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ABSTRACT.

The problem of deducing X, from heat pulse propagation measurements is addressed. An extended
diffusive model is described, which takes.into account perturbed source and sink terms. X, is
expressed as a function of two observables, the heat pulse velocity vyp and the radial damping
rate o: X, 4.3 a vygp/o.. This expression is checked against full transport e simulations and found
accurate. Finally it is shown that the thus inferred X, is a local value, not influenced by the X-

profile outside the measuring region.



INTRODUCTION

Energy confinement, and its detericration at high heating power, is perhaps
the most urgent issue in tokamak physics. One of the key parameters Lo be
studied is the electron heat diffusivity (xe) in the confinement region.
Experimentally o can be assessed by analysing the spatial diffusion of a
perturbation of the equilibrium profile of the electron temperature, Te.

To that end the local perturbation Te(r) is measured as a function of time
at various positions in the plasma simultaneously. Usually the sudden
change of the central part of the Te—proflle as a result of the sawtooth
instability is used as initial perturbation. The original discussion of
this method is by Callen and Jahns [1]. Since then the methed has been

applied to various machines |2-8].

Until recently noise on the measured signal severely limited the obtainable
accuracy. It is only with the present ECE diagnostic systems and the long
time scales involved on the new generation large tokamaks that an
experimental error of as small as 20% may be realised. These developments
on the experimental side now lead us to reconsider the technique of
deriving a local value for X from measurements of ?e(r,t). The standard
technique is based on the assumption that the relaxation of the perturbed
Te~profile is a purely diffusive process, invelving only the electrons. As
was shown by Goedheer [9] this approximation is not always adequate., It

leads to an overestimate of e of typlcally a factor of 1 to 2.

In this paper we will present an extended diffusive model which reduces
systematic errors to order 10%. 1In Section 2 we briefly recall the
standard diffusive model. The extended diffusive model is introduced, and
checked with numerical transport simulations. 1In Section 3 we analyse the
idfluence of the shape of the xe-profile on the determination of Xgr We
address the question whether heat pulse propagation analysis yields a local
measurements of Kgs OF rather a gilobal average, Section U gives a

discussion of the merits of the new model.



2. DIFFUSIVE MODELS

A description of the relaxation of the perturbed Te~profile in principle
requires solving the complete set of transport equations for electrons and
ions. However, the problem may be simplified by neglecting effects of n

changes in the electron-ion energy exchange etc. The simplest equation

then achlievable is the diffusion equation T = 2/3xev2§ which for suitable
initial perturbation profiles can be solved analytically. This approach
was pursued first by Soler and Callen |3}, who found that Xg can be
expressed as

rz_r,z

DIF mix (1)
XHp 8tp

where rmix is the mixing or reconnection radius and t _(r) is the time at
which Te(r) reaches a maximum. The superscript DIF refers to the fact that

the relaxation is assumed to be a purely diffusive process.

Two questions concerning this approach have been raised. First, are the
simplifications made to arrive at the simple diffusion equation justified?

Second, how good are the analytically obtained results?

The latter question is addressed in a recent paper by Fredrickson et al
[6]. 1t gives some improvements on the original analytical work and checks
the results with a code that numerically solves the diffusion equation for
more general conditions., They find that the original result (1) holds to

good approximation.

The first question can be studied by comparing the results from solving the
purely diffusive equation (either analytically or numerically) to those
obtained with a full numerical transport simulaticn. This was done by
Goedheer [9]. He finds that, due to the perturbation of the sink terms
(electron-ion energy exchange, mainly) which in the diffusive model are
neglected, the temperature perturbation spreads faster in the transport

simulation, typiéally by a factor between 1 and 2. His conclusion is that



in order to reliably derive X from measurements of Te(r,t), a full
transport simulation for the specific plasma conditions should be run.
This, however, is too time-consuming, in terms of both manpower and
cpu-time, to bhe a viable option. The extended diffusive model we present
here takes into account variations of sinks and sources. Yet it leads to a
simple expression for Xe in terms of two measured quantities, the heat
pulse velocity and the rate at which the amplitude of the perturbation
decreases towards the wall. Both quantities are experimentally well
accessible with ECE diagnostic systems [8,10,!1]. The heat pulse velocity
has been used routinely in heat pulse analysis studies [4,8,9,10,11]. The

use of the radial damping rate as additional input is introduced here.

