as the
expected resulting Poynting flux. The power deposition is related to dﬁzfds,
which depends bn the geometry, the average amplitude of electric field
component rotating with the ions along the cyclotron resonance and the local
absorption. |

We now intend to construct an ansatz expression for the power deposition
in case of weak damping. The idea is fo separate the effects of the
absorption strength and profile from those of the geometry and structure of
the wave field. The justification to do so comes from the assumption that
for weak damping the struéture of the wave field will not change much when

the absorption strength and profile vary. We expect only the amplitude of



the wave field to change with absorption. We shall check this assumption
later. We fipst define a parameter which we call the local absorbitivity
a(s). The local absorbitivity is the single pass absorption across a
corresponding resonant layer in a plane slab geometry having the same

densities and temperatures as those on the magnetic flux surface s

w/Im( E¥E)dx

a(s}) = 57 (6)
X

where the equilibrium quantities may only be inhomogeneous in the
x-direction. The magnetic field is perpendicular to the x-direction. The
integration is performed across the absorption layer and PX denotes the
x—canpénent of the incident Poynting flux and * denotes complex conjugated
quantities. By dividing the power deposition with the absorbitivity a(s) we
can then separate the dependence of the fieid and geometry from the

absorption. We call this quantity f(s)

C, dP,
f(s) = Pz(.]) a(s) ds (7)

1 -

where C., is a normalisation factor such that f_a(s) f(s) ds = 1. 8ince P,

2 0
is obtained as the mean value of several toroidal modes for which the
position of the maxima and minima of the electric field differs, f(s) is then
related to the averaged magnitude of electric field rotating with.the ions
along the cyclotron resonance and to the geometry, and does not depend on the
position of the maxima and minima of electric field.

The procedure to obtain the desired ansatz for weak damping scenarios is

the following. First, we cempute f{s) according to Eg. (7), where dP,/ds is
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calculated with the LION code, for various density profiles and geometries.
We shall see that f(s) mainly depends on the density profile but not much on
the geometrical parameters of the equilibrium. Then our ansatz will be
dP,/ds obtained from Eq. (7) with the calibration curves for f(s) computed
before.

In Fig. 5 we shoﬁ f(s) as calculated with the LION code for a few
different density profiles having constant nH/nD ratios: The shape of f(s)
can be understood by analysing the electric field in a quasi- homogeneous
cylinder for which we decampose the wave field as exﬁ [i(wt - kZz —-% B)]T
The resulting ordinary differential equation describing the wave equation can

then be solved with the WKB-method for small k andm, i.e.

w o
¢? “rr

mz
kg's 77 <<

then given, for r » 0 andn_ # 0, by E, = EO/[r%ne%]. Near the centre where

. The amplitude of the radial electric field component is

r = 0 and near the cut-off at the plasma boundary where n = 0, the WKB method
is not valid and the electric field stays finite. We note in Fig. 5 that
f(s) goes to zero when s goes to zero. This is merely a consequence of the
fact that the power density p (Eq. 4) is finite, hence dP,/ds (Eq. 7) must go
to zero when s goes Lo zero.

By varying a{s) along the cyclotron resonance, e.g. by multiplying the
antihermitian part of the dielectric tensor by an arbitrary function g(s), we
have verified that £(s) stays roughly constant as we assumed for the
construction of our ansatz.‘

We have also calculated f(s) for equilibria with a circular
cross-section with the same aspect ratio and found that the shape of f(s)
does not vary significantly. We conclude that f(s) is not too sensitive to
the equilibrium parameters except to the density profile.

To determine P, from Eq. (7) when f(s) is known requires only that we

-1}



know a(s) up to a proportionality factor. For heating at the cyclotron
resonance of a minority species with low concentration a(s) is proportional
to the minority density. For heating at the second harmonic cyclotron
resonance; m=2wca,a(s) becames proportional to nakiTa, where a denotes the
 heated species; k, is the wave number perpendioular to the magnetic field;
naand Ta are the density and temperature of the heated species.
For the general case of medium strong absorption we make the following

ansatz for the flux surface averaged Poynting flux, P(s)
P(s) = §O[a P,(s) + (1 - a) P,(8)) (8)

where P,(s) is given by Eq. (5), ?O is the total power §(s=1) and P,(s) is
given by Eq. (7) where we choose the constant C, such that ff(s)a(s)ds = 1.
The parameter o has then to be determined.

