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ABSTRACT
The LIDAR Thomson Scattering System on the JET Tokamak is described. First
electron temperature profile measurements obtained with this new diagnostic

technique are presented.

INTRODUCTION

The application of 180° Thomson scattering using short (-~ 300 ps) laser
pulses for measuring electron temperature and density profiles in large
fusion devices was proposed in L1]. With the short laser pulse method,
spatial resolution along the laser beam is in principle achieved by
high-speed detection techniques allowing time-of-flight measurements [2].
This LIDAR (Light Detection and Ranging)} technique was applied for the
first time on the JET tokamak.

THE LIDAR THOMSON SCATTERING SYSTEM

Figure 1 shows the optical set-up of the diagnostic. A ruby laser pulse of
220 ps duration is directed radially into the tokamak vessel in the

equatorial plane and dumped on a carbon tile at the inner torus wall. The
laser beam inside the vessel has a constant diameter of 50 mm. During the

measurements described here, the laser (JK LASERS {Lumonics)




Rugby, UK), capable of 5 J operation at up to 0.5 Hz repetition rate, was

operated -at 2 J and single shot.

a)

b)

c)

Laser

Thé laser consists of an actively mode-locked oscillator, two single
pulse selector stages (Pockels cell shutters) in series, four
amplifiers, and a dye flow cell to reduce further the power of the

spurious background pulses leaking through the Pockels cell shutters,

Collection Optiecs

The backsecattered light is collected by a folded spherical mirror
system through an array of six windows surrounding the central laser
input window on the JET vessel. Its effective solid angle of
collection is 5.5 x 107™%sr. The collection opties and the labyrinth

mirror system, which transmits the collected light through the 2.2 m

_ thick biological shield, is shared with the singlé spatial point 90°

Thomson scattering system on JET [3}, for which it was constructed.

The two collected light beéms are separated from each other in the
entrance slit plane of the polychromator of the single point scattering
system. The entrance slit is surrounded by a broadband mirror which
directs approximately 95% of the scattered light from the LIDAR laser
beam into the LIDAR polychromator. '

Polychromator

The three main features of the LIDAR polychromator are, extremely high
optical throughput of 1 cm?sr, high average transmission of the six
spectral channels (about 70%) and rejection of ruby laser stray light
by a factor greater than 10°. This performance is achieved with a

filter polychromator in which the incident light is shone onto a stack

of short wave pass interference edge filters with decreasing'cut on

wavelengths, the filters being tilted slightly with respect to each
other [H]. The transmission bandwidth of a spectral channel observing
reflected light from this filter stack is defined by the cut-on
wavelengths of two adjacent filters of the stack and by a suitably
chosen coloured glass filter in front of each detector. Additional
interference filters in front of each detector improve further the
rejection of stray ruby laser light. The coilection optics, which is

illuminated homogenously by scattered light during the passage of the
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laser pulse through the plasma, is imaged onto the filter stack. In
this way slight variations of the cut-on wavelengths across the surface
of the 200 mm diameter edge filters, are averaged in the same way when
the scattering volume moves through the plasma. In the course of the
first measurements, reported here, only four of the six available
spectral channels were used. Their transmission bands were 660-626 nm,
639-60%1 nm, 598~534 nm and 530-480 nm, respectively.

d)} Detectors and Digitizers

The high speed detection of the backscattered light pulse is
accomplished using proximity focused MCP photomultipliers (ITT F 4128)
with 20 mm diameter photocathode. The output signals are registered by
TEK 7912 AD transient digitisers with 7 A 29 vertical émplifier
plugs~in. The overall bandwidth of the complete detection and

registration system is approximately 700 MHz,

e) Stray Light Suppression

Ruby laser stray light pulses arriving at the detectors before the
scattered signal are suppressed very effectively (by a factor of 1033
/4/) by gating the pnotocathode to MCP gap of the detectors. The flat
top of the gate is about 30 ns long and the Pinging, coupled to the
detector output by the 10 ns risetime/150 V amplitude gating pulse,
could be kept to below 10 mV, An intense stray light pulse occurs
after the measurement when the laser pulse strikes the carbon tile dump
at the Torus inner wall. This stray light burst causes a 300 V/0.5 ns
electrical pulse at the ocutput of the detectors and a high speed, pulse
clipping diode circuit in the signal lead is used to protect the

"vertical amplifier plug-ins of the digitizers [5].