The basic equation governing the perturbed Te~profiles is
30T - ped
E n = ) P (2)

where Te is the perturbation of the electron temperature,_@ the
perturbation of the heatflow per unit area and P the perturbation of the
source power density, i.e. electron-ion energy exchange, radiation loss and
ohmic dissipation. If we assume that Xe is independent of Te and spatial
derivatives thereof (see section 4) and linearise P in T, equation (2)

takes the form

3,7 -7 iy -1
s, T, =V (neerTe) -0, T (3)

9

with t = N, {aTe

(p. -P, =P where P, P, and P
tt] ie r

ie rad)} Q denote power

ad

densities of ohmic dissipation, electron-ion energy exchange and Eadiation
loss, respectively. The damping term (%nefe) is important if t is
comparable to the typicai time scale of the diffusion process. 1In normal
tokamak condifions the electron-ion exchange is the leading term in 1, S0
that 1t ~ et For JET a typical value 1is e © 50 ms in the confinement
region, compared to a typical time of 30 ms for the diffusive relaxation

process., Hence we cannot neglect the term %neTe' Naturaily, T has a



radial profile, about which we lack precise knowledge. However, we can
improve on the standard zero-order approximation 1 = « discussed above, by
making the first order approximation 1 = constant. Results of gomparison

with full transport simulations will be given below.

As is clear from Eg. (3), the effect of the damping term is to add a factor
exp(-t/1) to the sclution of the initial value problem without damping.
Consequently, with damping (see Fig. 1):

~ the time tp(r) at which T(r) is maximal comes earlier;

- the actual maximum f(r,tp) is reduced by a factor exp(*tp/T).

From ECE measurements T(t) can be deduced at different radii, from which we

derive two quantities:

=

)

- the heat pulse velocity v def'ined (iocally) by v = (

d
HP aFtp

-~ the radial damping rate a, defined by « = 10 a %F log T(r,tp) expressed

HpP’

in dB.

Beth are in princlple local values which can be determined as a function of
radius. To reduce nolse, however, it is generally necessary Lo average
over regions of at least 10% of the minor radius. An absolute lower limigt
is set by the spatial resolution of the ECE system, naturally. Below

we will show that the two measured quantities Vi and o enable us to
determine unambiguously the twe unknowns in the extended diffusion
equation, 1 and Xot Hence by including the damping rate in the analysis we

are able to account for the effect of perturbed sinks and sources.

We solved Eq (3) numerically in cylindrical geometry, symmetric in z and @,
for the choice of profiles xe(r) =y 0 and ne(r) = ne{o) {0.1 + 0.9
[1-(r/a)*|} and the boundary condition Te(a} = 0. Profile effects are
investigated in Section 3. The initial dipole perturbation was of a
parabolic shape, close to the experimentally observed perturbation

profiles.

VHP(P) and a(r) were determined from the calculated T(r,t) and averaged



over a radial interval of 0.1a, ie. from r-0,0%a to r+0,05a. In Fig. 2

rasults are shown for rmix=0.5a, for v ranging from 0.6a to 0.8a. Plotted

are the dimensiontess quantities vaa/xe o and g (both are independent of
?

system dimensions) as a function of the dimensionless parameter Kmazlrxe 0"
1
K determines the relative strength of the damping term. We see that both o

and avHP/xe o can to a very good approximation be represented by linear
¥

functions of K:

aVHP/Xe,o - pv ¥ qv K ’ (4a)

o =P *dq, K {4b)

Hence X can be expressed as a function of v and «, yielding XE?T

;O Hp
exr o 2w (5)
kgp T % 57T ¢,

with cl=qa/qV and cz=clpv—pa. The constants P, pu, q aﬁd qu are

v
nontrivial functions of r and Pix" However, the resultant constants c,
and c, are well behaved in the radial range of interest. In Fig. 3 ¢, and
¢, are plotted as a function of r—rmix’ for Pmix ranging from 0.3a to

0,6a.

The range of r“rmix in which neat pulse méasurements can be made sensibly
is restricted by several constraints:

- in the direct vicinity of rmix' ie. r“rmix < 0,05a, the solution of the
diffusion equation is very sensitive to the shape of the initial Te
perturbation;

- with g typically 2 4G dB, the amplitude of Te(r) falis by a factor of
10 over Ar=0.25a, which makes reliable measurements at r > rmix+0.25a
very difficult.

- for rz0.85a the effects of the wall and the impurity radiation dominate
the transport processes, and no reliable Xo measurement can be expected

anyway.