To determine a we try to decompose the flux surface averaged Poynting
flux as calculated with the LION-code aecordiﬁg to Eq. (8). Since an
arbitrary function cannot be described by the sum of the two prescribed
functions P, and 52, such a decomposition can in the best case only be
approximately cor‘rectf For s >> s; we have 51 = 1, we can then define af{s)

as

?(s)/ﬁo - P, (s)
a(s) = ~ (9
1 - P,(s)

where P(s) and P_ are results of the LION code, whereas P,(s) is obtained
according to the ansatz formula for weak damping, Eq.(7) with the calibration
curves of Fig.5 for f(s).

The function a(s) oscillates because Eq.(8) does not exactly describe

=12~



the code calculations. We take o as the mean value of a(s) for s >> 5o
From code calculations with LION we have found that o depends on the damping
of magnetosonic waves. To quantify this dependence we have to define a
damping coefficient. However, to.define a damping coefficient in toroidal
geometry is not trivial. Instead we calculate the damping coefficient in a
plane slab geometry with the parameters related to that of the midplane with
the 1-D global wave code ISMENE [7].

The damping coefficient, a1gy is obtained by decomposing the global 1-D
solution into an incident wave of amplitude I and a reflected wave of
amplitude R. The damping coefficient is then defined as arg = 1 - R2/I?. We
note here that I and R are the amplitudes that one would obtain after an -
infinite number of passes if they were calculated using the WKB
approximation. The coefficient arg can be related to the damping coefficient
for a single pass, g by caleculating the incident and reflected waves for an
infinite number of passes. If interference between the waves is neglected,

one obtains

ag =1- /1 - arg - (10)
The power absorbed at its first pass, P_, can then be related to the incident

wave field I for an infinite number of passes

— - - 2
P, = (1 -1 arg ]aIS 12, (11)
By computing P{s) with the LION code for plasmas having constant density
and temperature profiles, so that a(s) is constant along the cyclotron
resonance, and varying the minority concentration, we find a relation between

a and aIS; The calculated points are indicated by crosses in Fig.6. We note
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here that when calculating the damping coefficient aqq with the ISMENE code
this coefficient also becomes sensitive to the equilibrium which makes it
more difficult to establish the relation between g and aIS' In Fig.6 we have
also plotted the fraction of the power absorbed at its first pass (continuous
line). We conclude that this curve approximates o rather well. Implying
that the power absorbed according to Eq.(5) is the wave power absorbed when

the wave first passes the cyclotron resonance. We thus approximate o with

a =~ apg (1 - /1 - aISJ, (12a)
or
@~ ag (2&1S - aé], (12b)

depending on how we calculate the damping coefficient.

Thus, the determination of the flux surface avéraged Poynting flux in
toroidal geometry, for any scenario where the cyclotron resonance passes
through the magnetic axis, has been reduced to the 1-D global computation of
the damping coefficient, argy and to the calculation of local absorption
coefficients a(s). The 1-D global calculation of arg can be replaced by the
evaluation of the single pass damping coefficient a by means of Eg.(10).
The proposed formula is Eq.(8), with o given by Eq.(12), ?1(3) by qu(S) and
the calibration curve of Fig.4 for S ?2(5) by qu(T) and the calibration
curve of Fig.5 for f(s).

The model has been tested for a large number of heating scenarios with
the LION-code and the comparison is good. We note here that in cases of weak
absorption one does not expect the formula to agree too well with the

calculated magnetic surface averaged Poynting flux, due to the earlier
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mentioned oscillations of the power deposition due to the global mode
structure. In the case of weak absorption one should compare the formula
with the magnetic surface averaged Poynting flux averaged over different
toroidal modes.