RESULTS _

Figure 2 shows an overlay of the detector signals recorded by the
digitizers both when the laser was fired during a JET pulse (full curve)
and when no plasma was present in the JET vacuum vessel (dashed curve).
The baselines prior to gating on the dgtectors appear in region 1,

] An unusual stray light source was encountered when the initial dataset was
obtained. It can be seen immediately after the detectors were gated on
(region 2). A monotonically decaying "stray light' signal was observed by

the detectors leading to a distinect 'switch on' peak during the rise of the

-3-



gating pulse; The switch on peak was most pronounced in the signal
displayed on digitizer 1, while the slow decay was most clearly seen from
digitizers 2 and 3. This 'ew background' signal was shown to be due to
spectrally broadband radiation created by spurious ruby laser light
incident on a (temporary) black cardboard mask surrounding the laser input
mirror (figure 1). The effect of this background radiation on the results
was small and in the future it will be avoided completely by imaging the
laser cutput cross section onto this mirror.

Compariscon of the stray light signals with the measurement signals in
region 3 shows that plasma radiation constitutes only a very small source
of background radiation. This is one of the merits of the LIDAR system and
is a direct result of using a short integration time in the detection
system., Thus, the difference between the continucus and dashed curves in
region U is predominently due to the scattered light from laser pulse as it
propagates through the plasma.

The signal traces are effectively terminated when the main laser pulse hits
the inner torus wall and produces a very intense light pulse. The writing
speed of the digitizer is inadéquate to follow the rapidly rising (=ve)
waveform and the trace disappears from the screen at ¢t ~ 48 ns, figure 2,
The fact that no discrete ruby laser stray light pulses are detected during
the time of measurement (a time window starting - 17 ns before the
termination of the signal traces), indicates that the suppressién of the
spuriocus background laser pulses in front of the main laser puise, in
combination with the rejection ratio of the polychromator, is sufficient to
allow unperturbed measurements. The signal to background ratio of the
laser emission was measured generally to be better than 10°. However, 2 ns
before the main pulse, a spurious pre-pulse of only a factor of 10* less
than the main pulse had been measured. The effect of this is visible on
digitizer number 1 at 46 ns. This pre-pulse has since been removed by more
careful setting up of the laser oscillator,

The scattered light signals from figure 2 have been time correlated using
the data obtained from a test experiment in which the peak of the stray
termination pulse was displayed by using optical attenuation in front of
each detector. The time marker so obtained is also indicated in figure 2.
In this first analysis, the electron temperature has been fitted to each
500 ps time averaged segment of the channel data in region 4. The
resultant Te profile is shown in figure 3a where it is compared with the

partial Te profile obtained from the JET ECE diagnostic [6]. At this time
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during the discharge ~ 6 MW of RF heating were being applied to the plasma,
produecing a moderately high central electron temperature,

In contrast figure'3b shows a low Te case just after pellet injection in
which a central electron temperature of a factor of U lower is indicated.
Once again good agreement between the profile data from the two diagnostics
is obtained. 1In fact the LIDAR system has been used successfully to date
over the 0.2-5 keV temperature range. Also from figure 3b, since the
temperature gradient around 2.6 to 2.8 m appears rather steep, it indicates
that the spatial resolution of the diagnostic is in the range 0.10-0.15 m
as expected. Unforgunately, absclute density profiles were not obtained
during these initial experiments because the vignetting effects assocliated
Wwith the particular laser beam profile in use at the time could not be
adequately assessed. This will not be the case in the future when the
proper input optical system 1s installed and an in vessel calibration has

been conducted.

CONCLUSION

The first electron temperature profiles have been obtalned with the novel
LIDAR Thomson Scattering diagnostic on the JET Tokamak. 4

The full Te profiles are in good agreement over a wide range of plasma
conditions with partial profiles obtained by the ECE technique.

A spatial resolution for the diagnostic of 0.10-0.15 m is indicated

Wwith this preliminary data set.
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Fig. 1 Schematic of input and collection opties on JET.
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Signals output by the digitizers a) full curve-during plasma pulse

b) dashed curve-no plasma {laser
only)

Region %t shows detector ocutput prior to gating

Région 2 shows detectér output during gating on

Region 3 shows detector ocutput showing plasma light level

Region 4 shows detector output during period laser pulse traverses

plasma A

The vertical bar indicates the fiducial marker fo;' each digitizer

signal.
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Fig. 3a) LIDAR and ECE Te profiles during RF heating.
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Fig. 3b) LIDAR and ECE Te profiles during Pellet Injection.