Therefore the radial range of useful T(r) measurements is effectively

rmix+0.05a <r < rmix+0.25a. Hence, due to the minimal averaging interval



of 0.1a necessary to determine v and o, the useful range of r on which

HP
XE can be determined is just (rmix—r) = 0,%1a to 0.2a. On this interval
XHPTcan for all practical purposes be expressed as: (around r=rmix+0.15a,

taking <a>=40dB, <c,>=-5)

= 4.3 a 'np : (6)

In Fig. 4 this relation is plotted together with the points (a, av )

HP/xe,o
calculated for K=0 to 40. Clearly expression (6) gives a good fit to the
data, independent of r_.
mix
Note that the purely diffusive model is found as a special case of the
extended model. For K=0 with r_. =0.4a and r-r ., =0.1%a, we have g=32 dB,
mix mix

nence

EXT

Xgp (K=0) = 0.14 avyp
This corresponds to expression (1) for the diffusive case: here one should
insert r=rmix+2 x 0.15a (because in this formula r and Paix Gre defined as
the boundaries of the averaging interval} to find:

DIF 1
Xgp = 8§ VYup Tmix T T T 01 a vy,
The same correspondence is found for other values of rmix’ demonstrating

that indeed the diffusive model is reproduced as a special case of the

extended model.

The extended model was tested by applying it to a number of computer
simulapions of JET plasmas. The simulatipns were done with a full, 1.5 D
transport code, JETTO L12,33]. It produced Te traces at various radii so
that heat pulse analysis could be performed. In table 1 the y-values
derived with both the diffusive and the extended model are compared to the
actual values used in the code. All values are taken at rmix+0.15a. We

see that the extended model produces xe—values that are slightly low,




whereas the purely diffusive model yields values that are a factor 1.6 too
high.

(This factor depends on K, evidently, and therefore depends on

machine size and plasma conditions).

We conclude that, to 10% accuracy expression (6) for ngT can be used to

derive Xo from measurements of v and a. The extended model correctly

HP
accounts for the effects of the perturbation of the sinks and sources. As

Wwill be shown in Section 3, the Xeo values with the extended model shoﬁld

correspond to Xe averaged over the radial interval on which v and o are

HP

determined, with a strong emphasis on the small radius side of this

interval. If we account for this effect the extended model reproduces the

modelled Xg values to within few percent.

Table la. Runs of the full transport code JETTO used for comparison with heat pul

models. B.r is the toroidal field, Ip is the plasma current, (ne> is the line avera

density: the xe—prof'lle is inversely proportional to the ne-profile. the absolu

value is matched to produce the correct global energy confinement time.

nr By Ip n> xe(r= %a) VHP o
13 | ooy | oy | [ese] [ns] | [dB]
1 3.4 4.0 1.8 1.6 10 43
2 3.4 4.0 2.6 1.1 6.9 45
3 3.4 4.0 3.1 1.0 6.4 43
4 3.4 3.0 1.6 1.7 11 47
5 2.5 2.0 1.5 1.8 2 45

Table ib. Comparison of the heat pulse models with the full transport code JETTO. Xy

is derived from Yap and a given in Table la. The resulting xm,—values are list

together wifh their factor of deviation from the local Xq value in JETTO.

JETTO DIFFUSIVE MODEL EXTENDED MCDEL
nr :(e(rz%a} xgll,F( rzéa.} factor )(!.El?;r(!'-—gﬂ) factor
[m°/s] [mo/a] [m/s]
1 1.5 2.5 1.7 1.5 1.0
2 1.1 1.7 1.5 1.0 0.9
3 1.0 1.6 1.6 1.0 1.0
4 1.7 2.8 1.6 1.5 0.9
5 1.8 3.0 1.7 1.7 0.9




3. The influence of the shape of the xe—profile on the determination of Xpp

The diffusive and extended diffusi§e models yield a value for Xpp expressed as
a function of the measured quantities: delay time tp(r) or heat pulse velocity
and radial damping rate. These quantities are measured locally, ie. on a
radial interval Ar which is small compared to a; usually Ar/a = 0.1 to 0.2.
However, the diffusion equation is solved on the entire interval r/a = 0 to 1.
Therefore the local values tp(r). Vip and a are not only determined by the
value of X in the measuring interval Ar, but also by the xe—profile outside
Ar. Consequently, Xgp is not a measurement of the local Xg but a weighted
radial average of Xg-

Fredrickson et al. [6] investigated the influence of the shape of the
xe-profile on Xyp by numerically solving the diffusion equation for a number
of different xe—profiles. They found that, indeed, Xgp was clearly inflﬁenced
by the shape of the xe—profilg.