Thus when comparing the code result with the model we calculate the flux
surfaced averaged Poynting fiux given by the formula for a specific toroidal
mode number and compute with the LION code the Poynting flux for a few
similar toroidal mode numbers to show the scattering in the Poynting flux due
to variation of the field structure. To compare the-formula and calguiations
with the LION-code we have chosen three heating scenarios which have rather
different power depositions but the same density profiie
0.55

nj= noj(j - 0.9s%)

density profile is typical for JET discharges. The first case is fundamental

where j denotes electrons and ion species. This

ecyclotron resonance heating of H in *He plasma with the following paramefers,

nH(o) = 2x10tem ™3, nHe(O) = 10'%cm™?, nc(o) = 1,07x102em™ 3, £ = 33MHz and

H
lnl = 30 where the damping coefficient aISis calculated with the ISMENE code.

T, = 10keV. This heating scenario has a rather weak damping arg = 0.35 for

The comparison with the LION code calculations is shown in Fig.7a. The
results of the model are given by the crosses and the results of the code by
the lines, for a few toroidal mode numbers.

In the second case we chose a heating scenario with strong absorption
arg = 079 which is obtained-for fundamental cyclotron heating of H in a
D-plasma with the following parameters: nH(o) = 3.7x10**em™ 3, nD(o) =
1.84x10%%em™, n_(0) = 1.1x10'2cm™®, f = 33MHz, Ty = 10keV and |n| = 15 (see
Fig.7b).

As the third example we chose an artificial heating scenario having weak
absorption but where we mﬁltiply the antihermitian part of the dielectric

tensor with a function g(s). We chose g(s) = (1 + 10s?) to change the form

of a(s) and make the power deposition less peaked. The variation of the
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absorption along the cyclotron resonance is then given by

a(s) = ny(s)-(1 + 108?). The following parameters have been chosen for this
scenario: fundamental heating of H in a D-plasma nH(O) = 0.75-10"'em™3,
nD(O) = 0.3-10'*em®, f = 33MHz and TH = 10keV. The damping arg = 0.35 for
|n{ = 20. The comparison is shown in Fig.T7c.

We have studied how the power deposition in the central and outer parts
of the plasma varies with the absorption coefficient. Fig;8 shows the
fraction of power absorbed inside the surface s = 0.3 and outside the
surfaces s = 0.8 and s = 0.9 as calculated with the formula as a function of
the damping éoefficient aISfor a density distribution n, = n0(1 - 0.952)0'55.
For these calculations we assume the absorption coefficient a(s) to be
proportional to the electron density. To include the effect of a wide
toroidal spectrum as obtained for typical JET antennae we take for the
magnetic surface averaged Poynting flux the mean value of three toroidal mode
numbers n = 10, 20 and 30. As can be seen from Fig.8, the power deposition
in the centre varies slowly'with respect to the absofption coefficient
whereas the absorption in the outer parts of the plasma decreases rapidly aé
the damping coefficient increases. The absorption in the outer parts of ﬁhe

plasma can then lead to the creatioﬁ of high energy particles which interact

with the wall or limiters.

3. Power deposition for off-axis heating

To calculate the power deposition when the cyclotron resonance does not
pass through the magnetic axis the method described in the previous section
can still be used. However, new expressions for the magnetic surface
averaged Poynting flux ?1 and ?2 have to be obtained which depend on the

position of the cyclotron resonance. Here we limit the calculations to

particular JET equilibria having ellipticities of 1.4 and 1.68,
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triangularities of 0.19 and 0.3, aspect ratios of 2.6 and 2.4 and a density

profile of the form n = no(I - 0.952)0'55.

The power deposition is
expected to be a sensitive function of the position of the cyclotron
_resonance. To label the positionrof the cyclotron resonance we define sw as
the magnetic surface which is tangent to the cyclotron resonance.

For the strong damping case we approximate the flux surface averaged

Poynting fiux, P,(s), by the following ansatz

s—s1 2
1 -exp [-{ . ) #n2]
0
P, (1) { . 7} 528
1 -exp [~ | < ) 2]
P.(s) - ° (13)
' 0 8 <8

The parameters s_ and s, are determined by comparing 51(5) and dP,/ds

1
with those calculated with the LION-code at the point where ﬁi(s) = 0.5 x

?1(1). For cases where the cyclotron resonance passes on the low field side
(LFS) of the magentic axis, we show in Fig.9 the parameter 51 versus sw for

various toroidal mode numbers, temperatures and equilibria, The narrow

crowding of the points shows that 8, is rather independent of the Dcppler

broadening d = n/q;%;}wré but essentially depends on sw. Fig.9 shows that
the power deposition in the centre drops very rapidly as the position of the
cyclotron layer is moved out., The parameter Sy when plotted against d,
shows the same dependence as in the on-axis case (Fig.4). We conclude that
in this case also S, essentially depends on d. If we now move the position
of the cyclotron layer on the high field side (HFS) of the magnetic axis we

find a more complicated dependence for 8, and 51‘ What happens is that the
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focal point of the magnetosonic wave almost coincides with the geometrical
centre of the‘discharge, which is on the HFS of the magnetic axis for all
equilibria that we considered. When s, comes close to the focal point S,
decreases'and Sy remains well below the LFS case shown in Figf91 When S, is
moved further oh.the HFS both S, and s1 increase rapidlyf The fact that the
relative positions of the magnetic axis and the focal point depend on the
equilibrium keeps us from defining a simplified formula which would be
general. Nevertheless we can evidence the qualitative dependence of the
power deposition profile: it remains highly centrally peaked when the
position of the cyclotron layer is inbetween the geometrical centre and the
magnetic axis. For more off-axis cases the power deposition in the centre
drops very rapidly as sw increases. We were able to quantify this effect

only when sw'is'on the LFS of the magnetic axis.

The ansatz for the flux surface averaged Poynting flux for weak damping;
52, is caleculated in a similar way to on-axis'heating (see quT). One might
expect the function f£(s) to have a rather complicated form which depends on
the position of 5, 8 well as d. Thus when defining the mean value of ?2 we
take the mean value of randomly chosen densities of the majority species
rather than randomly chosen toroidal mode numbers. However, we have found
that £(s) is not too sensitive to d. Having realised that we then calculate
f(s) by choosing the toroidal mode number n randomly as for the on-axis case.

In Fig.10 we show f(s) for different s, A useful approximation of f(s) is

§ + sm - 8
5 %P {- L———EE———J wn2} sss *+6
£(s) =y “ (14)
1 s> sm + 8
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Typical values for § and s, are § = 0705 and s, = 0.08.

We note here that f(s)»0 when sf+0f This should not be interpreted as
the wave field vanishes at the magnetic axis for off-axis heating but is
merely an effect of our definition of a(s) by Eq.(6). This definition does
not depend on the position of the magnetic axis with respect to the cyciotron
resonance.

For off-axis heating our formula for the flux surface averaged Poynting
flux consists of qu(B) where o is given by Eg.(11), ?1 by Eq.(j3), ?2 by
Fq.(7) with £ calculated from Eq.(14), s, and s are obtained from Figs.9
and 10, respectively. To illustrate the comparison between the P(s) as
calculated with the LION—code and with the formula, we chose a strong dampiﬁg
scenario of minority heating of H in a D-plasma having arg = 0.9 which is

obtained for the following parameters: nH(o) = §.2x10' em™3, nD(o) =

2.1x10%%em™3, nc(o) = 1,3x10'2¢cm™3, Bo = 2.17T, £ = 28.5MHz, Th = 10keV, and
n| = 15. The comparison between the formula and code calculations is shown
in Fig.11.

4,  Discussion

The power deposition for ion cyclotron heating in a tokamak plasma has
been analysed. In the case of weak dispersion the power deposition in large
aspect ratio equilibria with circular cross-sections is qualitatively
different compared to that of other equilibria or for strong dispersion of
the wave for a large aspect ratio. This can be understood by the lack of
focusing of the reflected wave. In the former case the power deposition
depends essentially on the Doppler broadening of the cyclotron resonance
whereas in the other cases it also depends oﬁ the damping coefficient.
Heuristic formulae for thé,power deposition in equilibria with large aspect

ratio and circular cross-section and in elongated ecuilibria of JET-type
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based on calibration curves and functions calculated with the LION-code have
been given. The problem of calculating the power deposition is then reduced
to calculating the launched torcoidal wave spectrum, the démping and the local
absorptioﬁ coefficient.