In this section we will determine more quantitatively how different parts
of the xe—profile contribute to the measurement of Xpp- The basic approach is

to write Xyp 28 2 weighted line average of X,

a2

Xgp = of w(r)x,(r)dr (7)

and then to determine the weight function w{r) with the help of the
cylindrical diffusion code. One may consider this weight function as the
instrument function of the heat pulse propagation method. If it peaks strongly
in the measuring region Ar this implies that Xgp is a local measurement of Xg*

Conversely, if w(r) has significant contributions outside Ar, is a broader

Xpp
line average of xe(r).
This method is not generally applicable. In particular, representation

(7} breaks down for xe—profiles that approach zero (or go to infinity) at any

radius, 'due to the nonlinearity of the problem. However, as we show in the




Appendix, eq. (7) is accurate for xe—profilesspanning a X -range of a factor
10. This means that the ensuing analysis is applicable to ail physically
interesting profiles.

The weight function w(r) can be determined with standard techniques (see
Appendix). In Fig.5 the result is shown for both the diffusive and the
extended diffusive model. For the curves shown Vyp and o are determined and
averaged over the interval r/a = 0.6 to 0.73, as indicated in the figure, with
rmix/a = 0.5 . It is evident from Fig.5 that the weight function for the
extended model is strongly peaked in the measuring interval. Clearly the
extended model yields a very localized measurement of X The diffusive model,
on the other hand, yilelds a rather broad line averaged value of Xg* The reason
for this difference in behaviour is that a variation in the xe~profile outside
the measuring region changes o and Vup in much the same way, leaving their
ratio unaffected.

The above conclusion was tested by rumning the cylindrical diffusion code
.with a number of different xe—profiles. in the same way as Fredrickson et al
[6] have done. We found that xggr is virtually insensitive to the shape of
the xe—profile. For wvery different profile shapes xggr corresponded to the

local value of Xq within 5%, in corroboration with the above analysis. For

the same profiles Xﬁ;F could deviate up to ©0% from the local X value.

-0~




4, DISCUSSICN

In the previous sectlons we have introduced the extended diffusive model,

which expresses Ko in terms of v and ¢. The inclusion of the damping

HP
term proved: a} to account for the effect of the perturbed sinks and
sources and b) to provide far more localized measurements than the original
diffusive model. How can a single parameter account for these different

effects?

First we nust notice that the effect of any sink is to increase both VHP
and . The most obvious sink is electron-ion energy exchange. However, if
somewhere Xe is larger than was assumed in the model this influences o and
VHP in much the same manner. Especially in the mixing region an
enhancement of Xeo leads to a more rapid flagttening of the initial dipole
perturbation. This explains the hump In the weight functions in the

inversion region (Fig. 5).

Second, if the time constant 1 associated with the sink is larger than the
time constant Typ of the relaxation of the fe-profile, the effect of the
sink is global rather than local. 1In those cases the radial distribution
of the sinks Is not very important and the approximation 7 = constant is
Justified. 5o we get the ordering: =t > 5THP: damping term negligible;
THPé T 55 Typt extended model adequate approximation; 1 < Thp? strong
local effects of sinks, the radial profile of 1 should be taken into

account.

The extended diffusive model is found accurate if compared with full
transport simulations. However, some assumptions have been made in the
transport code as well as in the diffusive models, ie. that Xo does not
depend on Te or VTe. What would be the effect of such dependences on heat
pulse studies? As is easily checked, a VTe*dependence does not change the
linearised diffgsion equation. 1t only replaces X by

‘= . + 5
%o Xe,eq (BVTe xe) VTe,eq where the subscript egq. refers to the

unperturbed equilibrium situation. The analysis presented in section 2 and
3 is still fully applicable., The Xp value derived from heat pulse
propagation now corresponds Lo xé. Hence a VTe dependence in Xe does not

invalidate the analysis, 1t only affects the physical interpretation of

-11-




XHP(See [10]). A Te—dependence in Xo is formally equivalent to a
convective term in the heat transport. Such a term does not affect Vap
but changes the pulse shape and the radial damping rate. To properly
account for this term a third parameter should be extracted from the
experimental data. Inspection of pulse shapes so far has not shown any
strong non-diffusive effect [6}, which is why in heat pulse analysis Xe is
assumed independent of Te. Also the effect on the damping rate alone can
be used to reject the possibility of a significant Te~dependence on the

basis of experimental data, as is done in ref. [10].