To calculate the power deposition for a realistic antenna, the antenna
current must be decamposed in a Fourier series in the toroidal direction.

The power deposition can then be calcu;ated by superimposing the power
depbsition profiles for the various toroidal mode numbers after they have
been weighted by the square of the Fourier amplitudes.

As expected, the power deposition is most sensitive to the position of
the cyclotron resonance (see Eq.(13) and Fig.9). The power deposition near
the magnetic axis for on-axis heating scenarios does not depend too much on
the single pass damping for minority heating scenarios where the absorbtion
is proportional to the minority density. However, the absorption at the
plasma boundary increases significantly as the damping decreases.

The formulae derived for the magnetic surface averaged Poynting flux
should be regarded to approximate the expected value of the magnetic surface
averaged Poynting flux. For weak Qamping the power deposition, as calculated
with the LION code, fluctuates depending on which eigenmodes the antenna
couples to. The mean value of the magnetic surface averaged Poynting flux,
calculated for slightly different equilibria or toroidal mode numbers, agrees
better with the formulas. For large tokamaks and for heating scenarios with
at least a moderate damping, the anteﬁna will couple to a large number of
eigenmodes and the resulting power deposition will not be too sensitive to
the equilibrium parameters. For small tokamaks and for heating scenarios
with relatively weak damping the antenna couples only to a few eigenmodes and
the power deposition may vary as the equilibrium parameters change; it is in

particular sensitive to variation of the average density.
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A technichal disadvantage of global wave codes being based on a flux
coordinate system is that close to the plasma boundary the mesh points becane
less dense, where the absorption layer is thinnest due to the lower
tanperature; This problem can paftly be handled by making the mesh more
dense at the cyclotron layer. To have good resolution the temperature must
be chosen sufficiently high to provide resolution of the absorption layer
through the whole plasma. Since the formula only depends on the local
absorption, the simplified formula can be extrapolated into regimes where the
code resolution becomes too poor, or to heating scenarios which the code
cannot handle, such as heating at the second harmonic.

The formula is restricted to the case when the anfenna is placed on the
low field side and cannot be used for heating scenarios where the
magnetosonic wave is directly damped by transit time damping. Deviations
from the formula are expected in cases where most of the wave is damped
before reaching the cyclotron resonance or in the case of large density
gradients such as the ones produced by pellet injections which will focus the
wave more sharply on the magnetic axis.

When mode conversion is present, the converted wave could convert a part
of the energy away from the resonance and modify the power deposition
profile. Thesé effects are not included in our model. The problem of
simultaneous mode conversion and cyclotron damping is not a trivial problem
and up to now has not been éolved in toroidal geometry including the

equilibrium poloidal magnetic field.
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Fig.1 The function (dV/ds)/R3s versus s for an elliptic JET equilibrium.
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Fig.3 Integrated Poynting flux P versus 5 for different elliipticities',‘ e,
of the cross-section for a plasma of constant density.
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Fig.5 The shape function f(s) determining the power deposition for weak

damping cases for various density profiles. f{s} is normalised such
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Fig.6 The relation between o and arge The crosses are calculated with LION
and ISMENE codes. The continuous line is given by Eg. (12a).
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Fig.7 Comparison between numerical calcutations of the flux averaged
Poynting flux {(lines) and the formula (crosses), a) heating of H
minority in a 3H -plasma, formula is calculated for n=30, b) heating
of H minority in a D-plasma, formula is calculated for n=15, e} an
artificial heating scenario, formula is calculated for n=20.
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Fig.8 Ratios of absorbed power inside s = 0.3 and outside s = 0.8 and 5 =
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Fig.10 The shape function f(s) determining the power deposition for weak
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Fig.11 Comparison between numerical calculations of the flux averaged
Poynting flux {lines) and formula (crosses) for off axis heating.