In conclusion, we have shown that the extended diffusive model has reduced
systematic errors in heat pulse analysis to order 10% and strongly improved
the localization of the measuremeni. Thus the accuracy of the analysis i§
in line with the present measuring accuracy. If we want to extend the
analysis to comprise non-diffusive heat transport, the pulse shapes need to

be taken intc account.
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Appendix

In this appendix we will show that Xyp can indeed he written as a weighed line
integral of xe(r) (Eq.7)., provided the dynamic range of xe(r) is limited to a
factor 10, and we describe how w(r) is calculated.

We linearise the problem by taking the constant xe—profile xe(r) = X, o
as the unperturbed profile, for which we know XHPE xe,O since Xy, 1s
specifically derived for this profile, and analyse how small perturbations of
this profile affect Xgp- By writing 6XHP= XupXe. o and 6xe(r): xe(r)—xe,o
Eq.{7) yields:

a
bgp = o wlr) &x (r) dr (A1)

where 6xe(r)/xe o should be small everywhere .
To determine w({r), we use the test profile Gxe(r) = Xg [ H(r—rH). where

H(r—rH) is the Heavyside function, stepping wup at r=rp. The cylindrical

EXT

diffusion code was run for a large number of values of r_,. We determined Xgp

and XE;F as a function of r

0
1 for a chosen measuring region and fixed initial

Te—perturbation. The weight functions are then calculated according to

1 d [
e, H 'H
The relative amplitude X H/xe o of the step was varied to test the range

of applicability of the analysis. It was found that virtually identical weight

functions were obtained for Xq H/xe o ranging from -0.7 to +3.0

-16-



In a separate test the diffusion code was run with a xe—profile which was
constant except for two rectangular perturbations of width a/l15 (see Fig.Al).
The amplitudes A and B of the perturbations were varied indepently, and the
resul ting variation of Xyp: GXHP, was determined. It was established that the
linearity conditioni |

ﬁxHP = wlA + sz (A2)
holds fairly ﬁell for A/xe.o and B/)(e’0 ranging from -0.7 to . +3.0. The
constants W, and W, are the integrals of w(r) over the width of the
perturbations. This result implies that the above analysis is applicable to
xe—profiles spanning a X range of up to a factor ten, ie. all profiles that

are interesting from the point of view of tokamak physics.

-17-
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Fig. 1 The effect of the damping term on the shape of the heat pulse.
Shown is the evoliution of the temperature perturbation at a radius
outside the mixing radius, The full line represents the solution of
the diffusion equation without damping, the broken line is the
solution if damping 1s included. Clearly the effect of the damping
term is to reduce the maximum and the time at which the maximum is
reached, :
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Fig. 2 The effect of the damping term is parametrized by the dimensionless
quantity K = aZIXGT. Shown are the normalised heat pulse velocity
and damping rate as a function of K, calculated at three distances
from the mixlng radius: O:{r-rg, )/a = 0.10; O:{r-r_. )fa = 0.15

mix
and O : (r-r }/a = 0,20, 1In this example r = 0.5a,

mix mix
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Fig. 3 The constants ¢, and ¢, as a funection of {r-r .x)/a, for r 1x "~
0.3a(o); fuix = O.4a 9 Puix = 0.5a (0) and rp;, = 0.6a TA§.
The important constant c, iIs nearly independent of both r_._ and
mix’ while ¢,, which describes a correction of order 10% to Xet
does show a dependence of Pl e FOPoro> 0.8a the boundary
condition begins to have significant effects.
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Fig. 4 The normalised heat pulse veleceity is proportional to o at r-r .
0.15a. The proporticnality is independent of Cmi x {plotted are
results for Tmix = 0.3a(0); Chix T 0.4a ); Coix = 0.5%a (1) and
Cmix = 0.6a (AJS and does not depend on K (total K range: K = 0 to
49).
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The weight function w caleulated for the diffusive model {full iine)
and the extended model (dashed line), for r ., = 0.5a; a and vyp are
averaged over the radial interval 0.6a < r < 0,73a. Clearly the
extended model yields a lccal value of ter the weight function being
strongly peaked in the measuring interval. The diffusive model
yields a broader line-averaged value of y,.
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Fig.Al To test the linearity of the response of XE%T and xg%F to a

perturbation of the y,-profile, the plotted profile shape was
assumed. The sign and amplitude of the two rectangular

perturbations were varied independently, as a check of the validity
of Eq. (A2).






